
Package ‘birdie’
June 11, 2024

Title Bayesian Instrumental Regression for Disparity Estimation

Version 0.6.1

Description Bayesian models for accurately estimating conditional
distributions by race, using Bayesian Improved Surname Geocoding (BISG)
probability estimates of individual race. Implements the methods described
in McCartan, Fisher, Goldin, Ho and Imai (2024) <doi:10.3386/w32373>.

Depends R (>= 3.5.0)

Imports rlang (>= 0.1.2), Rcpp (>= 0.12.0), cli, vctrs, generics,
dplyr, methods, stringi, stringr, RcppParallel (>= 5.0.1),
SQUAREM

Suggests daarem, easycensus, wru, knitr, roxygen2, rmarkdown, testthat
(>= 3.0.0)

LinkingTo Rcpp (>= 0.12.0), cli, BH (>= 1.66.0), RcppEigen (>=
0.3.3.3.0), RcppParallel (>= 5.0.1), RcppThread, StanHeaders
(>= 2.18.0)

License GPL (>= 3)

Encoding UTF-8

VignetteBuilder knitr

Config/testthat/edition 3

SystemRequirements GNU make, C++17

Biarch true

LazyData true

URL https://github.com/CoryMcCartan/birdie,

https://corymccartan.com/birdie/

BugReports https://github.com/CoryMcCartan/birdie/issues

RoxygenNote 7.3.1

NeedsCompilation yes

1

https://doi.org/10.3386/w32373
https://github.com/CoryMcCartan/birdie
https://corymccartan.com/birdie/
https://github.com/CoryMcCartan/birdie/issues

2 birdie

Author Cory McCartan [aut, cre],
Kosuke Imai [ctb],
Daniel Ho [ctb],
Jacob Goldin [ctb],
Robin Fisher [ctb],
The Stan Development Team [cph] (include/rstan)

Maintainer Cory McCartan <mccartan@psu.edu>

Repository CRAN

Date/Publication 2024-06-11 12:10:08 UTC

Contents
birdie . 2
birdie-class . 6
birdie-family . 8
birdie.ctrl . 9
bisg . 10
census_race_geo_table . 13
disparities . 14
est_weighted . 15
preproc . 16
pseudo_vf . 18
p_r_natl . 18

Index 20

birdie Fit BIRDiE Models

Description

Fits one of three possible Bayesian Instrumental Regression for Disparity Estimation (BIRDiE)
models to BISG probabilities and covariates. The simplest Categorical-Dirichlet model ([cat_dir()])
is appropriate when there are no covariates or when all covariates are discrete and fully interacted
with another. The more general Categorical mixed-effects model ([cat_mixed()]) is a supports any
number of fixed effects and up to one random intercept. For continuous outcomes a Normal linear
model is available ([gaussian()]).

Usage

birdie(
r_probs,
formula,
data,
family = cat_dir(),
prior = NULL,

birdie 3

weights = NULL,
algorithm = c("em", "gibbs", "em_boot"),
iter = 400,
warmup = 50,
prefix = "pr_",
ctrl = birdie.ctrl()

)

Arguments

r_probs A data frame or matrix of BISG probabilities, with one row per individual. The
output of [bisg()] can be used directly here.

formula A two-sided formula object describing the model structure. The left-hand side is
the outcome variable, which must be discrete. A single random intercept term,
denoted with a vertical bar (‘"(1 | <term>)"‘), is supported on the right-hand
side.

data An optional data frame containing the variables named in ‘formula‘.

family A description of the complete-data model type to fit. Options are:
- [cat_dir()]: Categorical-Dirichlet model. All covariates must be fully inter-
acted. - [cat_mixed()]: Categorical mixed-effects model. Up to one random
effect is supported. - [gaussian()]: Linear model.
See the Details section below for more information on the various models.

prior A list with entries specifying the model prior.
- For the ‘cat_dir‘ model, the only entry is ‘alpha‘, which should be a matrix of
Dirichlet hyperparameters. The matrix should have one row for every level of
the outcome variable and one column for every racial group. The default prior
(used when ‘prior=NULL‘) is an empirical Bayes prior equal to the weighted-
mean estimate of the outcome-race table. A fully noninformative prior with all
entries set to ϵ can be obtained by setting ‘prior=NA‘. When ‘prior=NULL‘ and
‘algorithm="em"‘ or ‘"em_boot"‘, 1 is added to the prior so that the posterior
mode, rather than the mean, is shrunk toward these values. - For the ‘cat_mixed‘
model, the ‘prior‘ list should contain three scalar entries: ‘scale_int‘, the stan-
dard deviation on the Normal prior for the intercepts (which control the global
estimates of ‘Y|R‘), ‘scale_beta‘, the standard deviation on the Normal prior
for the fixed effects, and ‘scale_sigma‘, the prior mean of the standard devia-
tion of the random intercepts. These can be a single scalar or a vector with an
entry for each racial group. - For the ‘gaussian‘ model, the ‘prior‘ list should
contain two entries: ‘scale_int‘, controlling, the standard deviation on the Nor-
mal prior for the intercepts (which control the global estimates of ‘Y|R‘), and
‘scale_beta‘, controlling the standard deviation on the Normal prior for the fixed
effects. These must be a single scalar. Each is expressed in terms of the esti-
mated residual standard deviation (i.e., they are multiplied together to form the
"true" prior).
The prior is stored after model fitting in the ‘$prior‘ element of the fitted model
object.

weights An optional numeric vector specifying likelihood weights.

4 birdie

algorithm The inference algorithm to use. One of 3 options:
- ‘"em"‘: An expectation-maximization algorithm which will perform inference
for the maximum a posteriori (MAP) parameter values. Computationally effi-
cient and supported by all the model families. No uncertainty quantification.
- ‘"gibbs"‘: A Gibbs sampler for performing full Bayesian inference. Gen-
erally more computationally demanding than the EM algorithm, but provides
uncertainty quantification. Currently supported for ‘cat_dir()‘ and ‘gaussian()‘
model families. Computation-reliability tradeoff can be controlled with ‘iter‘
argument. - ‘"em_boot"‘: Bootstrapped version of EM algorithm. Number of
bootstrap replicates controlled by ‘iter‘ parameter. Provides approximate uncer-
tainty quantification. Currently supported for ‘cat_dir()‘ and ‘gaussian()‘ model
families.

iter The number of post-warmup Gibbs samples, or the number of bootstrap repli-
cates to use to compute approximate standard errors for the main model esti-
mates. Only available when ‘family=cat_dir()‘ or ‘gaussian()‘. Ignored if ‘algo-
rithm="em"‘.
For bootstrapping, when there are fewer than 1,000 individuals or 100 or fewer
replicates, a Bayesian bootstrap is used instead (i.e., weights are drawn from a
Dirichlet(1, 1, ..., 1) distribution, which produces more reliable estimates.

warmup Number of warmup iterations for Gibbs sampling. Ignored unless ‘algorithm="gibbs"‘.

prefix If ‘r_probs‘ is a data frame, the columns containing racial probabilities will be
selected as those with names starting with ‘prefix‘. The default will work with
the output of [bisg()].

ctrl A list containing control parameters for the EM algorithm and optimization rou-
tines. A list in the proper format can be made using [birdie.ctrl()].

Details

By default, ‘birdie()‘ uses an expectation-maximization (EM) routine to find the maximum *a pos-
teriori* (MAP) estimate for the specified model. Asymptotic variance-covariance matrices for the
MAP estimate are available for the Categorical-Dirichlet and Normal linear models via bootstrap-
ping. Full Bayesian inference is supported via Gibbs sampling for the Categorical-Dirichlet and
Normal linear models as well.

Whatever model or method is used, a finite-population estimate of the outcome-given-race distribu-
tion for the entire observed sample is always calculated and stored as ‘$est‘ in the returned object,
which can be accessed with [coef.birdie()] as well.

The Categorical-Dirichlet model is specified as follows:

Yi | Ri, Xi,Θ ∼ Categorical(θRiXi
)θrx ∼ Dirichlet(αr),

where Y is the outcome variable, R is race, X are covariates (fixed effects), and θrx and αr are
vectors with length matching the number of levels of the outcome variable. There is one vector
θrx for every combination of race and covariates, hence the need for ‘formula‘ to either have no
covariates or a fully interacted structure.

The Categorical mixed-effects model is specified as follows:

Yi | Ri, Xi,Θ ∼ Categorical(g−1(µRiXi
))µrxy = Wβry+Zuryur | σ⃗r, Lr ∼ N (0, diag(σ⃗r)Crdiag(σ⃗r))βry ∼ N (0, s2rβ)σry ∼ Inv-Gamma(4, 3srσ)Cr ∼ LKJ(2),

birdie 5

where βry are the fixed effects, ury is the random intercept, and g is a softmax link function.
Estimates for βry and σry are stored in the ‘$beta‘ and ‘$sigma‘ elements of the fitted model object.

The Normal linear model is specified as follows:

Yi | Ri, X⃗i,Θ ∼ N (X⃗⊤
i θ⃗, σ2)σ2 ∼ Inv-Gamma(nσ/2, l

2
σnσ/2)βintercept ∼ N (0, s2int)βk ∼ N (0, s2β),

where θ⃗ is a vector of linear model coefficients. Estimates for θ and σ are stored in the ‘$beta‘ and
‘$sigma‘ elements of the fitted model object.

More details on the models and their properties may be found in the paper referenced below.

Value

An object of class [‘birdie‘][birdie::birdie-class], for which many methods are available. The model
estimates may be accessed with [coef.birdie()], and updated BISG probabilities (conditioning on the
outcome) may be accessed with [fitted.birdie()]. Uncertainty estimates, if available, can be accessed
with ‘$se‘ and [vcov.birdie()].

References

McCartan, C., Fisher, R., Goldin, J., Ho, D.E., & Imai, K. (2024). Estimating Racial Disparities
when Race is Not Observed. Available at https://www.nber.org/papers/w32373.

Examples

data(pseudo_vf)

r_probs = bisg(~ nm(last_name) + zip(zip), data=pseudo_vf)

Process zip codes to remove missing values
pseudo_vf$zip = proc_zip(pseudo_vf$zip)

fit = birdie(r_probs, turnout ~ 1, data=pseudo_vf)
print(fit)
fit$se # uncertainty quantification

fit = birdie(r_probs, turnout ~ zip, data=pseudo_vf, algorithm="gibbs")

fit = birdie(r_probs, turnout ~ (1 | zip), data=pseudo_vf,
family=cat_mixed(), ctrl=birdie.ctrl(abstol=1e-3))

summary(fit)
coef(fit)
fitted(fit)

https://www.nber.org/papers/w32373

6 birdie-class

birdie-class Class "birdie" of BIRDiE Models

Description

The output of [birdie()] is an object of class ‘birdie‘, which supports many generic functions. No-
tably ‘coef.birdie()‘ returns the main model estimates of outcome given race, and ‘fitted.birdie()‘
returns a table analogous to the output of [bisg()] with updated race probabilities.

Usage

S3 method for class 'birdie'
coef(object, subgroup = FALSE, ...)

S3 method for class 'birdie'
fitted(object, ...)

S3 method for class 'birdie'
residuals(object, x_only = FALSE, ...)

S3 method for class 'birdie'
predict(object, adj = NULL, ...)

S3 method for class 'birdie'
simulate(object, nsim = 1, seed = NULL, ...)

S3 method for class 'birdie'
plot(x, log = FALSE, ...)

S3 method for class 'birdie'
tidy(x, subgroup = FALSE, ...)

S3 method for class 'birdie'
glance(x, ...)

S3 method for class 'birdie'
augment(x, data, ...)

S3 method for class 'birdie'
formula(x, ...)

S3 method for class 'birdie'
family(object, ...)

S3 method for class 'birdie'
nobs(object, ...)

birdie-class 7

S3 method for class 'birdie'
vcov(object, ...)

S3 method for class 'birdie'
print(x, ...)

S3 method for class 'birdie'
summary(object, ...)

Arguments

object, x A ‘birdie‘ model object

subgroup If ‘TRUE‘, return subgroup-level (rather than marginal) coefficient estimates as
a 3D array.

... Potentially further arguments passed from other methods

x_only if ‘TRUE‘, calculate fitted values using covariates only (i.e., without using sur-
names).

adj A point in the simplex that describes how BISG probabilities will be thresholded
to produce point predictions. The probabilities are divided by ‘adj‘, then the
racial category with the highest probability is predicted. Can be used to trade
off types of prediction error. Must be nonnegative but will be normalized to sum
to 1. The default is to make no adjustment.

nsim The number of vectors to simulate. Defaults to 1.

seed Used to seed the random number generator. See [stats::simulate()].

log If ‘TRUE‘, plot estimated probabilities on a log scale.

data A data frame to augment with ‘Pr(R | Y, X, S)‘ probabilities

Details

The internal structure of ‘birdie‘ objects is not designed to be accessed directly. The generics listed
here should be used instead.

Value

Varies, depending on the method. See generic functions’ documentation for details.

Functions

• coef(birdie): Return estimated outcome-given-race distributions. When ‘subgroup=FALSE‘
this always returns a finite-population estimate of the outcome-given-race distribution for the
observed sample.

• fitted(birdie): Return an updated race probability table. [bisg()] estimates ‘Pr(R | G, X,
S)‘; this table is ‘Pr(R | Y, G, X, S, Theta-hat)‘.

• residuals(birdie): Return the residuals for the outcome variable as a matrix. Useful in
sensitivity analyses and to get an idea of how well race, location, names, etc. predict the
outcome.

8 birdie-family

• predict(birdie): Create point predictions of individual race. Returns factor vector of indi-
vidual race labels. Strongly not recommended for any kind of inferential purpose, as biases
may be extreme and in unpredictable directions.

• simulate(birdie): Simulate race from the posterior distribution ‘Pr(R | Y, G, X, S, Theta-
hat)‘. Does not account for uncertainty in model parameters.

• plot(birdie): Visualize the estimated conditional distributions for a BIRDiE model. If
available, marginal standard error estimates (‘$se‘) will be visualized with 95

• tidy(birdie): Put BIRDiE model coefficients in a tidy format.

• glance(birdie): Glance at a BIRDiE model.

• augment(birdie): Augment data with individual race predictions from a BIRDiE model.

• formula(birdie): Extract the formula used to specify a BIRDiE model.

• family(birdie): Return the BIRDiE complete-data model family.

• nobs(birdie): Return the number of observations used to fit a BIRDiE model.

• vcov(birdie): Return the estimated variance-covariance matrix for the BIRDiE model esti-
mates, if available.

• print(birdie): Print a summary of the model fit.

• summary(birdie): Print a more detailed summary of the model fit.

Examples

methods(class="birdie")

birdie-family BIRDiE Complete-Data Model Families

Description

BIRDiE supports a number of complete-data outcome models, including categorical regression
models. Models specific to BIRDiE are listed here. See the Details section of [birdie()] for more
information about each model.

Usage

cat_dir(link = "identity")

cat_mixed(link = "softmax")

Arguments

link The link function. Only one option available for categorical regression models.

Value

A list of class ‘family‘ containing the specification.

birdie.ctrl 9

Examples

cat_dir()
cat_mixed()

birdie.ctrl Control of BIRDiE Model Fitting

Description

Constructs control parameters for BIRDiE model fitting. All arguments have defaults.

Usage

birdie.ctrl(
abstol = 1e-06,
reltol = 1e-06,
max_iter = 1000,
fix_sigma = FALSE,
accel = c("squarem", "anderson", "daarem", "none"),
order = switch(match.arg(accel), none = 0L, anderson = -1L, daarem = -1L, squarem = 1L),
anderson_restart = TRUE

)

Arguments

abstol The absolute tolerance used in checking convergence or in estimating linear
model coefficients.

reltol The relative tolerance used in checking convergence. Ignored if ‘accel = "squarem"‘
or ‘"daarem"‘.

max_iter The maximum number of EM iterations.

fix_sigma If ‘TRUE‘ when ‘model=gaussian()‘, fix sigma to an initial estimate, in order to
avoid estimation collapse when the outcomes are discrete.

accel The acceleration algorithm to use in doing EM. The default ‘"squarem"‘ is good
for most purposes, though ‘"anderson"‘ may be faster when there are few pa-
rameters or very tight tolerances. ‘"daarem"‘ is an excellent choice as well
that works across a range of problems, though it requires installing the small
‘daarem‘ package. ‘"none"‘ is not recommended unless other algorithms are
running into numerical issues. See the references below for details on these
schemes.

order The order to use in the acceleration algorithm. Interpretation varies by algo-
rithm. Can range from 1 (default) to 3 for SQUAREM and from 1 to the number
of parameters for Anderson and DAAREM (default -1 allows the order to be
determined by problem size).

anderson_restart

Whether to use restarts in Anderson acceleration.

10 bisg

Value

A list containing the control parameters.

References

Varadhan, R., & Roland, C. (2004). Squared extrapolation methods (SQUAREM): A new class of
simple and efficient numerical schemes for accelerating the convergence of the EM algorithm.

Walker, H. F., & Ni, P. (2011). Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(4), 1715-1735.

Henderson, N. C., & Varadhan, R. (2019). Damped Anderson acceleration with restarts and mono-
tonicity control for accelerating EM and EM-like algorithms. Journal of Computational and Graph-
ical Statistics, 28(4), 834-846.

Examples

str(birdie.ctrl(max_iter=100))

bisg Bayesian Improved Surname Geocoding (BISG)

Description

Calculates individual probabilities of belonging to racial groups given last name, location, and other
covariates (optional). The standard function ‘bisg()‘ treats the input tables as fixed. An alternative
function ‘bisg_me()‘, assumes that the input tables are subject to measurement error, and uses a
Gibbs sampler to impute the individual race probabilities, using the model of Imai et al. (2022).

Usage

bisg(
formula,
data = NULL,
p_r = p_r_natl(),
p_rgx = NULL,
p_rs = NULL,
save_rgx = TRUE

)

bisg_me(
formula,
data = NULL,
p_r = p_r_natl(),
p_rgx = NULL,
p_rs = NULL,
iter = 1000,

bisg 11

warmup = 100,
cores = 1L

)

S3 method for class 'bisg'
summary(object, p_r = NULL, ...)

S3 method for class 'bisg'
predict(object, adj = NULL, ...)

S3 method for class 'bisg'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

formula A formula specifying the BISG model. Must include the special term ‘nm()‘
to identify the surname variable. Certain geographic variables can be identified
similarly: ‘zip()‘ for ZIP codes, and ‘state()‘ for states. If no other predictor
variables are provided, then ‘bisg()‘ will automatically be able to build a table
of census data to use in inference. If other predictor variables are included, or
if other geographic identifiers are used, then the user must specify the ‘p_rgx‘
argument below. The left-hand side of the formula is ignored. See the examples
section below for sample formulas.

data The data frame containing the variables in ‘formula‘.

p_r The prior distribution of race in the sample, as a numeric vector. Defaults to
U.S. demographics as provided by [p_r_natl()]. Can also set ‘p_r="est"‘ or ‘"es-
timate"‘ to estimate this from the geographic distribution. Since the prior dis-
tribution on race strongly affects the calibration of the BISG probabilities and
thus the accuracy of downstream estimates, users are encouraged to think care-
fully about an appropriate value for ‘p_r‘. If no prior information on the racial
makeup of the sample is available, and yet the sample is very different from
the overall U.S. population, then ‘p_r="estimate"‘ will likely produce superior
results.

p_rgx The distribution of race given location (G) and other covariates (X) specified
in ‘formula‘. Should be provided as a data frame, with columns matching the
predictors in ‘formula‘, and additional columns for each racial group containing
the conditional probability for that racial group given the predictors. For ex-
ample, if Census tracts are the only predictors, ‘p_rgx‘ should be a data frame
with a tract column and columns ‘white‘, ‘black‘, etc. containing the racial dis-
tribution of each tract. If ‘formula‘ contains only labeled terms (like ‘zip()‘),
then by default ‘p_rgx‘ will be constructed automatically from the most recent
Census data. This table will be normalized by row, so it can be provided as
population counts as well. Counts are required for ‘bisg_me()‘. The [cen-
sus_race_geo_table()] function can be helpful to prepare tables, as can be the
‘build_dec()‘ and ‘build_acs()‘ functions in the ‘censable‘ package.

p_rs The distribution of race given last name. As with ‘p_rgx‘, should be provided
as a data frame, with a column of names and additional columns for each racial
group. Users should not have to specify this argument in most cases, as the table

12 bisg

will be built from published Census surname tables automatically. Counts are
required for ‘bisg_me()‘.

save_rgx If ‘TRUE‘, save the ‘p_rgx‘ table (matched to each individual) as the ‘"p_rgx"‘
and ‘"gx"‘ attributes of the output. Necessary for some sensitivity analyses.

iter How many sampling iterations in the Gibbs sampler
warmup How many burn-in iterations in the Gibbs sampler
cores How many parallel cores to use in computation. Around 4 seems to be optimal,

even if more are available.
object An object of class ‘bisg‘, the result of running [bisg()].
... Additional arguments to generic methods (ignored).
adj A point in the simplex that describes how BISG probabilities will be thresholded

to produce point predictions. The probabilities are divided by ‘adj‘, then the
racial category with the highest probability is predicted. Can be used to trade
off types of prediction error. Must be nonnegative but will be normalized to sum
to 1. The default is to make no adjustment.

nsim The number of vectors to simulate. Defaults to 1.
seed Used to seed the random number generator. See [stats::simulate()].

Value

An object of class ‘bisg‘, which is just a data frame with some additional attributes. The data frame
has rows matching the input data and columns for the race probabilities.

Methods (by generic)

• summary(bisg): Summarize predicted race probabilities. Returns vector of individual en-
tropies.

• predict(bisg): Create point predictions of individual race. Returns factor vector of individ-
ual race labels. Strongly not recommended for any kind of inferential purpose, as biases may
be extreme and in unpredictable directions.

• simulate(bisg): Simulate race from the ‘Pr(R | G, X, S)‘ distribution.

Functions

• bisg(): The standard BISG model.
• bisg_me(): The measurement error BISG model.

References

Elliott, M. N., Fremont, A., Morrison, P. A., Pantoja, P., and Lurie, N. (2008). A new method for
estimating race/ethnicity and associated disparities where administrative records lack self-reported
race/ethnicity. *Health Services Research*, 43(5p1):1722–1736.

Fiscella, K. and Fremont, A. M. (2006). Use of geocoding and surname analysis to estimate race
and ethnicity. *Health Services Research*, 41(4p1):1482–1500.

Imai, K., Olivella, S., & Rosenman, E. T. (2022). Addressing census data problems in race imputa-
tion via fully Bayesian Improved Surname Geocoding and name supplements. *Science Advances*,
8(49), eadc9824.

census_race_geo_table 13

Examples

data(pseudo_vf)
bisg(~ nm(last_name), data=pseudo_vf)

r_probs = bisg(~ nm(last_name) + zip(zip), data=pseudo_vf)
summary(r_probs)
head(predict(r_probs))

data(pseudo_vf)
bisg_me(~ nm(last_name) + zip(zip), data=pseudo_vf)

census_race_geo_table Download Census Race Data

Description

Downloads and prepares race-by-geography tables from U.S. census data, using the [‘easycen-
sus‘][easycensus::easycensus] package. Requires that an api key be set up through [easycensus::cens_auth()]
in that package, usually by storing it in the ‘CENSUS_API_KEY‘ environment variable. Supports
data from the decennial census and the American Community Survey at a variety of levels of geo-
graphic detail. The output of this function can be used directly in [bisg()].

Usage

census_race_geo_table(
geo = c("us", "state", "county", "zcta", "tract"),
...,
year = 2010,
survey = c("dec", "acs1", "acs5"),
GEOIDs = TRUE,
counts = TRUE

)

Arguments

geo The geographic level to return. Common options are listed in the function signa-
ture, but any of the geographies listed at [easycensus::cens_geo()] may be used.

... Further subgeographies to return, as in [easycensus::cens_geo()].

year The year for the data

survey The data product to use: either the decennial census (‘"dec"‘), or the the 1-year
or 5-year ACS.

GEOIDs If ‘TRUE‘, return the ‘GEOID‘ column as the unique geographic identifier;
if ‘FALSE‘, return a human-readable name. For example, with ‘geo="state"‘,
setting ‘GEOIDs=FALSE‘ will return a column named ‘state‘ with entries like
‘"Massachusetts"‘.

counts If ‘TRUE‘, return the table as actual population counts; if ‘FALSE‘, return table
as percentages within each geography.

14 disparities

Value

A data frame with geographic identifier column(s) and six columns ‘white‘, ‘black‘, etc. containing
the counts or proportion of residents in each racial group.

Examples

census_race_geo_table("zcta", year=2010)
Not run:
Census API key required
census_race_geo_table("us", year=2010)
census_race_geo_table("state", year=2021, survey="acs1")
census_race_geo_table("state", year=2021, survey="acs1", GEOIDs=FALSE)
End(Not run)

disparities Compute Racial Disparities from Model Estimates

Description

This function lets you easily compute differences in conditional expectations between all pairs of
specified racial groups.

Usage

disparities(x, subgroup = FALSE, races = TRUE)

Arguments

x A ‘birdie‘ model object.

subgroup If ‘TRUE‘, return subgroup-level (rather than marginal) disparity estimates.

races A character vector of racial groups to compute disparities for. The special value
‘TRUE‘, the default, computes disparities for all racial groups.

Value

A data frame containing a row with every possible disparity for the specified ‘races‘, which are
identified by columns ‘race_1‘ and ‘race_2‘. The reported disparity is ‘estimate_1 - estimate_2‘.

Examples

data(pseudo_vf)
r_probs = bisg(~ nm(last_name) + zip(zip), data=pseudo_vf)
fit = birdie(r_probs, turnout ~ 1, data=pseudo_vf)

disparities(fit)
disparities(fit, races=c("white", "black"))

est_weighted 15

est_weighted Calculate Weighted Estimate of (Discrete) Outcomes By Race

Description

Calculates the "standard" weighted estimator of conditional distributions of an outcome variable Y
by race R, using BISG probabilities. This estimator, while commonly used, is only appropriate if
Y ⊥ R | X,S, where S and X are the last names and covariates (possibly including geography)
used in making the BISG probabilities. In most cases this assumption is not plausible and [birdie()]
should be used instead. See the references below for more discussion as to selecting the right
estimator.

Up to Monte Carlo error, the weighted estimate is equivalent to performing multiple imputations of
the race vector from the BISG probabilities and then using them inside a weighted average or linear
regression.

Usage

est_weighted(
r_probs,
formula,
data = NULL,
weights = NULL,
prefix = "pr_",
se_boot = 0

)

S3 method for class 'est_weighted'
print(x, ...)

S3 method for class 'est_weighted'
summary(object, ...)

Arguments

r_probs A data frame or matrix of BISG probabilities, with one row per individual. The
output of [bisg()] can be used directly here.

formula A two-sided formula object describing the estimator structure. The left-hand
side is the outcome variable, which must be discrete. Subgroups for which to
calculate estimates may be specified by adding covariates on the right-hand side.
Subgroup estimates are available with ‘coef(..., subgroup=TRUE)‘ and ‘tidy(...,
subgroup=TRUE)‘.

data An optional data frame containing the variables named in ‘formula‘.

weights An optional numeric vector specifying weights.

prefix If ‘r_probs‘ is a data frame, the columns containing racial probabilities will be
selected as those with names starting with ‘prefix‘. The default will work with
the output of [bisg()].

16 preproc

se_boot The number of bootstrap replicates to use to compute an approximate covariance
matrix for the estimator. If no bootstrapping is used, an analytical estimate of
standard errors will be returned as ‘$se‘. For bootstrapping, when there are
fewer than 1,000 individuals or 100 or fewer replicates, a Bayesian bootstrap
is used instead (i.e., weights are drawn from a Dirichlet(1, 1, ..., 1) distribution,
which produces more reliable estimates.

... Additional arguments to generic methods (ignored).

object, x An object of class ‘est_weighted‘.

Value

An object of class ‘est_weighted‘, inheriting from [‘birdie‘][birdie::birdie-class], for which many
methods are available. The model estimates may be accessed with ‘coef()‘. Uncertainty estimates,
if available, can be accessed with ‘$se‘ and [vcov.birdie()].

Methods (by generic)

• print(est_weighted): Print a summary of the model fit.

• summary(est_weighted): Print a more detailed summary of the model fit.

References

McCartan, C., Fisher, R., Goldin, J., Ho, D.E., & Imai, K. (2024). Estimating Racial Disparities
when Race is Not Observed. Available at https://www.nber.org/papers/w32373.

Examples

data(pseudo_vf)

r_probs = bisg(~ nm(last_name) + zip(zip), data=pseudo_vf)

Process zip codes to remove missing values
pseudo_vf$zip = proc_zip(pseudo_vf$zip)

est_weighted(r_probs, turnout ~ 1, data=pseudo_vf)

est = est_weighted(r_probs, turnout ~ zip, data=pseudo_vf)
tidy(est, subgroup=TRUE)

preproc Preprocess Last Names and Geographic Identifiers

https://www.nber.org/papers/w32373

preproc 17

Description

These functions are called automatically by [bisg()] but may be useful, especially when geographic
variables are included in a [birdie()] model. ‘proc_zip()‘ and ‘proc_state()‘ preprocess their corre-
sponding geographic identifiers. States are partially matched to state names and abbreviations and
are returned as FIPS codes. ZIP codes are crosswalked to Census ZCTAs. Missing identifiers are
replaced with ‘"<none>"‘. ‘proc_name()‘ processes last names in accordance with Census process-
ing rules (<https://www2.census.gov/topics/genealogy/2010surnames/surnames.pdf>). Names are
converted to Latin characters, capitalized, stripped of prefixes and suffixes, and otherwise standard-
ized.

Usage

proc_zip(x)

proc_state(x)

proc_name(x, to_latin = TRUE)

Arguments

x A character vector of names or geographic identifiers to process

to_latin If ‘TRUE‘, convert names to Latin characters only. Strongly recommended if
non-Latin characters are present, since these will not match Census tables. How-
ever, the conversion is slightly time-consuming and so can be disabled with this
flag.

Value

A processed character vector

Functions

• proc_zip(): Match ZIP codes to ZCTAs and fill in missing values.

• proc_state(): Match state names and abbreviations and fill in missing values.

• proc_name(): Process names to a Census-standardized format.

Examples

proc_name("Smith Jr.")
proc_zip("00501")
proc_state("Washington")

18 p_r_natl

pseudo_vf A pseudo-voterfile

Description

A dataset containing 5,000 fake voter records. Created by randomizing a subset of the North Car-
olina voter file. Turnout records are completely randomly generated.

Usage

pseudo_vf

Format

A data frame with 5,000 rows and 4 records:

last_name Voter’s last name

zip 5-digit ZIP code. May be NA

race One of "white", "black", "hisp", "asian", "aian", or "other"

turnout 1 if the voter voted in the most recent election, 0 otherwise

Source

https://www.ncsbe.gov/results-data/voter-registration-data

Examples

data(pseudo_vf)
print(pseudo_vf)

p_r_natl National Racial Demographics

Description

Returns the proportion of the U.S. population in six racial groups in a given year. Group defini-
tions necessarily follow those used by the Census Bureau in its surname tables: * ‘white‘: Non-
Hispanic White alone * ‘black‘: Non-Hispanic Black alone * ‘hisp‘: Hispanic, any race * ‘asian‘:
Non-Hispanic Asian, Native Hawaiian, or Pacific Islander alone * ‘aian‘: Non-Hispanic American
Indian/Alaska Native * ‘other‘: Non-Hispanic, two or more races, or other race

Usage

p_r_natl(year = 2021, vap = FALSE)

https://www.ncsbe.gov/results-data/voter-registration-data

p_r_natl 19

Arguments

year The year to return demographics for.

vap If ‘TRUE‘, return statistics for the voting-age population (18+) rather than the
full U.S. population.

Value

A named numeric vector of length 6.

Examples

p_r_natl(year=2010)

Index

∗ bisg
bisg, 10

∗ datasets
pseudo_vf, 18

∗ estimators
birdie, 2
birdie-class, 6
birdie.ctrl, 9
disparities, 14
est_weighted, 15

∗ misc
pseudo_vf, 18

∗ preproc
census_race_geo_table, 13
preproc, 16

augment.birdie (birdie-class), 6

birdie, 2
birdie-class, 6
birdie-family, 8
birdie.ctrl, 9
bisg, 10
bisg_me (bisg), 10

cat_dir (birdie-family), 8
cat_mixed (birdie-family), 8
census_race_geo_table, 13
coef.birdie (birdie-class), 6

disparities, 14

est_weighted, 15

family.birdie (birdie-class), 6
fitted.birdie (birdie-class), 6
formula.birdie (birdie-class), 6

glance.birdie (birdie-class), 6

nobs.birdie (birdie-class), 6

p_r_natl, 18
plot.birdie (birdie-class), 6
predict.birdie (birdie-class), 6
predict.bisg (bisg), 10
preproc, 16
print.birdie (birdie-class), 6
print.est_weighted (est_weighted), 15
proc_name (preproc), 16
proc_state (preproc), 16
proc_zip (preproc), 16
pseudo_vf, 18

residuals.birdie (birdie-class), 6

simulate.birdie (birdie-class), 6
simulate.bisg (bisg), 10
summary.birdie (birdie-class), 6
summary.bisg (bisg), 10
summary.est_weighted (est_weighted), 15

tidy.birdie (birdie-class), 6

vcov.birdie (birdie-class), 6

20

	birdie
	birdie-class
	birdie-family
	birdie.ctrl
	bisg
	census_race_geo_table
	disparities
	est_weighted
	preproc
	pseudo_vf
	p_r_natl
	Index

