Package ‘bisque’

October 12, 2022
Type Package

Title Approximate Bayesian Inference via Sparse Grid Quadrature
Evaluation (BISQuE) for Hierarchical Models

Version 1.0.2

Date 2020-02-03

Author Joshua Hewitt

Maintainer Joshua Hewitt <joshua.hewitt@duke.edu>

Description
Implementation of the 'bisque' strategy for approximate Bayesian posterior inference. See He-
witt and Hoeting (2019) <arXiv:1904.07270> for complete details. 'bisque' combines condition-
ing with sparse grid quadrature rules to approximate marginal posterior quantities of hierarchi-
cal Bayesian models. The resulting approximations are computationally efficient for many hier-
archical Bayesian models. The 'bisque' package allows approximate posterior inference for cus-
tom models; users only need to specify the conditional densities required for the approximation.

License GPL-3

RoxygenNote 7.0.2

Suggests testthat, fields

Depends R (>=3.0.2)

Imports mvQuad, Rcpp, foreach, itertools

LinkingTo Rcpp (>=0.12.4), ReppArmadillo, ReppEigen (>= 0.3.3.3.1)

SystemRequirements A system with a recent-enough C++11 compiler (such
as g++-4.8 or later).

NeedsCompilation yes

Encoding UTF-8

Repository CRAN

Date/Publication 2020-02-06 00:40:03 UTC

https://arxiv.org/abs/1904.07270

2

createLocScaleGrid

R topics documented:

createLocScaleGrid 2
dmix . . . e e e e e e 3
CIMIX . . v v v v e 4
furseals L. e e 5
X e e e e e 6
JACEXD « v o o e e e e e e e e e 7
jacanvlogit . .. oL L e 8
jacdog . .o e 8
jaclogit . .o 9
kCompute 9
logjac e e e e e 11
mergePars L. L e 11
SEit . e 12
SKrig . . . 13
10 G 14
wBuild e e e 15
WMIX .. e 18
Index 22
createlLocScaleGrid Create a centered and scaled sparse integration grid
Description

Enhances mvQuad::createNIGrid by shifting and scaling a sparse integration grid, and evaluating
the weight function at each of the grid nodes.

Usage

cr

eatelLocScaleGrid(

mu = @,

prec = 1,

level = 2,

quadError = FALSE,
prec.chol = chol(prec)

)
Arguments
mu location at which grid should be centered
prec "precision matrix" associated with the integration grid. When building a sparse
integration grid for a density, prec is often the negative of the hessian at the
mode.
level accuracy level. This is typically number of grid points for the underlying 1D

quadrature rule. [description from mvQuad::createNIGrid]

dmix

quadError

prec.chol

See Also

provide additional information about the grid points and integration weights for
the quadrature rule with level-1. This information can facilitate approximating
the quadrature error.

Upper-triangular Cholesky decomposition of precision matrix.

mvQuad: :createNIGrid

Examples

g = createlLocScaleGrid(mu = c(1,0), prec = diag(c(1,.5)), level = 2)

dmix

Evaluate a mixture density

Description

Evaluates mixture densities of the form

k

flx) =" f(@l0®)wy

j=1

where the wy, are (possibly negative) weights that sum to 1 and f (x\ﬁ(k)) are densities that are
specified via parameters #(*), which are passed in the function argument params. A unique feature
of this function is that it is able to evaluate mixture densities in which some of the mixture weights

wy, are negative.

Usage
dmix(x, f, params, wts, log = FALSE, errorNodesWts = NULL, ...)
Arguments

X Points at which the mixture should be evaluated. If the density is multivariate,
then each row of x should contain one set of points at which the mixture should
be evaluated.

f Density used in the mixture. The function should be defined so it is can be called
via f(x, params, log, ...). The density f is evaluated at the points in x using
one set of parameters params, i.e., for some specific k) if log==TRUE, then
In(f) is returned. Additional parameters may be passed to f via

params Matrix in which each row contains parameters that define f. The number of
rows in params should match the number of mixture components k.

wts vector of weights for each mixture component

log TRUE to return the log of the mixture density

errorNodesWts list with elements inds and weights that point out which params get used to

compute an approximation of the quadrature error.
additional arguments to be passed to

4 emix

Examples

evaluate mixture density at these locations
x = seq(@, 1, length.out = 100)

density will be a mixture of beta distributions
f = function(x, theta, log = FALSE) {

dbeta(x, shapel = theta[1], shape2 = theta[2], log = log)
3

beta parameters are randomly assigned
params = matrix(exp(2*runif(10)), ncol=2)

mixture components are equally weighted
wts = rep(1/nrow(params), nrow(params))

evaluate mixture density
fmix = dmix(x = x, f = f, params = params, wts = wts)

plot mixture density
plot(x, fmix, type='l', ylab = expression(f(x)),
ylim = c(0, 4))

plot component densities
for(i in 1:length(wts)){

curve(f(x, params[i,]), col = 2, add = TRUE)
3

emix Compute expectations via weighted mixtures

Description

Approximates expectations of the form

EWh(®) = [ho)7(6)ds
using a weighted mixture

k
E[h(0)] = > h(0™)ywy,

Usage

emix(h, params, wts, ncores = 1, errorNodesWts = NULL, ...)

furseals 5

Arguments

h Function for which the expectation should be taken. The function should be
defined so it is can be called via f (params, ...). Additional parameters may
be passed to h via

params Matrix in which each row contains parameters at which h should be evaluated.
The number of rows in params should match the number of mixture components
k.

wts vector of weights for each mixture component

ncores number of cores over which to evaluate mixture. this function assumes a parallel

backend is already registered.

errorNodesWts list with elements inds and weights that point out which params get used to
compute an approximation of the quadrature error.

additional arguments to be passed to h

Examples

density will be a mixture of betas
params = matrix(exp(2*xrunif(10)), ncol=2)

mixture components are equally weighted
wts = rep(1/nrow(params), nrow(params))

compute mean of distribution by cycling over each mixture component
h = function(p) { p[1] / sum(p) }

compute mixture mean
mean.mix = emix(h, params, wts)

(comparison) Monte Carlo estimate of mixture mean
nsamples = le4
component = sample(x = 1:length(wts), size = nsamples, prob = wts,
replace = TRUE)
x = sapply(component, function(cmp) {
rbeta(n = 1, shapel = params[cmp, 1], shape2 = params[cmp, 2])
»

mean.mix.mc = mean(x)

compare estimates
c(emix = mean.mix, MC = mean.mix.mc)

furseals Data from a capture-recapture study of fur seal pups

Description

These data are used in the book "Computational Statistics" by G.H. Givens and J.A. Hoeting (2013).
They are discussed in Chapter 7, Examples 7.2,7.3,7.8, and Exercise 7.2.

6 itx

Usage

data(furseals)

Format

A data.frame with variables:

i The census attempt
¢ Number of pups captured in census attempt

m Number of newly captured pups

Details

As described by the authors:
Source: Richard Barker, University of Otago, New Zealand

Description: Data from a capture-recapture study conducted on the Otago Penninsula, South Island,
New Zealand. Fur seal pups were marked and released during 7 census attempts in one season. The
population is assumed closed. For each census attempt, the number of pups captured and the number
of these captures corresponding to pups never previously caught are recorded.

Source

https://www.stat.colostate.edu/computationalstatistics/

https://www.stat.colostate.edu/computationalstatistics/datasets.zip

Examples

data("furseals"”)
str(furseals)

itx Named inverse transformation functions

Description

Evaluates the inverse of the named link function at the locations x.

Usage

itx(x, link, linkparams)

https://www.stat.colostate.edu/computationalstatistics/
https://www.stat.colostate.edu/computationalstatistics/datasets.zip

jac.exp 7

Arguments
X Values at which to evaluate the inverse link function
link Character vector specifying link function for which the inverse link function
should be evaluated. Supports 'identity', 'log', and 'logit’.
linkparams Optional list of additional parameters for link functions. For example, the logit
function can be extended to allow mappings to any closed interval. There should
be one list entry for each link function. Specify NA if defaults should be used.
Examples

bisque:::itx(@, 'logit', list(NA))

jac.exp Jacobian for exponential transform

Description

Let X = exp(Y') be a transformation of a random variable Y. This function computes the jacobian
J(x) when using the density of Y to evaluate the density of X via

f(z) = fy(in(z))J (z)
where

J(x) = d/dxln(x).

Usage

jac.exp(x, log = TRUE)

Arguments
X value at which to evaluate J(z)
log TRUE to return log(J(x))
Examples

jac.exp(1)

8 jac.log

jac.invlogit Jacobian for logit transform

Description

Let X = logit~!(Y) be a transformation of a random variable Y. This function computes the
jacobian J(z) when using the density of Y to evaluate the density of X via

f(z) = fy(logit(z))J(x)
where
J(x) = d/dxlogit(x).
Usage
jac.invlogit(x, log = TRUE)

Arguments
X value at which to evaluate J(z)
log TRUE to return log(J(x))
Examples

jac.invlogit(1)

jac.log Jacobian for log transform

Description

Let X = log(Y") be a transformation of a random variable Y. This function computes the jacobian
J(x) when using the density of Y to evaluate the density of X via

f(@) = fylexp(z))J (z)
where
J(z) = d/dxexp(x).
Usage
jac.log(x, log = TRUE)

Arguments

X value at which to evaluate J(x)
log TRUE to return log(J(x))

Jjac.logit

Examples

jac.log(1)

jac.logit

Jacobian for logit transform

Description

Let X = logit(Y') be a transformation of a random variable Y that lies in the closed interval (L,U).
This function computes the jacobian .J(x) when using the density of Y to evaluate the density of X

via

where

Usage

f(x) = f,(logit ' (z) (U — L) + L) J(z)

J(z) = (U — L)d/dzlogit ™" (x).

jac.logit(x, log = TRUE, range = c(0, 1))

Arguments

X
log

range

Examples

jac.logit(1)

value at which to evaluate J(x)
TRUE to return log(J(x))

vector specifying min and max range of the closed interval for the logit. While
the logit is defined for real numbers in the unit interval, we extend it to real
numbers in arbitrary closed intervals (L,U).

kCompute

Use sparse grid quadrature techniques to integrate (unnormalized)
densities

Description

This function integrates (unnormalized) densities and may be used to compute integration constants
for unnormalized densities, or to marginalize a joint density, for example.

10

Usage

kCompute(

kCompute

f,

init,

method = "BFGS",
maxit = 10000,
level = 2,

log = FALSE,

link = NULL,
linkparams = NULL,
quadError = FALSE,

Arguments

.F
init
method
maxit

level

log
link

linkparams

quadError

Examples

(Unnormalized) density to integrate. the function f should include an argument
log, which returns log(f(z)).

Initial guess for the density’s mode
method to be used to search for the density’s mode

maximum number of iterations optim should use in searching for the density’s
mode

accuracy level (typically number of grid points for the underlying 1D quadrature
rule) [description from mvQuad::createNIGrid]

TRUE to return log of integration constant

character vector that specifies transformations used during optimization and in-
tegration of f(theta2 | X). while theta2 may be defined on arbitrary support,
wtdMix performs optimization and integration of theta2 on an unconstrained
support. the link vector describes the transformations that must be applied to
each element of theta2. Jacobian functions for the transformations will automat-
ically be added to the optimization and integration routines. currently supported
link functions are ’log’, ’logit’, and ’identity’.

Optional list of additional parameters for link functions. For example, the logit
function can be extended to allow mappings to any closed interval. There should
be one list entry for each link function. Specify NA if no additional arguments
are passed.

TRUE if integration nodes and weight should be computed for the level-1
integration grid, so that quadrature approximation error can be estimated.

additional arguments to pass to

kCompute(dgamma, init = 1, shape=2, link='log', level = 5)

logjac 11

logjac Wrapper to abstractly evaluate log-Jacobian functions for transforms

Description

Wrapper to abstractly evaluate log-Jacobian functions for transforms

Usage
logjac(x, link, linkparams)

Arguments
X values at which to evaluate J ()
link Character vector specifying link function for which the inverse link function
should be evaluated. Supports 'identity’, 'log', and 'logit"'.
linkparams Optional list of additional parameters for link functions. For example, the logit
function can be extended to allow mappings to any closed interval. There should
be one list entry for each link function. Specify NA if defaults should be used.
See Also

jac.log, jac.logit

Examples

bisque:::logjac(1, 'logit', list(NA))

mergePars Merge pre-computed components of f(thetal | theta2, X)

Description

For use in the parallel call in wtdMix()

Usage

mergePars(x, y)

Arguments

X Output from one of the parallel calls in wtdMix()

y Another output from one of the parallel calls in wtdMix()

12 sFit

sFit Fit a spatially mean-zero spatial Gaussian process model

Description

Uses a Gibbs sampler to estimate the parameters of a Matern covariance function used to model
observations from a Gaussian process with mean 0.

Usage

sFit(
X,
coords,
nSamples,
thin = 1,
rw.initsd = 0.1,
inits = list(),

c=1,
alpha = 0.44,
priors = list(sigmasq = list(a=2, b=1), rho=1ist(L=0, U=1), nu=list(L =0,
u=1))
)
Arguments
X Observation of a spatial Gaussian random field, passed as a vector
coords Spatial coordinates of the observation
nSamples (thinned) number of MCMC samples to generate
thin thinning to be used within the returned MCMC samples
rw.initsd initial standard devaition for random walk proposals. this parameter will be
adaptively tuned during sampling
inits list of initial parameters for the MCMC chain
C scale factor used during tuning of the random walk proposal s.d.
alpha target acceptance rate for which the random walk proposals should optimize
priors parameters to specify the prior distributions for the model
Examples
library(fields)

simulate.field = function(n = 100, range = .3, smoothness = .5, phi = 1){
Simulates a mean-zero spatial field on the unit square
#
Parameters:
n - number of spatial locations

sKrig 13

range, smoothness, phi - parameters for Matern covariance function
coords = matrix(runif(2*n), ncol=2)

Sigma = Matern(d = as.matrix(dist(coords)),
range = range, smoothness = smoothness, phi = phi)

list(coords = coords,
params = list(n=n, range=range, smoothness=smoothness, phi=phi),
x = t(chol(Sigma)) %*% rnorm(n))

simulate data
X = simulate.field()

configure gibbs sampler
it = 100

run sampler using default posteriors
post.samples = sFit(x = x$x, coords = x$coords, nSamples = it)

build kriging grid
cseq = seq(@, 1, length.out = 10)
coords.krig = expand.grid(x = cseq, y = cseq)

sample from posterior predictive distribution
burn = 75
samples.krig = sKrig(x$x, post.samples, coords.krig = coords.krig, burn = burn)

sKrig Draw posterior predictive samples from a spatial Gaussian process
model

Description

Draw posterior predictive samples from a spatial Gaussian process model

Usage

sKrig(x, sFit, coords.krig, coords = sFit$coords, burn = @, ncores = 1)

Arguments
X Observation of a spatial Gaussian random field, passed as a vector
sFit posterior samples of model parameters; output from bisque::sFit

coords.krig Spatial coordinates at which the field should be interpolated
coords Spatial coordinates at which observations are available

burn number of posterior samples to discard from sFit before sampling

14 tx

ncores Kriging is done via composition sampling, which may be done in parallel. ncores
specifies the number of cores over which sampling is done. If ncores>1, bisque::sKrig
assumes that a parallel backend suitable for use with the foreach package is al-
ready registered.

Examples

library(fields)

simulate.field = function(n = 100, range = .3, smoothness = .5, phi = 1){
Simulates a mean-zero spatial field on the unit square
#
Parameters:
n - number of spatial locations
range, smoothness, phi - parameters for Matern covariance function

coords = matrix(runif(2*n), ncol=2)

Sigma = Matern(d = as.matrix(dist(coords)),
range = range, smoothness = smoothness, phi = phi)

list(coords = coords,
params = list(n=n, range=range, smoothness=smoothness, phi=phi),
x = t(chol(Sigma)) %*% rnorm(n))
3

simulate data
X = simulate.field()

configure gibbs sampler
it = 100

run sampler using default posteriors
post.samples = sFit(x = x$x, coords = x$coords, nSamples = it)

build kriging grid
cseq = seq(@, 1, length.out = 10)
coords.krig = expand.grid(x = cseq, y = cseq)

sample from posterior predictive distribution
burn = 75
samples.krig = sKrig(x$x, post.samples, coords.krig = coords.krig, burn = burn)

tx Named transformation functions

Description

Evaluates the named link function at the locations x.

wBuild 15

Usage

tx(x, link, linkparams)

Arguments
X Values at which to evaluate the link function
link Character vector specifying link function to evaluate. Supports 'identity’,
'log',and 'logit'.
linkparams Optional list of additional parameters for link functions. For example, the logit
function can be extended to allow mappings to any closed interval. There should
be one list entry for each link function. Specify NA if defaults should be used.
Examples

bisque:::tx(@0.5, 'logit', list(NA))

wBuild Derive parameters for building integration grids

Description

Note: w is defined on the transformed scale, but for convenience f is defined on the original scale.

Usage
wBuild(
f,
init,
dim.theta2 = length(init),
approx = "gaussian”,

link = rep("identity"”, length(init)),
link.params = rep(list(NA), length(init)),
optim.control = list(maxit = 5000, method = "BFGS"),

Arguments
f function used to derive the weight function w. f must be able to be called via
f(par, log, ...)
init initial guess for mode of f.
dim.theta?2 wBuild assumes par is partitioned such that par=c(thetal, theta2). dim. theta2

specifies the size of the partition. The default is to assume that f is defined with-
out a thetal component.

approx Style of approximation (i.e., w) to be created from mode of f.

16 wBuild

’gaussian’ Gaussian approximation for theta?2 at the mode of f. Assumes f
is proportional to the marginal posterior density for theta2.

’condgauss’ Gaussian approximation for theta?2 at the mode of f. The ap-
proximation is conditioned on the value of the mode for thetal. Assumes
f is proportional to the joint posterior density for thetal, theta2.

’condgauss-laplace’ Gaussian approximation for theta?2 at the mode of f.
The approximation is conditioned on a separate laplace approximation of
the marginal posterior mode for thetal. Assumes f is proportional to the
joint posterior density for thetal, theta2.

"margauss’ Gaussian approximation for theta2 at the mode of f. Assumes
f is proportional to the joint posterior density for thetal,theta2., then
uses the marginal mean and covariance from the posterior’s gaussian ap-
proximation.

link character vector that specifies transformations used during optimization and in-
tegration of f(62|X). While 6 may be defined on arbitrary support, wtdMix
performs optimization and integration of 5 on an unconstrained support. The
link vector describes the transformations that must be applied to each element
of f5. Jacobian functions for the transformations will automatically be added
to the optimization and integration routines. Currently supported link functions
are 'log', 'logit', and 'identity'.

link.params Optional list of additional parameters for link functions. For example, the logit
function can be extended to allow mappings to any closed interval. There should
be one list entry for each link function. Specify NA if no additional arguments
are passed.

optim.control List of arguments to pass to stat: :optim when used to find mode of f.

maxit Maximum number of iterations to run optim for.
method Optimization routine to use with optim.

additional arguments needed for function evaluation.

Examples

Use BISQUE to approximate the marginal posterior distribution for unknown
population f(N|c, r) for the fur seals capture-recapture data example in
Givens and Hoeting (2013), example 7.10.

data('furseals')

define theta transformation and jacobian
tx.theta = function(theta) {
c(log(thetal1]/thetal2]), log(sum(thetal1:21)))
3
itx.theta = function(u) {
c(exp(sum(ul1:21)), exp(ul2]1)) /7 (1 + exp(ul1]1))
3
1J.tx.theta = function(u) {
log(exp(ul[1] + 2xu[2]) + exp(2*sum(ul[1:2]1))) - 3 * log(1 + exp(ul1]))
3

wBuild

compute constants
r = sum(furseals$m)
nC = nrow(furseals)

set basic initialization for parameters
init = list(U = c(-.7, 5.5))
init = c(init, list(
alpha = rep(.5, nC),
theta = itx.theta(init$u),
N=r+1
)

post.alpha_theta = function(theta2, log = TRUE, ...) {
Function proportional to f(alpha, U1, U2 | ¢, r)

alpha = theta2[1:nC]
u = theta2[-(1:nC)]

theta = itx.theta(u)
p =1 - prod(1-alpha)

res = - sum(theta)/1e3 - r * log(p) + 1J.tx.theta(u) -
nC * lbeta(theta[1], thetal[2])
for(i in 1:nC) {
res = res + (theta[1] + furseals$c[i] - 1)*log(alphali]) +
(thetal[2] + r - furseals$c[i] - 1)*log(1-alphalil)

}
if(log) { res } else { exp(res) }
3
post.N.mixtures = function(N, params, log = TRUE, ...) {

The mixture component of the weighted mixtures for f(N | c, r)
dnbinom(x = N-r, size = r, prob = params, log = log)

}

mixparams.N = function(theta2, ...) {
compute parameters for post.N.mixtures
1 - prod(1 - theta2[1:nC])

3

=
=
1

wBuild(f = post.alpha_theta, init = c(init$alpha, init$u),
approx = 'gauss', link = c(rep('logit', nC), rep('identity', 2)))

m.N = wMix(f1 = post.N.mixtures, f1.precompute = mixparams.N,
f2 = post.alpha_theta, w = w.N)

compute posterior mean
m.N$expectation$Eh.precompute(h = function(p) ((1-p)*r/p + r),
quadError = TRUE)

18 wMix

compute posterior density
post.N.dens = data.frame(N = r:105)
post.N.dens$d = m.N$f(post.N.dens$N)

plot posterior density

plot(d~N, post.N.dens, ylab = expression(f(N~'|'~bold(c),r)))
wMix Construct a weighted mixture object
Description

For a Bayesian model
X f(X|917 62)

(017 02) f(017 02)7

the marginal posterior f(#;|X) distribution can be approximated via weighted mixtures via
K
f(011X) = Zf (01]1X,02)w
j=1

where w; is based on f (Géj) |X') and weights @;, where Géj) and w; are nodes and weights for a
sparse-grid quadrature integration scheme. The quadrature rule is developed by finding the posterior
mode of f(62]X), after transforming 65 to an unconstrained support. For best results, 62 should be
a continuous random variable, or be able to be approximated by one.

Usage

wMix(
f1,
f2,
w,
f1.precompute = function(x, ...) { X 3,
spec = "ff",
level = 2,
c.int = NULL,
c.level =
c.init = NULL,
c.link = rep("identity"”, length(c.init)),
c.link.params = rep(list(NA), length(c.init)),
c.optim.control = list(maxit = 5000, method = "BFGS"),

ncores = 1,
quadError = TRUE,

wMix 19

Arguments

f1 evaluates f(61]X,63). f1 must be able to be called via f1(thetal, params,

log, ...).

thetal a matrix of parameters at which to evaluate f(6;]|X,62). each row
should be one set of values at which the density should be evaluated

params a vector of parameters needed to evaluate f(61|X,62). In most cases
params will equal thetas, but in some cases, f(61]|X, 02) depends on func-
tions of 65, which can be pre-evaluated as the weighted mixture approxi-
mation is constructed.

log TRUE to return In(f(61]X,62))

. additional arguments needed for function evaluation

f2 evaluates f(thetas|X). f2 must be able to be called via f2(theta2, log,
W wBuild object created by wBuild function. w contains posterior mode of f (62| X)
and wrapper functions to generate quadrature grid.

f1.precompute function that pre-computes parameters for evaluating f(61|X, 62). f1.precompute
must be able to be called via f1.precompute(theta2, ...) and return the ar-
gument params for the function f1.

spec Specification of whether f1 and f2 are known exactly, or need numerical ap-
proximation to determine integration constants. ' ff"' if both functions are known,
'gg' if f1 is proportional to the full conditional distribution f (6|62, X), but
needs the integration constant computed, and if the marginal posterior f(thetas|X)
is equal to f2 times the integration constant that needs to be numerically approx-

imated.
level accuracy level of the numerical approximation (typically number of grid points
for the underlying 1D quadrature rule) [description from mvQuad::createNIGrid]
c.int If spec=="gg"', then c. int specifies the function that can be integrated in order
to yield the missing integration constant.
c.level accuracy level of the numerical approximation for c.int (typically number of
grid points for the underlying 1D quadrature rule) [description from mvQuad::createNIGrid]
c.init initial guess for mode of c. int.
c.link character vector that specifies transformations used during optimization and in-

tegration of c.int. See corresponding documentation in wBuild function for
more details.

c.link.params Optional list of additional parameters for link functions used with c.int. See
corresponding documentation in wBuild function for more details.

c.optim.control
Arguments used to find mode of c.int. See corresponding documentation in
wBuild function for more details.

ncores number of cores used to parallelize computation of parameters for f(6;]02, X).

quadError TRUE if integration nodes and weight should be computed for the level-1
integration grid, so that quadrature approximation error can be estimated.

Additional arguments to pass to f1, f1.precompute, f12, and 2.

20 wMix

Value
A list with class wMix, which contains the following items.

f Function for evaluating the posterior density f(61|X). f is callable via f(thetal, log, ...).

mix A matrix containing the pre-computed parameters for evaluating the mixture components
f(61|02,X). Each row of the matrix contains parameters for one of the K mixture com-
ponents.

wts Integration weights for each of the mixture components. Some of the weights may be negative.

expectation List containing additional tools for computing posterior expectations of f(62|X).
However, posterior expectations of f(#;]|X) can also be computed when expectations of
f (01|02, X) are known. The elements of expectation are

Eh Function to compute E[h(62)|X]. Eh is callable via Eh(h, ...), where h is a function
callable via h(theta2, ...) and ... are additional arguments to the function. The func-

tion h is evaluated at the quadrature nodes 9§j),

Eh.precompute Exactly the same idea as Eh, but the function h is evalauted at the quadrature
nodes after being passed through the function f1.precompute.

grid The sparse-quadrature integration grid used. Helpful for seeing the quadrature nodes
o5,
wts The integration weights for approximating the expectation E[h]. Note that these inte-

gration weights may differ from the main integration weights for evaluating the posterior
density f(61|X).

Examples

Use BISQUE to approximate the marginal posterior distribution for unknown
population f(N|c, r) for the fur seals capture-recapture data example in
Givens and Hoeting (2013), example 7.10.

data('furseals')

define theta transformation and jacobian
tx.theta = function(theta) {
c(log(thetal[1]/thetal2]), log(sum(thetal1:2])))
3
itx.theta = function(u) {
c(exp(sum(ul1:21)), exp(l21)) / (1 + exp(ul1l1))
3
1J.tx.theta = function(u) {
log(exp(ul1] + 2xu[2]) + exp(2*sum(ul[1:2]1))) - 3 * log(1 + exp(ul1]))
3

compute constants
r = sum(furseals$m)
nC = nrow(furseals)

set basic initialization for parameters
init = list(U = c(-.7, 5.5))
init = c(init, list(

alpha = rep(.5, nC),

wMix

theta = itx.theta(init$u),
N=r+1

)

post.alpha_theta = function(theta2, log = TRUE, ...) {
Function proportional to f(alpha, U1, U2 | c, r)

alpha = theta2[1:nC]
u = theta2[-(1:nC)]

theta = itx.theta(u)
p =1 - prod(1-alpha)

res = - sum(theta)/1e3 - r * log(p) + 1J.tx.theta(u) -
nC * lbeta(theta[1], theta[2])
for(i in 1:nC) {
res = res + (theta[1] + furseals$c[i] - 1)*log(alphalil) +
(thetal[2] + r - furseals$c[i] - 1)*log(1-alphali])

}
if(log) { res } else { exp(res) }
}
post.N.mixtures = function(N, params, log = TRUE, ...) {

The mixture component of the weighted mixtures for f(N | c, r)
dnbinom(x = N-r, size = r, prob = params, log = log)

3

mixparams.N = function(theta2, ...) {
compute parameters for post.N.mixtures
1 - prod(1 - theta2[1:nC])

3
w.N = wBuild(f = post.alpha_theta, init = c(init$alpha, init$u),

approx = 'gauss', link = c(rep('logit', nC), rep('identity', 2)))
m.N = wMix(f1 = post.N.mixtures, f1.precompute = mixparams.N,

f2 = post.alpha_theta, w = w.N)

compute posterior mean
m.N$expectation$Eh.precompute(h = function(p) ((1-p)*r/p + r),
quadError = TRUE)

compute posterior density
post.N.dens = data.frame(N = r:105)
post.N.dens$d = m.N$f(post.N.dens$N)

plot posterior density
plot(d~N, post.N.dens, ylab = expression(f(N~'|'~bold(c),r)))

21

Index

x datasets
furseals, 5

createlLocScaleGrid, 2
dmix, 3

emix, 4
furseals, 5
itx, 6
jac.exp, 7
jac.invlogit, 8
jac.log, 8, 11
jac.logit, 9,11
kCompute, 9
logjac, 11
mergePars, 11

sFit, 12
sKrig, 13

tx, 14

wBuild, 15
wMix, 18

22

	createLocScaleGrid
	dmix
	emix
	furseals
	itx
	jac.exp
	jac.invlogit
	jac.log
	jac.logit
	kCompute
	logjac
	mergePars
	sFit
	sKrig
	tx
	wBuild
	wMix
	Index

