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Abstract

This vignette introduces the bipartite package to newbees. It describes it intention and, in
seperate sections, the use of the most important functions. It also critically comments on
some approaches and presents functions from related packages.
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1 Introduction

1.1 Introduction for ecologists

Many interactions between species are between distinct groups, such as pollinators and flow-
ers, or herbivores and plants, or parasitoids and their hosts, or predators and their prey. When
no information on interactions within groups is known, we have the case of a bipartite (a.k.a.
“two-mode”) network. In constrast, if every species could interact with every other, and we
have (necessarily incomplete) information on these interactions, we have the case of a “uni-
partite” or “one-mode” network (think: food web).

1.2 Introduction for non-ecologists

In mathematics, there is a field called “graph theory”, which describes/analyses/formalises
“graphs” and the operations among them. A graph consists of nodes and edges (which are the
links between nodes). A node can be something like an airport with edges being the flights
between them; a power grid of power plants and energy consumers, with the power lines
being the edges; a list of industry “leaders” and the edges representing financial ties between
them; or, e.g. in ecology, a list of species, with edges representing trophic relationships, i.e.
who eats whom.

When the nodes are grouped into two distinct sets, with no (known or quantified) interac-
tions within a set, then we call it a bipartite network (“two parts”, a.k.a. “two-mode” network).
In our examples these could be airports of different continents (and no intracontinental flights
are in our data base); power plants and energy consumers; industry executives and companies
(where an executive can sit in the board of different companies); or pollinators and plants.

1.3 Introduction continued for both, ecologists and non-ecologists

This vignette tries to illustrate and explain a package that deals almost exclusively with bipar-
tite networks!

The typical tasks we want to carry out are

1. visualise the network;

2. compute network indices to summarise its structure;

3. statistically test for differences between networks;

4. statistically test for differences between observed and random networks.

bipartite aims to facilitate this steps. This vignette aims to facilitate the use of bipartite. We
shall try to predominantly use the technical terms (“node” and “edges”), but our examples
will be from the ecological realm, where nodes are (typcially) species, and edges are typi-
cally called “links”, which in fact are observed (or assumed) ecological interactions (such as
pollination, predation, dispersal). Apologies for shifting between these two for easier access!

Also, as ecologists we are not “graph theoreticians” or mathematicians. Often, in the eco-
logical literature, mathematical terms are used to elevate the status of the author, at no benefit
to the analysis or to the reader. We are hesitant to use pretend-mathematics, at the risk of
sounding daft to a person familiar with graph theory.

Of course, we don’t mind if this documented would be cited, e.g. as Dormann (2019).
Alternatively, you can always cite our work on this subject, inevitably also using (some func-
tionality of) bipartite (Dormann et al., 2008, 2009; Dormann, 2011; Dormann & Strauß, 2014;
Dormann et al., 2017; Dormann & Blüthgen, 2017)!
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2 What other network packages are out there in the R-universe?

Before going through what bipartite offers, we shall briefly list what other packages in this
direction can do for you:1

There are several open-source packages devoted to the analysis of networks and food webs,
but only few addressing bipartite networks explicitly. Of these, bipartite provides the most
extensive set of features, both for plotting, computing indices, and for null models. For the
sake of completeness, here are some other R packages (on CRAN) we are aware of for handling
bipartite networks (in alphabetical order). Some of these are exemplified in section 8.

AnnotationDbi for handling bimaps and annotation maps;

biGraph discontinued and archived;

bipartiteD3 interactive visualisation of bipartite networks;2

bmotif for counting “motifs” in bipartite networks;

dynsbm implements a modularity-like search through multiple time slices of a (dynamic)
network (“dynamic stochastic block model” Miele & Matias, 2017);

econullnetr seems to be largely a wrapper for bipartite;

econetwork implements the core-periphery measures of Martín González et al. (2020) and
allows computation of distances between networks following Ohlmann et al. (2019);

HiveR for fancy “hive” plots;

igraph provides functionalities largely for one-mode networks, quite a bit of plotting options,
too;

NIMAA aims at exploring and imputing bipartite data in a pharmacological context;

sna provides many traditional one-mode metrics, from a “social network analysis” perspec-
tive; in a way the bigger brother of bipartite;

statnet a set of largely one-mode network packages, includes ergm, networksis, statnet.common,

tergm;

tnet, which aims at re-thinking one-mode indices in a mathematically consistent way for
bipartite networks; some functions of tnet were lifted to bipartite (thanks to Tore for
allowing that!);

vegan for various analyses of a community matrix, including null models and nestedness
computations;

WGCNA designed for gene assays, has a small set of indices and options overlapping with
those of bipartite.

Additionally, there may well be dozens of packages on github or r-forge, which remain
obscure until one stumbles over them.

bipartgraph, at https://github.com/jgalgarra/bipartgraph, offers polar and Ziggurat, build-
ing on his other package kcorebip;

ggbipart, at https://pedroj.github.io/bipartite_plots/, allows plotting bipartite networks
in the spirit of ggplot2; so far (2021), there is no obvious benefit over the functions that
come with bipartite;

infomapecology implements the “Map Equation”, which identifies modules (Farage et al.,
2021, so far only on github: https://github.com/Ecological-Complexity-Lab/infomap_
ecology_package).

1This is like a mini-CRAN-task view.
2And no, this is not a typo, it is “D3”, which apparently is a JavaScript library for “data-driven documentation”
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3 Preparing data for analysis

Most functions in bipartite require the same type of input structure: an adjacency matrix of
what-interacts-with-what, for short called “web”. Raw data often start as tables of individual
observations, e.g. one column containing the name of the species in the first level, another
column the name of the species in the other level with which it interacts. Occasionally a third
column records the number of interactions for this pair, or a weight. Also, several networks
may be included into this table, so another column would provide a web-ID (e.g. a name of
the site or the web itself). The function frame2webs is a little convenience function to convert
such tables into one or more webs. Its output is a list or an array of webs in the appropriate
format for further analysis.3

Most other packages (R or otherwise) are based on one-mode representations of networks.
The typical input file would be a so-called edge list, simply listing in two columns (plus an
optional weights column) what interacts with what (see below). The function as.one.mode

transforms bipartite “webs” into edge lists to be used e.g. in Pajek or by sna or tnet. Notice
that there are different projections from bipartite (two-mode) to one-mode (as detailed in the
help to as.one.mode).4

Now, before any further talk, let’s start by loading the package:

> library(bipartite)

4 Visualising bipartite networks

A useful first step in the analysis of bipartite networks is to plot it. To do so, bipartite offers
two main functions, plotweb and visweb. They produce a bipartite graph (e.g. Fig. 1 top)
and a prettified version of the adjacency matrix (Fig. 1 bottom), respectively (Motten, 1982).
Both offer a wide range of options to change sizes, colours and placement of labels. Please
run example code for these functions to get a feeling for their abilities (and hopefully you’re
impressed).5

> par(xpd=T)

> plotweb(motten1982)

> visweb(motten1982)

If these options are still not sufficient, and you want more customisation, such as side-by-
side plotting of several networks, please check out the bipartiteD3, which provides the power
of the “D3” library of JavaScript.6 Note that D3 makes interactive figures, so on mouse-over
the figures change. While not a feature useful for publication in the current standard, it adds
21st century appeal to such graphs.

The function plotPAC visualises (Fig. 2) a very special idea: the potential for apparent com-
petition (Morris et al., 2005). The idea is that every parasitoid emerging from a host can attack
another species. Thus, the more individuals emerge from a host, the larger is the potential for
these to reduce the competition between hosts, as long as they choose their prey equiproba-
ble. Pretty as it may be, its current value is highest for host-parasitoid networks, so the plot
employing a pollination network is for illustration only.

> plotPAC(PAC(motten1982), outby=0.9)

3webs2array can also make an array of previously separate webs, padding non-overlapping species with zeros.
4The function sortweb allows a sorting of the matrix by marginal totals or by a user defined sequence. This

may indeed be a handy function when customising the plotting later on. The example networks in bipartite are
typically sorted in decreasing order.

5The additional function plotweb2 is still a bit experimental but allows to combine several bipartite plots
into a stack of tripartite, quadripartite, pentapartite etc. graphs. See the examples in the function’s help page for
illustration.

6The package explicitly links to “our” bipartite, although I think it is largely independent of it, and actually
very nice!
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Figure 1: A bipartite graph of Motten’s (1982) pollination network (top) and a visualisation
of the adjacency matrix (bottom). The darker a cell is represented, the more interactions have
been observed. By default, plotweb minimises overlap of lines and visweb sorts by marginal
totals.
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Figure 2: A PAC-plot of Motten’s 1982 pollination network. Lines connect plants potentially
visited next by a pollinator. Line width is proportional to probability, which is very similar in
this example. See help of plotPAC for details on plotting and meaning.
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Figure 3: The adjacency matrix of Motten’s (1982) pollination network, organised into mod-
ules.

We can also visualise communities within the network by computing its modularity and
then plotting the result, using the functions computeModules and plotModuleWeb, respectively
(Fig. 3).

> mod <- computeModules(motten1982)

> plotModuleWeb(mod)

To visualise either level separately projected into one-mode mode, we have to employ a dif-
ferent package, for example sna (Butts, 2013). We can do the projection on the fly, though. For
networks with even a moderate number o species, such plots can become rather obtuse and
uninformative (Fig. 4 top).

> par(mfrow=c(1,2), xpd=T)

> sna::gplot(as.one.mode(motten1982, project="higher"),

+ label=colnames(motten1982), gmode="graph",

+ label.cex=0.6, vertex.cex=2)

> sna::gplot(as.one.mode(motten1982, project="lower"),

+ label=rownames(motten1982), gmode="graph",

+ label.cex=0.6, vertex.cex=2, vertex.col="green")
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Trillium.catesbei

Aesculus.sylvatica

Figure 4: Plots of one-mode projections of Motten’s (1982) pollination network. Pollinators
in red (top), plants in green (bottom). Note that these plots are point-symmetrically variable,
hence every plot will look somewhat different.
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5 Computing indices

Network indices are primarily that: metrics to quantify an aspect of the network. Each may
have a justification, a purpose, but the information in a matrix is only finite. As a consequence,
network indices are highly correlated. There is thus no point in computing all indices in the
book; rather should we consider very carefully what we want to test with the data and select
one (or a few) indices to do so.

The bipartite-package offers itself to data dredging: with one function one can compute
dozens of indices, certainly some of them will be significantly correlated with whatever we
want to test. While analyses are commonly carried out in this way, this is obviously statisti-
cally inappropriate. Two issues are important here. One is that of multiple testing, and there
are dozens of publications covering this issue. The other is an attempt to formalise one’s ex-
pectation. Null models are one way to do so, in particular one’s expectation of what a pattern
is like in the absence of a process. This technical details of this topic are covered further below
(section 6.3).

Indices (currently) come at the following hierarchical levels:

1. network-level (a single value, per index, for the entire network);

2. group-level (a value, per index, for each of the two groups);

3. link-level (a value, per index, for each edge = link);

4. node-level (a value, per index, for each node = species); and

5. species-level (a value, per index, for each species).

5.1 Network-level indices

This set of indices is computed for the entire network. They are called using the function
networklevel, which additionally (and conveniently) makes available all indices from the
group level, too. Those restricted to the network-level are:

1. connectance, also called ‘standardised number of species combinations’ in biogeographic
analyses (Gotelli & Graves, 1996; Dunne et al., 2002);

2. web asymmetry, the balance of the number of species in the two levels (Blüthgen et al.,
2007);

3. links per species;

4. number of compartments;

5. compartment diversity (Tylianakis et al., 2007);

6. cluster coefficient, which will compute both the network-wide binary, one-mode-
based cluster coefficient as well as those for each level,

7. nestedness, with the returned value indicating the ‘temperature’ of the matrix, which is
low (0) for a perfectly nested matrix (Rodríguez-Gironés & Santamaría, 2006);

8. weighted nestedness, or more specifically ‘weighted interaction nestedness estimator’
(WINE), with 1 indicating perfected nestedness (thus exactly opposite to the previous
index) (Galeano et al., 2009);

9. weighted NODF, as an alternative measure of quantitative nestedness, automatically cor-
recting for matrix filling and also indicating nestedness by values towards 1 (Almeida-
Neto & Ulrich, 2011);
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10. interaction strength asymmetry (Blüthgen et al., 2007) (or alternatively ISA or dependence
asymmetry: Bascompte et al., 2003), which quantify whether specialised species interact
with generalised ones in the other level (or vice versa);

11. specialisation asymmetry (or alternatively SA), following the same idea as the previ-
ous, but this being based on species specialisation in d′;

12. linkage density, marginal totals-weighted diversity of interactions per species (Bersier
et al., 2002);

13. Fisher alpha, diversity index based on fitting a Fisher-series (Fisher et al., 1943);

14. interaction evenness quantifies how balanced the distribution of interactions is across
species, based on Shannon’s diversity (Tylianakis et al., 2007);

15. Alatalo interaction evenness, as an alternative measure of interaction evenness, at-
tempting to overcome some of the shortcomings of the previous, Shannon’s, version
(Alatalo, 1981; Müller et al., 1999);

16. Shannon diversity;

17. H2, network-wide specialisation index H′
2 (Blüthgen et al., 2006).

Similarly to the previous sets of indices, several options are available to fine-tune those in
networklevel:

> networklevel(bezerra2009, index=c("ISA", "weighted NODF", "Fisher alpha"),

+ SAmethod="log")

weighted NODF interaction strength asymmetry

5.717160e+01 8.842823e-05

Fisher alpha

8.793401e+00

5.2 Group-level indices

Indices that can be computed for each group separately are collected in the function grouplevel.7

Quite a few of these indices are aggregates from the species level (e.g. by averaging species’
degrees), in which case the mean is weighted by the number of observations of each species,
thus giving more weight to species for which information is more reliable.8 Others are bio-
geographic indices which change their value when the matrix is inverted (i.e. when a group
changes from “species” to “islands”). The following indices are implemented:

1. number of species in the respective trophic level;

2. mean number of links;

3. mean number of shared partners (Roberts & Stone, 1990; Stone & Roberts, 1992);

4. cluster coefficient, which supposedly informs us whether a network has ‘small world’
properties (Watts & Strogatz, 1998);

5. weighted cluster coefficient, which takes into account the number of interactions
and is a properly derived bipartite version of the previous one-mode cluster coefficent
above (Opsahl, 2010);

6. togetherness as the mean number of co-occurrences across all pairwise species combi-
nations (Stone & Roberts, 1992);

7If network-level indices are also desired, all indices in grouplevel are also accessible through networklevel,
see below.

8The weighting can be switched off by stating weighted=FALSE.
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7. C score, or ‘checkerboardness’, which averages the number of instances of 01/10-patterns
(i.e. exclusive occurrences) for all pairwise species combinations (Stone & Roberts, 1990);

8. V ratio, the variance ratio of species numbers to interaction numbers within species of
a level (Schluter, 1984);

9. discrepancy, the number of links one would have to move to achieve perfect nestedness
(Brualdi & Sanderson, 1999);

10. degree distribution, fitting an exponential function and (truncated) power laws(Jordano
et al., 2003);

11. extinction slope, with different options for the extinction sequence (Memmott et al.,
2004);

12. robustness, the area under the extinction curve (Burgos et al., 2007);

13. niche overlap, with options for distance metrics (Pielou, 1972; Hurlbert, 1978);

14. generality (for the higher trophic level) or vulnerability (for the lower one) (Bersier
et al., 2002);

15. partner diversity, simply the mean Shannon diversity of interactions of each species
in a level;

16. effective partners as before, but as the exponent of the base to which Shannon was
computed (typically e or 2) (Jost, 2006);

17. fd (or alternatively functional diversity), which is similar to niche overlap but com-
puted as branch length of a cluster diagram of dissimilarity of resource use (Devoto
et al., 2012).

As in the case of species-level indices, some allow for normalisation (between 0 and 1), others
for different basis to the logarithm or similar tuning. A typical call to grouplevel will thus
comprise the list of desired indices9 and their options, as well as the level(s) for which the
computation shall be carried out:

> grouplevel(bezerra2009, level="both", index=c("mean number of links", "weighted

+ cluster coefficient", "effective partners", "niche overlap"), dist="bray")

mean.number.of.links.HL mean.number.of.links.LL niche.overlap.HL

9.9502551 7.0975057 0.2824538

niche.overlap.LL generality.HL vulnerability.LL

0.4795595 8.0590841 5.6963672

The LL and HL behind each index indicate that it was computed for the lower and higher
level, respectively. A relatively comprehensive comparison of network-level indices (Dormann
et al., 2009), including some at the group level, has shown substantial redundancy among
these indices, and few of them have a sound theoretical basis.

5.3 Link-level indices

At the moment, only few indices have been investigated at the level of the individual link (i.e.
the cell of a network matrix):

1. dependence (i.e. the relevance of each species for the other level: Bascompte et al., 2006)
one matrix for each level;

2. endpoint degree (i.e. product of degrees of species linked by this cell: Barrat et al., 2004).

9Or alternatively the argument index="ALL".
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It is employed by simply applying it to the network under consideration and selecting the
index desired:

> str(linklevel(bezerra2009, index=c("dependence", "endpoint")))

List of 3

$ HL dependence: num [1:13, 1:13] 0.193 0.131 0.056 0.108 0.105 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:13] "Diplopterys.pubipetala" "Byrsonima.gardnerana" "Banisteriopsis.muricata"

.. ..$ : chr [1:13] "Centris.aenea" "Centris.fuscata" "Centris.caxiensis" "Centris.tarsata"

$ LL dependence: num [1:13, 1:13] 0.2415 0.2238 0.0997 0.2474 0.2632 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:13] "Diplopterys.pubipetala" "Byrsonima.gardnerana" "Banisteriopsis.muricata"

.. ..$ : chr [1:13] "Centris.aenea" "Centris.fuscata" "Centris.caxiensis" "Centris.tarsata"

$ endpoint : num [1:13, 1:13] 117 78 156 104 91 65 52 26 52 52 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:13] "Diplopterys.pubipetala" "Byrsonima.gardnerana" "Banisteriopsis.muricata"

.. ..$ : chr [1:13] "Centris.aenea" "Centris.fuscata" "Centris.caxiensis" "Centris.tarsata"

This function is so rudimentary, and its output so disproportionally voluminous, that it is not
worth going into further details here and use str to only show the structure of the output.

5.4 Species-level (= node-level) indices

The (growing) list of indices computable for each species in the network comprises (the index
name to be used in the call is given in typewriter font):

1. degree, i.e. the number of links of each species,

2. normalised degree for a normalised version of degree (Martín González et al., 2010),

3. species strength as sum of dependencies for each species (Bascompte et al., 2006),

4. nestedrank as rank in a nested matrix (Alarcón et al., 2008),

5. interaction for interaction push/pull (a version of dependence asymmetry), (Vázquez
et al., 2007),

6. PDI for Paired Differences Index (Poisot et al., 2011b,a),

7. resource range for Schoener’s index of unused resources (Schoener, 1989),

8. species specificity (or coefficient of variation of interactions) (Julliard et al., 2006;
Poisot et al., 2012),

9. PSI for pollination service index (or pollinator support index, depending on the trophic
level),10

10. NS for node specialisation index (Dalsgaard et al., 2008),

11. betweenness for betweenness (Borgatti & Everett, 1997),

12. closeness (both automatically also return their weighted counterparts proposed by Tore
Opsahl in package tnet),

13. Fisher for Fisher’s alpha as a measure of diversity (Fisher et al., 1943),

14. diversity for Shannon diversity of interactions of that species,

15. effective partners for the effective number of interacting partners (Bersier et al., 2002),

10devised by the author with Nico Blüthgen and Bernd Gruber
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16. proportional generality for a quantitative version of normalised degree,11

17. proportional similarity as specialisation measured as similarity between use and
availability (Feinsinger et al., 1981),

18. d for Blüthgen’s discrimination/selectivity index d′ (Blüthgen et al., 2006).

Some of them allow for normalisation (between 0 and 1), others for different basis to the
logarithm or similar tuning. A typical call to specieslevel will thus comprise the list of
desired indices12 and their options, as well as the level(s) for which the computation shall be
carried out:

> specieslevel(bezerra2009, level="lower", index=c("normalised degree", "PDI",

+ "effective partners"), PDI.normalise=F)

normalised.degree PDI effective.partners

Diplopterys.pubipetala 0.6923077 1010.0000 7.437631

Byrsonima.gardnerana 0.4615385 1939.6667 3.819660

Banisteriopsis.muricata 0.9230769 657.0000 9.191488

Heteropterys.sp1 0.6153846 570.3333 6.278285

Heteropterys.sp2 0.5384615 567.3333 5.865968

Dicella.bracteosa 0.3846154 429.0000 4.582040

Carolus.chasei 0.3076923 513.6667 3.751208

Stigmaphyllon.paralias 0.1538462 774.0000 1.944388

Banisteriopsis.stellaris 0.3076923 245.6667 3.787887

Banisteriopsis.schizoptera 0.3076923 189.0000 3.822392

Stigmaphyllon.auriculatum 0.3076923 204.3333 3.687447

Stigmaphyllon.ciliatum 0.2307692 238.0000 2.937197

Janusia.anisandra 0.2307692 220.3333 2.813322

A relatively comprehensive comparison of species-level indices of specialisation, Dormann
(2011) has shown substantial redundancy among these indices, and only few of them have a
sound theoretical basis (Poisot et al., 2012).

5.5 Which index to choose?

Different indices were invented (“developed”) for different purposes. However, for most in-
dices, it has not been demonstrated that they actually achieve what their inventor had in mind.
Most commonly indices quantify a specific pattern which may have come about by a whole
variety of different causes. Take, for example, connectance, i.e. the proportion of possible links
actually recorded. Low connectance may be caused by high specialisation or by low sampling
intensity. The same holds true for a species’ degree, which (typically) increases with sampling
effort as well as generalisation. For the choice of an index this means that we cannot solely
rely on what the inventor has proposed this index to be good for, but we have to keep in mind
that it may actually quantify several other things, too.

Apart from the different levels at which an index can quantify a network pattern (from the
individual link to the entire network, as covered in sections 5.3–5.1), indices can be divided
into those for binary and those for weighted data (called here binary and weighted indices,
respectively). Binary indices only use the information of whether a link exists, while weighted
indices additionally account for how strong a link is, as judged from the actual value in a
network matrix.

Binary indices, by definition, use less information. It does not follow that they are thus
more robust! In fact, Blüthgen (2010) argues the opposite, since only a weighted index can tell
whether an observed value indicates specialisation or not.13

11devised by Jochen Fründ
12Or alternatively the argument index="ALL".
13Imagine two species, one with entries (1, 1), the other with entries (1, 100). A binary index would not be able

to tell between them, while a quantitative would expose the second as far more specialised.
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Table 1: Binary-quantitative pairs of network indices. Note: Most quantitative indices can also
be computed on binary networks. That does not make them a quantitative measure!

binary quantitative

network level connectance H′
2

links per species linkage density
nestedness weighted NODF, wine

group level mean number of partners effective number of partners
species level degree species strength, effective number of partners

This, if two indices are available to quantify the same idea, one binary and one quantitative,
one should generally choose the quantitative one. Rather than species degree, we should use
species strength or linkage density. Table 5.5 depicts some such binary-quantitative index
pairs.

In a nutshell: Quantitative indices make use of more information in the data. They are
generally more advisable, although most of them also are strongly affected by sampling issues.

5.5.1 One index, many values: A cautionary tale told by the betweenness mess

Betweenness is a graph index which quantifies the importance of a node for fluxes between
nodes. It does so by counting how many of all shortest paths between two nodes go through
the target node. That means, a peripheral node will have a betweenness score of 0, while a
central node can have values up to n (if all shortest paths go through it).

> data(Safariland)

> # plot the one-mode projection for the lower level:

> set.seed(4) # don't ask me why gplot is stochastic ...

> par(xpd=T, mar=c(0,6,0,6))

> sna::gplot(as.one.mode(Safariland, project="lower"), label=rownames(Safariland))

Aristotelia chilensis

Alstroemeria aurea

Schinus patagonicus

Berberis darwinii
Rosa eglanteria

Cynanchum diemii

Ribes magellanicum

Mutisia decurrens

Calceolaria crenatiflora

So, what we see is for the main module a rather central position for, e.g., Rosa eglanteria.
For 8 species (we can neglect Cynanchum diemii), we have 8(8 − 1)/2 = 28 paths. For a simple
example, Aristotelia chilensis (plant number 1 in the edge list below) should have only the
shortest path to Schinus patagonicus running through it, to all other 6 plant species.

Let’s see what its betweenness score is, using several different functions across R-packages:

> # convert matrix into one-mode edgelist:

> SafPlantsEL <- as.tnet(as.one.mode(Safariland, project="lower"))

> # compute betweenness:

> tnet::betweenness_w(SafPlantsEL) # 6
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> bipartite::BC(Safariland, rescale=F)$lower # 6

> DiagrammeR::get_betweenness(DiagrammeR::from_igraph(tnet_igraph(SafPlantsEL))) # 6

> igraph::betweenness(tnet_igraph(SafPlantsEL), cutoff=9) # 6

> influenceR::betweenness(tnet_igraph(SafPlantsEL)) # 12

> sna::betweenness(SafPlantsEL) # length 36!!

> sna::betweenness(as.matrix(SafPlantsEL)) # length 27!!

Let’s put them all next to each other, into a named matrix:

> btws <- cbind("t:betw"=tnet::betweenness_w(SafPlantsEL)[,2],

+ "b:BC"=bipartite::BC(Safariland, rescale=F)$lower,

+ "DR:betw"=DiagrammeR::get_betweenness(DiagrammeR::from_igraph(tnet_igraph(SafPlantsEL)))[,2],

+ "i:estbetw"=igraph::betweenness(tnet_igraph(SafPlantsEL), cutoff=9),

+ "inf:betw"=influenceR::betweenness(tnet_igraph(SafPlantsEL))/2 )

> rownames(btws) <- rownames(Safariland)

> btws

## t:betw b:BC DR:betw i:estbetw inf:betw

## Aristotelia chilensis 6 6 6 6 6

## Alstroemeria aurea 11 10 14 14 10

## Schinus patagonicus 0 0 0 0 0

## Berberis darwinii 0 0 0 0 0

## Rosa eglanteria 13 4 6 6 4

## Cynanchum diemii 0 0 0 0 0

## Ribes magellanicum 0 0 0 0 0

## Mutisia decurrens 0 0 0 0 0

## Calceolaria crenatiflora 0 0 9 9 0

So they all agree on the betweenness-value for Aristotelia, but not for Alstroemeria and Rosa,
and not at all for Calceolaria.

The case of Calceolaria is instructive. Here we can see that actually none of the shortest
paths goes through its node, making a value of 9 incorrect. (Try finding a single path that
cannot be short-cutted through a link between Alstroemeria.)

Also Rosa is instructive. Here we encounter the problem of ties: several shortest paths are
on equal footing, e.g. Aristotelia - Rosa - Ribes is as short as Aristotelia - Alstroemeria - Ribes. In
fact, there are 4 unique shortest paths through Rosa, but 6 shortest paths in total. So it seems
that DiagrammeR and igraph simply handle ties differently to bipartite’s BC and influenceR.
Tnet’s betweenness_w14 remains a mystery. Even if 13 may be the number of all paths, then
that would not explain the many 0s for the other species.

Note that all functions used here have options and arguments that affect the outcome.
Setting them differently will yield, for example, standardised values. We only investigated out-
of-the-box behaviour and are not suggesting something is actually wrong with the functions,
but you may have to tweak them to yield an intuitive result. A case in point is influenceR’s
betweenness, which will return igraph’s value if the argument snap is set to FALSE, but 2*BC’s
values for the default (TRUE).

To summarize: bipartite::BC and influenceR::betweenness/2 yield values as one would
expect for unique shortest paths; DiagrammeR::get_betweenness and igraph::betweeness

yield number of non-unique shortest paths, which we also regard as an intuitive measure.
As always in data analysis: it is the responsibility of the analyst to make sure suitable-for-

purpose indices are used!

5.5.2 Index redundancy: do different indices tell the same thing?

To visualise the similarity and possible redundancy of the different indices, they are computed
for the networks in bipartite and summarised through a principal component analysis (see
Fig. 5).

14Available in bipartite under the same name.
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> web.names <- data(package="bipartite")$results[,3]

> data(list=web.names) #loads all webs

> # the next step takes around 10 minutes:

> netw.indic.webs <- t(sapply(web.names, function(x) networklevel(get(x),

+ index="ALLBUTDD")))

> PCA.out <- prcomp(netw.indic.webs[,-5], scale.=T)

> biplot(PCA.out, xpd=T, las=1)

> summary(PCA.out)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 4.2780 3.6461 2.09732 1.84163 1.32612 1.09350 1.0375

Proportion of Variance 0.3979 0.2890 0.09562 0.07373 0.03823 0.02599 0.0234

Cumulative Proportion 0.3979 0.6869 0.78248 0.85621 0.89444 0.92044 0.9438

PC8 PC9 PC10 PC11 PC12 PC13 PC14

Standard deviation 0.81058 0.64158 0.62560 0.56960 0.49217 0.43179 0.36230

Proportion of Variance 0.01428 0.00895 0.00851 0.00705 0.00527 0.00405 0.00285

Cumulative Proportion 0.95812 0.96707 0.97558 0.98263 0.98789 0.99195 0.99480

PC15 PC16 PC17 PC18 PC19 PC20 PC21

Standard deviation 0.26591 0.25249 0.2254 0.18080 0.11401 0.09049 7.038e-16

Proportion of Variance 0.00154 0.00139 0.0011 0.00071 0.00028 0.00018 0.000e+00

Cumulative Proportion 0.99634 0.99772 0.9988 0.99954 0.99982 1.00000 1.000e+00

Apparently 40, 30 and 10% of the variation in indices can be partitioned to the first three
axes. We can now investigate which indices load on the few axes:

> round(PCA.out$rotation[, 1:4], 3)

PC1 PC2 PC3 PC4

connectance 0.177 0.147 -0.044 0.025

web asymmetry -0.137 -0.098 -0.298 0.063

links per species 0.189 -0.087 -0.020 0.183

number of compartments -0.147 0.005 0.167 -0.051

cluster coefficient 0.169 0.128 0.005 0.119

nestedness -0.020 0.196 -0.004 0.305

weighted nestedness 0.066 -0.108 -0.170 -0.399

weighted NODF 0.193 0.068 -0.138 -0.182

interaction strength asymmetry -0.172 0.080 -0.178 -0.028

specialisation asymmetry 0.021 0.109 0.337 -0.096

linkage density 0.049 -0.258 -0.058 -0.038

Fisher alpha -0.041 -0.246 0.045 -0.053

Shannon diversity 0.073 -0.251 0.011 0.082

interaction evenness 0.179 -0.078 0.012 0.102

Alatalo interaction evenness 0.076 0.159 0.143 -0.045

H2 -0.191 0.089 0.091 0.037

number.of.species.HL -0.048 -0.249 0.026 -0.062

number.of.species.LL -0.020 -0.256 0.121 -0.038

mean.number.of.partners.shared.in.HL 0.191 -0.032 -0.177 0.189

mean.number.of.partners.shared.in.LL 0.218 0.042 -0.049 -0.042

cluster.coefficient.HL 0.189 0.093 -0.001 -0.036

cluster.coefficient.LL 0.155 0.085 -0.285 -0.009

weighted.cluster.coefficient.HL 0.150 -0.122 -0.189 0.162

weighted.cluster.coefficient.LL 0.212 -0.040 0.035 0.145

niche.overlap.HL 0.045 0.142 -0.287 -0.272
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niche.overlap.LL 0.202 0.035 0.062 -0.195

togetherness.HL 0.023 0.181 -0.283 -0.032

togetherness.LL 0.216 0.052 0.087 -0.041

C.score.HL -0.162 -0.123 0.217 0.147

C.score.LL -0.216 -0.020 0.038 0.026

V.ratio.HL 0.177 -0.121 0.121 -0.101

V.ratio.LL -0.048 -0.238 -0.151 -0.113

discrepancy.HL -0.041 -0.251 0.059 -0.042

discrepancy.LL -0.039 -0.252 0.062 -0.037

extinction.slope.HL 0.216 -0.006 0.063 0.131

extinction.slope.LL 0.120 -0.061 0.035 0.326

robustness.HL 0.214 -0.020 0.059 0.148

robustness.LL 0.150 -0.084 -0.114 0.254

functional.diversity.HL 0.162 0.003 0.027 -0.257

functional.diversity.LL 0.163 -0.003 0.029 -0.259

partner.diversity.HL 0.198 -0.078 0.183 -0.028

partner.diversity.LL 0.061 -0.222 -0.212 0.082

effective.partners.HL 0.187 -0.079 0.206 -0.101

effective.partners.LL -0.003 -0.256 -0.125 -0.011

generality.HL 0.187 -0.079 0.206 -0.101

vulnerability.LL -0.003 -0.256 -0.125 -0.011

As we can see, there are quite a few indices on the first axis with a loading of around 0.2
(links per species, weighted NODF, H2, mean number of partners shared; weighted cluster
coefficient, niche overlap, togetherness, C-score (all lower level); extinction slope, robustness,
partner diversity (all higher level)).

Also the PCA biplot (Fig. 5) is not very helpful, since the many indices pointing “south-
wards” are unreadably overlapping.

Alternatively, we might want to depict the correlation between different indices by means
of a cluster analysis (Fig. 6).

> library(Hmisc)

> plot(varclus(netw.indic.webs), cex=0.8)

> abline(h=0.5, lty=2, col="grey")

It picks out a slightly different structure, with the PC1 being distributed over more than one
cluster (towards the left, with extinction.slope.HL but also towards the centre, with weighted
NODF). In either case it becomes clear that many indices are of limited originality. However,
there are some branches ending above the dashed line, indicating that they add a new element
to the description of the network. Some are trivial, such as the number of species in the
lower level, others less so (specialisation asymmetry, extinction slope LL, niche overlap HL,
(weighted) nestedness).

It should become clear that there is no need to compute all indices a software can offer,
and that some clusters seem to measure the same latent property, even it is unclear what that
property is. Curiously, higher and lower level indices are always intermixed. There seems to
be always an effect onto the other level, so that some indices pick up a signal in one level, but
others the same signal in the other.15

The 22 pollination networks, on which both PCA and cluster are based, are most certainly
not representative of bipartite networks in general. The simulations of Dormann et al. (2009)
for a wider range of sizes and linkage densities show a qualitatively similar picture, though:
indices are overlapping into clusters.16

15That should be the case for extinction slopes and robustness, which measures the response of one level to
extinctions in the other. But is difficult to see why the cluster coefficient for the higher level should be correlated
with togetherness in the lower. Post hoc, it is always possible to find a reason, but a priori this is not expected.

16We could similarly say that there is a substantial redundancy in network indices, evident from the analysis
where we condense 92% of variation in 40 odd indices onto six axes.
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Figure 5: Principal component analysis biplot of indices at the network level, based on 22
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Figure 6: Cluster analysis of indices at the network level, based on 22 quantitative pollination
networks. Grey dotted line indicates the level below which clustering could be considered
relevant (|r| > 0.7).
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5.5.3 Variations on on the same theme: which index of a group of similar ones should I choose?

Different indices were developed for different aims. Some are very reasonable, logically sound,
thoughtful and even productive (in the sense of “shown to be doing what they are supposed to
do”), others aren’t. Each index should be understood when being used, based on the literature
introducing it and any later study refining, comparing or criticising/appraising it. There is no
easy way to decide the question “Which is the right index for me?”

That said, there are a few guiding considerations that seem plausible to me:

1. Quantitative indices use more information than binary ones; preferably use the former.

2. Indices developed for bipartite networks are likely to be closer, theoretically, to the struc-
ture of the data than one-mode indices working on projections of bipartite networks.

3. Indices that came out positively in comparisons have proven their worth more than
fresh-off-the-press indices.

4. If two or more indices seem barely distinguishable, do not choose the one easiest to in-
terpret! This would be a logical fault, since their similarity indicates clearly that they are
affected by “something” and we don’t know what that something is, yet. But interpret-
ing an effect as being caused by what is “most convenient to interpret” is most certainly
wrong (Shermer, 2012).17

The last point in particular seems rather little helpful. Imagine the two index values “func-
tional diversity” for the higher and lower trophic level, which are near-identical in Fig. 6. This
indicates that the network, rather than each level, contains the information which these two in-
dices describe. In this particular case, we may want to consider using neither index, or using
any of them but interpreting it as if it represented both level.

Thus, in a nutshell, there is no easy answer and there is no way around knowing the index
and the literature about it and its friends.

6 Null models

6.1 Why null models?

When a network is structured according to some measure (e.g. nestedness), what does that
mean? It could mean that ecological processes leading to nestedness are at play. Or it could
mean that a sampling effect makes nestedness an inevitable consequence. Or, finally, it could
be a mixture of both. Furthering our understanding of nature is not aided by the reporting of
spurious relationships resulting from sampling effects, hence a formal description of what the
network would look like without the ecological process would be a useful comparison. That
is what a null model aims to provide (Gotelli & Graves, 1996).

In ecology, null models are common only in some fields, particularly in biogeography
(Gotelli & Graves, 1996; Hausdorf & Hennig, 2007), but also in network analyses (Dormann
et al., 2009; Joppa et al., 2009; Blüthgen et al., 2008; Vázquez & Aizen, 2006, 2003; Vázquez et al.,
2009). With respect to particular bipartite indices, some studies rejected the current nestedness
paradigm using abundance-based null models, for observed (Kallimanis et al., 2009; Moore &
Swihart, 2007; Santamaría & Rodríguez-Gironés, 2007), as well as for simulated networks
(Krishna et al., 2008).

Null models extend much beyond ecology and were probably first used in physics. Latapy
et al. (2008) use them to investigate degree distributions in non-ecological bipartite networks.
Using another network example, the module detection algorithm proposed by Newman &
Girvan (2004) also uses a null model to define a “group” (or module or community) within a
network: there are more links within than between groups. The null model then is a random
network with as many links between as within groups (Guimerà et al., 2005). In its quantitative

17Of the many, many biases that can creep into scientific explorations, this is one. We could call it the “parsimony
bias” as a special case of the “selection bias” (Shermer, 2012).
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version, the null model is constructed from proportionally probable interactions by differently
abundant participants (Barber et al., 2004). The specific null model used above is underlying
most current implementations of contingency table tests such as χ

2 or Fisher’s signed rank
test (Patefield, 1981).

In conclusion, null models are established approaches in physics as well as ecology to cor-
rect for statistical artefacts and to establish an expectation in the absence of the hypothesised
structuring mechanism.

6.2 Justifying conservative null models

The interactions observed in a network are the result of a dynamic interaction between species
at two levels. If we use null models to represent the outcome of these interactions (the abun-
dances of the participants), we seem to be over-correcting. How can we possibly find a pattern,
if we use this pattern as a null model? Is an abundance-based null model not a circular ar-
gument? Here I argue when it is not, and if circularity would sneak in, why it would still be
better to over-correct. I shall focus on pollination networks, and every network analyst has to
decide in how far this reasoning can be applied to his/her system.

Plant persistence in a site depends to some extend on them being pollinated, and pollinator
population dynamics is affected by the amount of nectar and pollen they collect from the flow-
ers they visit. However, plant growth and population dynamics are also affected by nutrient
and light availability, save sites for seed germination, herbivory and fungal pathogens, myc-
orrhisation and environmental disturbances; and similar constraints exist for pollinators. It is
thus difficult, if not impossible, to say how much of the observed abundance of a species (plant
or pollinator) is caused by the specific plant-pollinator interaction and hence the structure of
the network. To the extent that abundances are determined by the pollination interaction we
may indeed introduce collinearity. To date, there are no data to estimate the proportion of pop-
ulation growth controlled by mutualistic interactions of either plants or pollinators. We can
only guess based on observations such as strong nest-site limitation in solitary bees (Steffan-
Dewenter & Schiele, 2008), relatively high parasitism rates of pollinators (Klein et al., 2002),
strong nutrient limitations of plant population dynamics (Ghazoul, 2005) and grazing pres-
sure (Crawley, 1987; de Mazancourt & Loreau, 2000) that they are probably not dominating
population dynamics. On the other hand, clear (but rare) examples of co-evolution indicate
that such a strong mutual dependence may indeed occur (Waser et al., 1996; Waser & Ollerton,
2006).

Secondly, the observed interactions are not necessarily reflecting abundance of flowers or
pollinators, but rather their attractiveness (e.g. due to scent, colouration or nectar produc-
tion) and activity (e.g. daily period of foraging, phenology through the season, temperature-
dependence of foraging activity), respectively. Hence by using observed sums of observed in-
teractions, one does not correct for abundance, but for attractiveness and activity, respectively.

Third, the null model uses marginal totals, i.e. summed across all links of a species. If
a pollinator was specialised on a single plant species, the null model would scatter these
interactions across all and hence correctly identify a miss-match between observed and null
model. If, on the other hand, a pollinator was generalised, then the scattering of interactions
across all plant species would also yield a similar picture and generalisation would correctly
be inferred.

Finally, even if the null model used would introduce some amount of circularity and thus
“over-correction”, we have to balance this against “over-detection”. Finding specialisation in
an uncorrected approach will incur high levels of type I error (i.e. detecting a pattern that
is actually not there). A null model insures against this type of error. We can thus be sure
that a pattern that “survives” the null model test is no statistical artefact. Since it has been
shown repeatedly that sampling intensity and “natural” differences in abundance will cause
such artefacts (Dormann et al., 2009; Blüthgen, 2010; Joppa et al., 2009; Blüthgen et al., 2008),
they must be addressed. Ignoring them will lead to misinterpretation and over-reporting of
spurious network structure. After correction for expectation based on abundances, we can
start understanding ecology (Vázquez et al., 2007).
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Figure 7: Observed and null-modelled nestedness (computed as NODF) for the network ‘Sa-
fariland”. Note that values of 100 indicate perfect nestedness. Thus, null models are much less
nested than the observed network. (That is typically the case (Dormann et al. 2009), although
often no null models are computed for comparison, making interpretation challenging.)

In conclusion, circularity is unlikely to substantially impair null models for pollination
networks. The risk of reporting non-existent network structure and further speculation of
network stability due to this spurious network structure is a problem that requires a correction,
even if circularity was present.

6.3 Using null models to test for significant tests in data

Once you have settled on a null model, there are fundamentally two different approaches to
use such null models in statistical significance testing: corrected indices and null modelling
the entire analysis. Let us look at them in turn, starting with the seemingly easier option.

Corrected indices and z-scores Imagine we computed the index I for a network. We now
want to know whether this value is anything special, given the abundances of the species.18 So
we build, say, 1000 null models19 and compute our index I for each of them. We can visualise
the distribution of null-model I-values relative to our observed index value (Dormann et al.,
2009).

> data(Safariland)

> Iobs <- nestednodf(Safariland)$statistic[3]

> nulls <- nullmodel(web=Safariland, N=1000, method='r2d') # takes a while!

> Inulls <- sapply(nulls, function(x) nestednodf(x)$statistic[3])

> plot(density(Inulls), xlim=c(0, 100), lwd=2, main="NODF")

> abline(v=Iobs, col="red", lwd=2)

All that is fine for a single network, but no option if we want to analyse dozens or hundreds
of networks. We thus have to summarise this figure in a value. The simplest, most obvious but
generally not best solution would be to subtract the null model mean from the observed, so
that Icorrected = ∆I = Iobserved − Īnulls. The reason why this ∆I is not ideal is that the null model
distribution is likely to vary from network to network. Thus, a difference of, say, 20 may be a

18Thereby we justify the use of the Patefield algorithm as null model. But the approach is independent of which
null model we use.

19E.g. using nulls <- nullmodel(web=Safariland, N=1000, method=’r2d’)
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lot for pointy distributed null models such as the one in Fig. 7, but only little for null model
values spreading over the entire x-axis.

The better, and more established approach, would be to compute z-scores (= standard
scores or normal scores) for each network, which express the difference in terms of standard
deviations of the null distribution:

zI =
Iobserved − Īnulls

σInulls

.

We can now analyse the z-scores instead of the original Iobs-values.
Z-scores have one major disadvantage for several of the network indices presented earlier:

the standard deviation becomes an unsuitable measure of spread as the values approach an
upper or lower bound. Imagine our network index I is bound between 0 and 1 (as many are).
If the null models have values above, say, 0.9, the upper bound is so close that the distribution
will be skewed and the standard deviation biased too low. This may lead to inflated z-scores.
So whenever you observe values close to either bound, beware of distorted z-scores.

Null-model the entire analysis The alternative approach is to carry out the intended anal-
ysis on the observed index values I and then, in a second step, repeat it with one realisation
of a null model per network. Next, repeat this second step several thousand times (for good
measure) and store the statistics you are interested in (say F-values in an ANOVA or slopes
in a regression). Instead of using the p-values from the analysis of the observed values, com-
pare observed and null-modelled statistics and count the proportion of values exceeding the
observed and use those as p-value. To anyone with any experience in resampling analysis or
bootstrapping this is standard procedure (Efron & Tibshirani, 1993; Manly, 1997).

As an example, we can use a question addressed in Vázquez & Simberloff (2003), where
the authors investigate whether cattle grazing affects the network structure of pollination
networks in four replicated sites in Argentina. As response we haphazardly choose linkage
density.

> weblist <- lapply(c("Safariland", "vazarr", "vazllao", "vazcer", "vazmasc",

+ "vazmasnc", "vazquec", "vazquenc"), get)

> # Write a function to compute the desired statistic, e.g. the difference

> # between grazed and ungrazed:

> meandiff <- function(webs){

+ obs <- sapply(webs, networklevel, index="linkage density")

+ mean(obs[1:4]) - mean(obs[5:8])

+ }

> (observed <- meandiff(weblist))

[1] -0.2481145

Now generate a null model and repeat:

> nulllist <- lapply(weblist, nullmodel, N=1, method="r2d")

> meandiff(weblist)

[1] -0.2481145

Repeat this procedure, say, 5000 times:20

> res <- 1:5000

> for (i in 1:5000){ # takes a few minutes !!

+ nulllist <- sapply(weblist, nullmodel, N=1, method="r2d")

+ res[i] <- meandiff(nulllist)

+ }
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Figure 8: Distribution of mean differences in linkage density of pollination networks in grazed
and ungrazed meadows, correcting for differences in species numbers and observation inten-
sity through the use of null models (N = 5000). Observed difference is shown as vertical line.
The observed difference is significantly (P < 0.001) different from null model expectations.

Finally, we can depict the results in a histogram (Fig. 8), with observed as vertical line, and
compute the p-value based on the 5000 null models:

> hist(res, xlim=c(-0.3, 0.3), border="white", col="grey")

> abline(v=observed, col="red", lwd=2)

> # compute p-value as proportion smaller or than observed

> sum(res < observed)/length(res) * 2 # *2 for two-tailed test

The idea here is to compute a statistic of interest, in this case the mean difference between
some network index for the two treatments, and then use the null model to compute expec-
tations. In the above example, we would apparently expect no difference (which is intuitive);
additionally we also get an idea of how much variability we can expect (the distribution of the
null model-based mean differences in linkage density). Thus, in this example, the difference in
linkage density of pollination networks from grazed vs ungrazed pastures is highly significant
(p < 0.001).

7 Modularity

Aggregated sets of interacting species are called ‘modules’. Their defining feature is that
within-module interactions are more prevalent than between-module interactions (Newman,
2003; Newman & Girvan, 2004; Fortunato, 2010). In other words, modules are link-rich clus-
ters of species in a community. What causes such modules and whether they actually teach
us something is discussed at length by Dormann et al. (2017).

There are several algorithms for one-mode networks, particularly for binary one-mode net-
works, such as the Louvain algorithm, the infomap or Clauset et al. (2004)’s “fast greedy”
algorithm. These algorithms vary substantially in their robustness, in the sense that small
changes in the network may yield very different modules, as compared by Policastro et al.
(2021). That paper also expores ways to test for significance of modularity, based on null
model simulations.

20For didactic purposes, we use an inelegant but easy to understand for-loop here. In productive mode we
would instead use sapply or replicate, which would make the code more compact, but in this case not faster.
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Figure 9: A simulated 3-compartment network in random sequence (left), as sorted by a cor-
respondence analysis (centre) and by the modularity algorithm with default settings (right).

Figure 10: Interaction matrix featuring nested modules for the data of Memmott (1999). Darker
squares indicate more observed interactions. Coloured boxes delineate the seven modules.
(Note that results may vary between runs.) In the central module yellow Asteraceae feature
heavily, while a possible ecological cause pattern for the other modules is less apparent.

The package bipartite offers an algorithm (QuaBiMo, described in technical detail in Dor-
mann & Strauß, 2014) to detect modules in bipartite networks, taking into account the quan-
titative nature of links. The algorithm has become outdated after a vastly improved approach
was published by Beckett (2016), which is also now the default algorithm used in bipartite’s
computeModules function.

Old-school modularity was identified using correspondence analysis, which, however, will
not be able to identify modules sufficiently well, even if modules are actually compartments
(i.e. perfectly separated: Fig. 9 left, centre). The algorithm used in bipartite can do so, at least
in principle (Fig. 9 right).21

QuaBiMo can be invoked recursively (we are working on doing the same for Beckett),
searching for modules within modules (Fig. 10, bottom). While such nested modules become
ever smaller and are thus ever faster to detect, there are plenty of them and hence nesting
will typically dramatically prolong computing time during the search for patterns (Memmott,
1999).

Modularity Q is likely to be correlated with other network metric, as specialisation of
module members is the prime reason for the existence of modules. Across the (then) 22 quan-

21As a note on terminology: If modules are perfectly separated, with no species interacting with species in an-
other module, they are called “compartments” and will be visible as clearly separated blocks of interacting species.
It is relatively straightforward to implement a recursive compartment detection function, but compartments are
too much black-and-white compared to modules and often only occur in ecological networks because sampling
was rather incomplete or very different habitats were sampled.
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Figure 11: Modularity (Q) is highly correlated with specialisation H′
2 across 22 pollination

networks. Names refer to network data sets in bipartite.

titative pollination networks of the NCEAS “interaction webs” data base, Q was evidently
highly positively correlated with complementary specialisation H′

2 (Fig. 11). Ecologically, the
correlation with specialisation makes good sense. Modules only exist because some species
do not interact with some others, i.e. because they are specialised. An overall low degree of
specialisation is equivalent to random interactions, which will yield no modules.

Furthermore, the absolute value of Q is, like all network indices (Dormann et al., 2009),
dependent on network size (i.e. the number of species) as well as the number of links and
the total number of interactions observed (Thébault, 2013). We would thus recommend a null
model comparison (Vázquez & Aizen, 2003; Blüthgen et al., 2008; Dormann et al., 2009) to
correct the observed value of Q by null model expectation (e.g. by standardising them to z-

scores: zQ = Qobserved−Qnull
σQnull

). Modularity Q is in itself not an index of an ecological feature. It is

merely a measure of how well links and interactions can be separated into different modules.
Large networks, with many species and links, allow for more combinations of species-in-
modules, leading to higher values of Q, as Allesina & Pascual (2009) pointed out for any
grouping algorithm.

7.1 Using modularity to identifying species with important roles in the network

Guimerà et al. (2005) and Olesen et al. (2007) propose to compute standardised connection and
participation values, called c and z, for each species to describe their role in networks, where
c refers to the between-modules connectivity (called “participation coefficient” P: Guimerà
et al., 2005) and z refers to within-module degrees. Originally, both are computed based on
the number of links, but a weighted version based on species strength is implemented, too.
Guimerà et al. (2005) suggest critical values (only for the binary approach) of c and z of 0.625
and 2.5, respectively. Species exceeding both of these values are called “hubs” because they
link different modules, combining high between- with high within-module connectivity.

In the case of the pollination network of Fig. 10, c-values range between 0 and 0.78 (with
23 of 79 pollinators and 13 of 25 plant species exceeding the threshold of 0.625); z-values range
between −1.21 and 5.00 (with two pollinators but no plant species exceeding the value of 2.5:
Fig. 12). Put together, only the syrphid Syritta pipiens (and hawkbit Leontodon hispidus almost)
exceeded both thresholds and would thus be called a “hub species”. As can be seen in Fig. 10,
this syrphid is relatively rare but clearly not randomly distributed over the six modules, thus
linking three highest-level modules. In contrast, Leontodon hispidus is a common plant species,
visited by many different pollinators, and it actually links almost all modules.

To objectively define this threshold one could run null models of the original network and
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Figure 12: Connection (c) and participation (z) values for pollinators (left) and plants (right)
in the network of Memmott (1999). Dashed black lines indicate critical values according to
Olesen et al. (2007), those in grey 95% quantiles from 100 null models (see text).

employ 95% quantiles as critical c- and z-values. For the pollinators in the network of Fig. 10
these would be 0.67 (±0.039) and 1.45 (±0.220), respectively, based on 100 null models (for
plants: ccritical = 0.72 ± 0.036 and zcritical = 1.78 ± 0.297; Fig. 12 left). While for plant species
this has little effect (except for moving Leontodon hispidus across the threshold), three more
pollinators would become hub species (the common hoverfly Episyrphus balteatus, the tachinid
fly Eriothrix rufomaculata and undetermined fly “Diptera spec.22”).

8 Analyses beyond bipartite

Of course, there are many different packages that analyse one or the other aspect of networks,
and some even of bipartite networks (listed in the introduction of this vignette). Some of them
we find particularly interesting or useful or innovative, and here we quickly show some of
them at work.

8.1 Plotting pretty bipartites

The plotting functions provided by bipartite are somewhat rudimentary. We’re happy with
them, and they are surprisingly flexible already, but our graphical skills (and intentions) are
limited. Other people have developed plotting functions/solutions, which we shall briefly
(and probably incompletely) show here.22

8.1.1 bipartiteD3

8.1.2 igraph

https://kateto.net/netscix2016.html; https://rpubs.com/pjmurphy/317838; https://igraph.
org/r/doc/layout_as_bipartite.html

8.1.3 ggbipart

There is the package ggbipart, on github.23

22Partly based on this question on SO: https://stackoverflow.com/questions/31366066/

how-to-plot-a-bipartite-graph-in-r
23See also https://pedroj.github.io/bipartite_plots/ for more code examples.
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> library(devtools)

> install_github(rep="pedroj/bipartite_plots")

8.1.4 multigraph

Plot several bipartite layers into one graph: see https://stackoverflow.com/questions/31366066/
how-to-plot-a-bipartite-graph-in-r

8.2 Analysing the structure of bipartite networks

[to be continued ...]
There are a range of packages that aim at identifying structure within networks, be it

clusters/modules/compartments of a larger subset of interactions, or specific motifs of only
few links. It is almost impossible to keep up with these developments, so here are just a few
pointers to such packages: bmotif, dynsbm and infomapecology.

8.3 Multi-layer networks

This somewhat cryptic term refers to networks that are defined by different types of links,
for example because links change over time (dynamic links) or because they depend on other
networks (Pilosof et al., 2017). The mathematical description and analysis of such multilayer
networks can be rather complex (Aleta & Moreno, 2019), and in ecology typically only rela-
tively simple types of multilayer networks are investigated; probably the most common being
multi-level networks are temporally or spatially resolved networks.

While statistically and mathematically a lot of things are conceivable, few ideas actually
resonate with ecologists (i.e. in application). One idea is that networks evolve and hence
change dynamically. Another is that any observed bipartite network is actually embedded
in many other networks, e.g. a plant-pollinator-network may continue “into the ground” as
plant-mycorrhiza networks, “into the sky” as pollinator-parasite network, and “sideways” as
plant-herbivore network (Pocock et al., 2012).

Currently, bipartite does not support any such analysis (apart from a pathetic function
npartite and plotweb2 for plotting stacked bipartite networks).

Packages such as robber address some of the challenges of intersecting multiple bipartite
networks.

Conclusions

The analysis of bipartite networks has seen a recent explosion of applications in ecology. The
R-package bipartite aims at providing a user-friendly set of function to aid the visualisation
and analysis of such networks. This vignette hopefully illustrated some of the challenges and
solutions to such analyses. The main take-home-message it aims to convey is that there are
considerable interpretational strings attached, and that the analysis of bipartite networks is
not as straightforward as one might have initially hoped.

Feedback, improvements, corrections and additions are welcomed!

The Rnw source of this document is at https://github.com/biometry/bipartite/bipartite/
vignettes/Intro2bipartite.Rnw.
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Alatalo interaction evenness, 10
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null model, 19
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