
Package ‘biopixR’
November 11, 2024

Title Extracting Insights from Biological Images

Version 1.2.0

Description Combines the 'magick' and 'imager' packages to streamline image analysis, focus-
ing on feature extraction and quantification from biological images, especially
microparticles. By providing high throughput pipelines and clustering capabilities, 'biopixR' fa-
cilitates efficient insight generation for researchers (Schneider J. et al. (2019)
<doi:10.21037/jlpm.2019.04.05>).

License LGPL (>= 3)

VignetteBuilder knitr

BuildVignettes true

Depends R (>= 4.2.0), imager, magick

Imports data.table, cluster

Suggests tcltk, knitr, rmarkdown, doParallel, kohonen, imagerExtra,
GPareto, foreach

Encoding UTF-8

RoxygenNote 7.3.2

LazyData true

LazyLoad yes

NeedsCompilation no

Language en-US

URL https://github.com/Brauckhoff/biopixR

BugReports https://github.com/Brauckhoff/biopixR/issues

Author Tim Brauckhoff [aut, cre] (<https://orcid.org/0009-0002-0142-7017>),
Stefan Roediger [ctb] (<https://orcid.org/0000-0002-1441-6512>),
Coline Kieffer [ctb]

Maintainer Tim Brauckhoff <brauctile@disroot.org>

Repository CRAN

Date/Publication 2024-11-11 14:20:05 UTC

1

https://doi.org/10.21037/jlpm.2019.04.05
https://github.com/Brauckhoff/biopixR
https://github.com/Brauckhoff/biopixR/issues
https://orcid.org/0009-0002-0142-7017
https://orcid.org/0000-0002-1441-6512

2 adaptiveInterpolation

Contents

adaptiveInterpolation . 2
beads . 4
beads_large1 . 5
beads_large2 . 6
changePixelColor . 6
droplets . 7
droplet_beads . 8
edgeDetection . 9
fillLineGaps . 10
haralickCluster . 11
imgPipe . 12
importImage . 13
interactive_objectDetection . 14
interpolatePixels . 15
objectDetection . 16
proximityFilter . 17
resultAnalytics . 19
scanDir . 20
shapeFeatures . 22
sizeFilter . 23

Index 25

adaptiveInterpolation Connects Line Ends with the nearest labeled region

Description

The function scans an increasing radius around a line end and connects it with the nearest labeled
region.

Usage

adaptiveInterpolation(
end_points_df,
diagonal_edges_df,
clean_lab_df,
img,
radius = 5

)

adaptiveInterpolation 3

Arguments

end_points_df data.frame with the coordinates of all line ends (can be obtained by using
image_morphology)

diagonal_edges_df

data.frame with coordinates of diagonal line ends (can also be obtained by
using image_morphology)

clean_lab_df data of type data.frame, containing the x, y and value information of every
labeled region in an image (only the edges should be labeled)

img image providing the dimensions of the output matrix (import by importImage)

radius maximal radius that should be scanned for another cluster

Details

This function is designed to be part of the fillLineGaps function, which performs the threshold-
ing and line end detection preprocessing. The adaptiveInterpolation generates a matrix with
dimensions matching those of the original image. Initially, the matrix contains only background
values (0) corresponding to a black image. The function then searches for line ends and identifies
the nearest labeled region within a given radius of the line end. It should be noted that the cluster
of the line end in question is not considered a nearest neighbor. In the event that another cluster is
identified, the interpolatePixels function is employed to connect the line end to the aforemen-
tioned cluster. This entails transforming the specified pixels of the matrix to a foreground value
of (1). It is important to highlight that diagonal line ends receive a special treatment, as they are
always treated as a separate cluster by the labeling function. This makes it challenging to reconnect
them. To address this issue, diagonal line ends not only ignore their own cluster but also that of
their direct neighbor. Thereafter, the same procedure is repeated, with pixel values being changed
according to the interpolatePixels function.

Value

Binary matrix that can be applied as an overlay, for example with imager.combine to fill the gaps
between line ends.

Examples

Creating an artificial binary image
mat <- matrix(0, 8, 8)
mat[3, 1:2] <- 1
mat[4, 3] <- 1
mat[7:8, 3] <- 1
mat[5, 6:8] <- 1
mat_cimg <- as.cimg(mat)
plot(mat_cimg)

Preprocessing / LineEnd detection / labeling (done in fillLineGaps())
mat_cimg_m <- mirror(mat_cimg, axis = "x")
mat_magick <- cimg2magick(mat_cimg)
lineends <- image_morphology(mat_magick, "HitAndMiss", "LineEnds")
diagonalends <- image_morphology(mat_magick, "HitAndMiss", "LineEnds:2>")
lineends_cimg <- magick2cimg(lineends)

4 beads

diagonalends_cimg <- magick2cimg(diagonalends)
end_points <- which(lineends_cimg == TRUE, arr.ind = TRUE)
end_points_df <- as.data.frame(end_points)
colnames(end_points_df) <- c("x", "y", "dim3", "dim4")
diagonal_edges <- which(diagonalends_cimg == TRUE, arr.ind = TRUE)
diagonal_edges_df <- as.data.frame(diagonal_edges)
colnames(diagonal_edges_df) <- c("x", "y", "dim3", "dim4")
lab <- label(mat_cimg_m)
df_lab <- as.data.frame(lab) |> subset(value > 0)
alt_x <- list()
alt_y <- list()
alt_value <- list()
for (g in seq_len(nrow(df_lab))) {

if (mat_cimg_m[df_lab$x[g], df_lab$y[g], 1, 1] == 1) {
alt_x[g] <- df_lab$x[g]
alt_y[g] <- df_lab$y[g]
alt_value[g] <- df_lab$value[g]

}
}
clean_lab_df <- data.frame(

x = unlist(alt_x),
y = unlist(alt_y),
value = unlist(alt_value)

)

Actual function
overlay <- adaptiveInterpolation(

end_points_df,
diagonal_edges_df,
clean_lab_df,
mat_cimg

)
parmax(list(mat_cimg_m, as.cimg(overlay$overlay))) |> plot()

beads Image of microbeads

Description

This fluorescence image, formatted as ’cimg’ with dimensions of 117 x 138 pixels, shows mi-
crobeads. With a single color channel, the image provides an ideal example for in-depth analysis of
microbead structures.

Usage

beads

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

beads_large1 5

Details

Dimensions: width - 117; height - 138; depth - 1; channel - 1

References

The image was provided by Coline Kieffer.

Examples

data(beads)
plot(beads)

beads_large1 Image of microbeads

Description

This fluorescence image, formatted as ’cimg’ with dimensions of 492 x 376 pixels, shows mi-
crobeads. With a single color channel, the image provides an ideal example for in-depth analysis
of microbead structures. The image’s larger size encompasses a greater number of microbeads,
offering a broader range of experimental outcomes for examination.

Usage

beads_large1

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 492; height - 376; depth - 1; channel - 1

References

The image was provided by Coline Kieffer.

Examples

data(beads_large1)
plot(beads_large1)

6 changePixelColor

beads_large2 Image of microbeads

Description

This fluorescence image, formatted as ’cimg’ with dimensions of 1384 x 1032 pixels, shows mi-
crobeads. With a single color channel, the image provides an ideal example for in-depth analysis
of microbead structures. The image’s larger size encompasses a greater number of microbeads,
offering a broader range of experimental outcomes for examination.

Usage

beads_large2

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 1384; height - 1032; depth - 1; channel - 3

References

The image was provided by Coline Kieffer.

Examples

data(beads_large2)
plot(beads_large2)

changePixelColor Change the color of pixels

Description

The function allows the user to alter the color of a specified set of pixels within an image. In order
to achieve this, the coordinates of the pixels in question must be provided.

Usage

changePixelColor(img, coordinates, color = "purple", visualize = FALSE)

droplets 7

Arguments

img image (import by importImage)

coordinates specifying which pixels to be colored (should be a x|y data frame).

color color to be applied to specified pixels:

• color from the list of colors defined by colors

• object of class factor

visualize if TRUE the resulting image gets plotted

Value

Object of class ’cimg’ with changed colors at desired positions.

References

https://CRAN.R-project.org/package=countcolors

Examples

coordinates <-
objectDetection(beads,

method = 'edge',
alpha = 1,
sigma = 0)

changePixelColor(
beads,
coordinates$coordinates,
color = factor(coordinates$coordinates$value),
visualize = TRUE

)

droplets Droplets containing microbeads

Description

The image displays a water-oil emulsion with droplets observed through brightfield microscopy. It
is formatted as ’cimg’ and sized at 151 × 112 pixels. The droplets vary in size, and some contain
microbeads, which adds complexity. Brightfield microscopy enhances the contrast between water
and oil, revealing the droplet arrangement.

Usage

droplets

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

8 droplet_beads

Details

Dimensions: width - 151; height - 112; depth - 1; channel - 1

References

The image was provided by Coline Kieffer.

Examples

data(droplets)
plot(droplets)

droplet_beads Image of microbeads in luminescence channel

Description

The image shows red fluorescence rhodamine microbeads measuring 151 x 112 pixels. The fluo-
rescence channel was used to obtain the image, resulting in identical dimensions and positions of
the beads as in the original image (droplets).

Usage

droplet_beads

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 151; height - 112; depth - 1; channel - 3

References

The image was provided by Coline Kieffer.

Examples

data(droplet_beads)
plot(droplet_beads)

edgeDetection 9

edgeDetection Canny edge detector

Description

Adapted code from the ’imager’ cannyEdges function without the usage of ’dplyr’ and ’purrr’. If
the threshold parameters are missing, they are determined automatically using a k-means heuristic.
Use the alpha parameter to adjust the automatic thresholds up or down. The thresholds are returned
as attributes. The edge detection is based on a smoothed image gradient with a degree of smoothing
set by the sigma parameter.

Usage

edgeDetection(img, t1, t2, alpha = 1, sigma = 2)

Arguments

img image (import by importImage)

t1 threshold for weak edges (if missing, both thresholds are determined automati-
cally)

t2 threshold for strong edges

alpha threshold adjustment factor (default 1)

sigma smoothing (default 2)

Value

Object of class ’cimg’, displaying detected edges.

References

https://CRAN.R-project.org/package=imager

Examples

edgeDetection(beads, alpha = 0.5, sigma = 0.5) |> plot()

10 fillLineGaps

fillLineGaps Reconnecting discontinuous lines

Description

The function attempts to fill in edge discontinuities in order to enable normal labeling and edge
detection.

Usage

fillLineGaps(
contours,
objects = NULL,
threshold = "13%",
alpha = 1,
sigma = 2,
radius = 5,
iterations = 2,
visualize = TRUE

)

Arguments

contours image that contains discontinuous lines like edges or contours
objects image that contains objects that should be removed before applying the fill al-

gorithm
threshold "in %" (from threshold)
alpha threshold adjustment factor for edge detection (from edgeDetection)
sigma smoothing (from edgeDetection)
radius maximal radius that should be scanned for another cluster
iterations how many times the algorithm should find line ends and reconnect them to their

closest neighbor
visualize if TRUE (default) a plot is displayed highlighting the added pixels in the original

image

Details

The function pre-processes the image in order to enable the implementation of the adaptiveInterpolation
function. The pre-processing stage encompasses a number of operations, including thresholding,
the optional removal of objects, the detection of line ends and diagonal line ends, and the labeling
of pixels. The threshold should be set to allow for the retention of some "bridge" pixels between
gaps, thus facilitating the subsequent process of reconnection. For further details regarding the
process of reconnection, please refer to the documentation on adaptiveInterpolation. The sub-
sequent post-processing stage entails the reduction of line thickness in the image. With regard to
the possibility of object removal, the coordinates associated with these objects are collected using
the objectDetection function. Subsequently, the pixels of the detected objects are set to null in
the original image, thus allowing the algorithm to proceed without the objects.

haralickCluster 11

Value

Image with continuous edges (closed gaps).

Examples

fillLineGaps(droplets)

haralickCluster k-medoids clustering of images according to the Haralick features

Description

This function performs k-medoids clustering on images using Haralick features, which describe tex-
ture. By evaluating contrast, correlation, entropy, and homogeneity, it groups images into clusters
with similar textures. K-medoids is chosen for its outlier resilience, using actual images as cluster
centers. This approach simplifies texture-based image analysis and classification.

Usage

haralickCluster(path)

Arguments

path directory path to folder with images to be analyzed

Value

data.frame containing file names, md5sums and cluster number.

References

https://cran.r-project.org/package=radiomics

Examples

path2dir <- system.file("images", package = 'biopixR')
result <- haralickCluster(path2dir)
print(result)

12 imgPipe

imgPipe Image analysis pipeline

Description

This function serves as a pipeline that integrates tools for complete start-to-finish image analysis.
It enables the handling of images from different channels, for example the analysis of dual-color
micro particles. This approach simplifies the workflow, providing a straightforward method to
analyze complex image data.

Usage

imgPipe(
img1 = img,
color1 = "color1",
img2 = NULL,
color2 = "color2",
img3 = NULL,
color3 = "color3",
method = "edge",
alpha = 1,
sigma = 2,
sizeFilter = FALSE,
upperlimit = "auto",
lowerlimit = "auto",
proximityFilter = FALSE,
radius = "auto"

)

Arguments

img1 image (import by importImage)

color1 name of color in img1

img2 image (import by importImage)

color2 name of color in img2

img3 image (import by importImage)

color3 name of color in img3

method choose method for object detection (’edge’ / ’threshold’) (from objectDetection)

alpha threshold adjustment factor (numeric / ’static’ / ’interactive’ / ’gaussian’) (from
objectDetection)

sigma smoothing (numeric / ’static’ / ’interactive’ / ’gaussian’) (from objectDetection)

sizeFilter applying sizeFilter function (default - FALSE)

upperlimit highest accepted object size (numeric / ’auto’) (only needed if sizeFilter = TRUE)

importImage 13

lowerlimit smallest accepted object size (numeric / ’auto’) (only needed if sizeFilter =
TRUE)

proximityFilter

applying proximityFilter function (default - FALSE)

radius distance from one object in which no other centers are allowed (in pixels) (only
needed if proximityFilter = TRUE)

Value

list of 2 to 3 objects:

• Summary of all the objects in the image.

• Detailed information about every single object.

• (optional) Result for every individual color.

See Also

objectDetection(), sizeFilter(), proximityFilter(), resultAnalytics()

Examples

result <- imgPipe(
beads,
alpha = 1,
sigma = 2,
sizeFilter = TRUE,
upperlimit = 150,
lowerlimit = 50
)

Highlight remaining microparticles
plot(beads)
with(

result$detailed,
points(
result$detailed$x,
result$detailed$y,
col = "darkgreen",
pch = 19
)

)

importImage Import an Image File

14 interactive_objectDetection

Description

This function is a wrapper to the load.image and image_read functions, and imports an image
file and returns the image as a ’cimg’ object. The following file formats are supported: TIFF, PNG,
JPG/JPEG, and BMP. In the event that the image in question contains an alpha channel, that channel
is omitted.

Usage

importImage(path2file)

Arguments

path2file path to file

Value

An image of class ’cimg’.

Examples

path2img <- system.file("images/beads_large1.bmp", package = 'biopixR')
img <- importImage(path2img)
img |> plot()

path2img <- system.file("images/beads_large2.png", package = 'biopixR')
img <- importImage(path2img)
img |> plot()

interactive_objectDetection

Interactive object detection

Description

This function uses the objectDetection function to visualize the detected objects at varying input
parameters.

Usage

interactive_objectDetection(img, resolution = 0.1, return_param = FALSE)

Arguments

img image (import by importImage)

resolution resolution of slider

return_param if TRUE the final parameter values for alpha and sigma are printed to the console
(TRUE | FALSE)

interpolatePixels 15

Details

The function provides a graphical user interface (GUI) that allows users to interactively adjust the
parameters for object detection:

• Alpha: Controls the threshold adjustment factor for edge detection.

• Sigma: Determines the amount of smoothing applied to the image.

• Scale: Adjusts the scale of the displayed image.

The GUI also includes a button to switch between two detection methods:

• Edge Detection: Utilizes the edgeDetection function. The alpha parameter acts as a thresh-
old adjustment factor, and sigma controls the smoothing.

• Threshold Detection: Applies a thresholding method, utilizing SPE for background reduction
and the threshold function. (No dependency on alpha or sigma!)

Value

Values of alpha, sigma and the applied method.

References

https://CRAN.R-project.org/package=magickGUI

Examples

if (interactive()) {
interactive_objectDetection(beads)
}

interpolatePixels Pixel Interpolation

Description

Connects two points in a matrix, array, or an image.

Usage

interpolatePixels(row1, col1, row2, col2)

Arguments

row1 row index for the first point

col1 column index for the first point

row2 row index for the second point

col2 column index for the second point

16 objectDetection

Value

Matrix containing the coordinates to connect the two input points.

Examples

Simulate two points in a matrix
test <- matrix(0, 4, 4)
test[1, 1] <- 1
test[3, 4] <- 1
as.cimg(test) |> plot()

Connect them with each other
link <- interpolatePixels(1, 1, 3, 4)
test[link] <- 1
as.cimg(test) |> plot()

objectDetection Object detection

Description

This function identifies objects in an image using either edge detection or thresholding methods.
It gathers the coordinates and centers of the identified objects, highlighting the edges or overall
coordinates for easy recognition.

Usage

objectDetection(img, method = "edge", alpha = 1, sigma = 2, vis = TRUE)

Arguments

img image (import by importImage)

method choose method for object detection (’edge’ / ’threshold’)

alpha threshold adjustment factor (numeric / ’static’ / ’interactive’ / ’gaussian’) (only
needed for ’edge’)

sigma smoothing (numeric / ’static’ / ’interactive’ / ’gaussian’) (only needed for ’edge’)

vis creates image were object edges/coordinates (purple) and detected centers (green)
are highlighted (TRUE | FALSE)

Details

The objectDetection function provides several methods for calculating the alpha and sigma pa-
rameters, which are critical for edge detection:

1. Input of a Numeric Value:
• Users can directly input numeric values for alpha and sigma, allowing for precise control

over the edge detection parameters.

proximityFilter 17

2. Static Scanning:

• When both alpha and sigma are set to "static", the function systematically tests all pos-
sible combinations of these parameters within the range (alpha: 0.1 - 1.5, sigma: 0 - 2).
This exhaustive search helps identify the optimal parameter values for the given image.
(Note: takes a lot of time)

3. Interactive Selection:

• Setting the alpha and sigma values to "interactive" initiates a Tcl/Tk graphical user in-
terface (GUI). This interface allows users to adjust the parameters interactively, based on
visual feedback. To achieve optimal results, the user must input the necessary adjust-
ments to align the parameters with the specific requirements of the image. The user can
also switch between the methods through the interface.

4. Multi-Objective Optimization:

• For advanced parameter optimization, the function easyGParetoptim will be utilized for
multi-objective optimization using Gaussian process models. This method leverages the
’GPareto’ package to perform the optimization. It involves building Gaussian Process
models for each objective and running the optimization to find the best parameter values.

Value

list of 3 objects:

• data.frame of labeled regions with the central coordinates (including size information).

• All coordinates that are in labeled regions.

• Image where object edges/coordinates (purple) and detected centers (green) are colored.

Examples

res_objectDetection <- objectDetection(beads,
method = 'edge',
alpha = 1,
sigma = 0)

res_objectDetection$marked_objects |> plot()

res_objectDetection <- objectDetection(beads,
method = 'threshold')

res_objectDetection$marked_objects |> plot()

proximityFilter Proximity-based exclusion

Description

In order to identify objects within a specified proximity, it is essential to calculate their respective
centers, which serve to determine their proximity. Pairs that are in close proximity will be discarded.
(Input can be obtained by objectDetection function)

18 proximityFilter

Usage

proximityFilter(centers, coordinates, radius = "auto", elongation = 2)

Arguments

centers center coordinates of objects (mx|my|value data frame)

coordinates all coordinates of the objects (x|y|value data frame)

radius distance from one center in which no other centers are allowed (in pixels) (nu-
meric / ’auto’)

elongation factor by which the radius should be multiplied to create the area of exclusion
(default 2)

Details

The automated radius calculation in the proximityFilter function is based on the presumption of
circular-shaped objects. The radius is calculated using the following formula:√

A

π

where A is the area of the detected objects. The function will exclude objects that are too close by
extending the calculated radius by one radius length beyond the assumed circle, effectively doubling
the radius to create an exclusion zone. Therefore the elongation factor is set to 2 by default, with
one radius covering the object and an additional radius creating the area of exclusion.

Value

list of 2 objects:

• Center coordinates of remaining objects.

• All coordinates of remaining objects.

Examples

res_objectDetection <- objectDetection(beads,
alpha = 1,
sigma = 0)

res_proximityFilter <- proximityFilter(
res_objectDetection$centers,
res_objectDetection$coordinates,
radius = "auto"
)

changePixelColor(
beads,
res_proximityFilter$coordinates,
color = "darkgreen",
visualize = TRUE
)

resultAnalytics 19

resultAnalytics Result Calculation and Summary

Description

This function summarizes the data obtained by previous functions: objectDetection, proximityFilter
or sizeFilter. Extracts information like amount, intensity, size and density of the objects present
in the image.

Usage

resultAnalytics(img, coordinates, unfiltered = NULL)

Arguments

img image (import by importImage)

coordinates all filtered coordinates of the objects (x|y|value data frame)

unfiltered all coordinates from every object before applying filter functions

Details

The resultAnalytics function provides comprehensive summary of objects detected in an image:

1. Summary

• Generates a summary of all detected objects, including the total number of objects, their
mean size, size standard deviation, mean intensity, intensity standard deviation, estimated
rejected objects, and coverage.

2. Detailed Object Information

• Provides detailed information for each object, including size, mean intensity, intensity
standard deviation, and coordinates.

Value

list of 2 objects:

• summary: A summary of all the objects in the image.

• detailed: Detailed information about every single object.

See Also

objectDetection(), sizeFilter(), proximityFilter()

20 scanDir

Examples

res_objectDetection <- objectDetection(beads,
alpha = 1,
sigma = 0)

res_sizeFilter <- sizeFilter(
res_objectDetection$centers,
res_objectDetection$coordinates,
lowerlimit = 50, upperlimit = 150
)

res_proximityFilter <- proximityFilter(
res_sizeFilter$centers,
res_objectDetection$coordinates,
radius = "auto"
)

res_resultAnalytics <- resultAnalytics(
coordinates = res_proximityFilter$coordinates,
unfiltered = res_objectDetection$coordinates,
img = beads
)

print(res_resultAnalytics$summary)
plot(beads)
with(

res_objectDetection$centers,
points(
res_objectDetection$centers$mx,
res_objectDetection$centers$my,
col = "red",
pch = 19
)

)
with(

res_resultAnalytics$detailed,
points(

res_resultAnalytics$detailed$x,
res_resultAnalytics$detailed$y,
col = "darkgreen",
pch = 19
)

)

scanDir Scan Directory for Image Analysis

Description

This function scans a specified directory, imports images, and performs various analyses including
object detection, size filtering, and proximity filtering. Optionally, it can perform these tasks in
parallel and log the process.

scanDir 21

Usage

scanDir(
path,
parallel = FALSE,
backend = "PSOCK",
cores = "auto",
method = "edge",
alpha = 1,
sigma = 2,
sizeFilter = FALSE,
upperlimit = "auto",
lowerlimit = "auto",
proximityFilter = FALSE,
radius = "auto",
Rlog = FALSE

)

Arguments

path directory path to folder with images to be analyzed

parallel processing multiple images at the same time (default - FALSE)

backend ’PSOCK’ or ’FORK’ (see makeCluster)

cores number of cores for parallel processing (numeric / ’auto’) (’auto’ uses 75% of
the available cores)

method choose method for object detection (’edge’ / ’threshold’) (from objectDetection)

alpha threshold adjustment factor (numeric / ’static’ / ’interactive’ / ’gaussian’) (from
objectDetection)

sigma smoothing (numeric / ’static’ / ’interactive’ / ’gaussian’) (from objectDetection)

sizeFilter applying sizeFilter function (default - FALSE)

upperlimit highest accepted object size (only needed if sizeFilter = TRUE)

lowerlimit smallest accepted object size (numeric / ’auto’)
proximityFilter

applying proximityFilter function (default - FALSE)

radius distance from one center in which no other centers are allowed (in pixels) (only
needed if proximityFilter = TRUE)

Rlog creates a log markdown document, summarizing the results (default - FALSE)

Details

The function scans a specified directory for image files, imports them, and performs analysis using
designated methods. The function is capable of parallel processing, utilizing multiple cores to
accelerate computation. Additionally, it is able to log the results into an R Markdown file. Duplicate
images are identified through the use of MD5 sums. In addition a variety of filtering options are
available to refine the analysis. If logging is enabled, the results can be saved and rendered into
a report. When Rlog = TRUE, an R Markdown file and a CSV file are generated in the current

22 shapeFeatures

directory. More detailed information on individual results, can be accessed through saved RDS
files.

Value

data.frame summarizing each analyzed image, including details such as the number of objects,
average size and intensity, estimated rejections, and coverage.

See Also

imgPipe(), objectDetection(), sizeFilter(), proximityFilter(), resultAnalytics()

Examples

if (interactive()) {
path2dir <- system.file("images", package = 'biopixR')
results <- scanDir(path2dir, alpha = 'interactive', sigma = 'interactive')
print(results)
}

shapeFeatures Extraction of Shape Features

Description

This function analyzes the objects detected in an image and calculates distinct shape characteristics
for each object, such as circularity, eccentricity, radius, and perimeter. The resulting shape attributes
can then be grouped using a Self-Organizing Map (SOM) from the ’Kohonen’ package.

Usage

shapeFeatures(
img,
alpha = 1,
sigma = 2,
xdim = 2,
ydim = 1,
SOM = FALSE,
visualize = FALSE

)

Arguments

img image (import by load.image)

alpha threshold adjustment factor (numeric / ’static’ / ’interactive’ / ’gaussian’) (from
objectDetection)

sigma smoothing (numeric / ’static’ / ’interactive’ / ’gaussian’) (from objectDetection)

sizeFilter 23

xdim x-dimension for the SOM-grid (grid = hexagonal)

ydim y-dimension for the SOM-grid (xdim * ydim = number of neurons)

SOM if TRUE runs SOM algorithm on extracted shape features, grouping the detected
objects

visualize visualizes the groups computed by SOM

Value

data.frame containing detailed information about every single object.

See Also

objectDetection(), resultAnalytics(), som

Examples

shapeFeatures(
beads,
alpha = 1,
sigma = 0,
SOM = TRUE,
visualize = TRUE

)

sizeFilter Size-based exclusion

Description

Takes the size of the objects in an image and discards objects based on a lower and an upper size
limit. (Input can be obtained by objectDetection function)

Usage

sizeFilter(centers, coordinates, lowerlimit = "auto", upperlimit = "auto")

Arguments

centers center coordinates of objects (value|mx|my|size data frame)

coordinates all coordinates of the objects (x|y|value data frame)

lowerlimit smallest accepted object size (numeric / ’auto’ / ’interactive’)

upperlimit highest accepted object size (numeric / ’auto’ / ’interactive’)

24 sizeFilter

Details

The sizeFilter function is designed to filter detected objects based on their size, either through
automated detection or user-defined limits. The automated detection of size limits uses the 1.5*IQR
method to identify and remove outliers. This approach is most effective when dealing with a large
number of objects, (typically more than 50), and when the sizes of the objects are relatively uniform.
For smaller samples or when the sizes of the objects vary significantly, the automated detection may
not be as accurate, and manual limit setting is recommended.

Value

list of 2 objects:

• Remaining centers after discarding according to size.

• Remaining coordinates after discarding according to size.

Examples

res_objectDetection <- objectDetection(
beads,
method = 'edge',
alpha = 1,
sigma = 0
)

res_sizeFilter <- sizeFilter(
centers = res_objectDetection$centers,
coordinates = res_objectDetection$coordinates,
lowerlimit = 50, upperlimit = 150
)

changePixelColor(
beads,
res_sizeFilter$coordinates,
color = "darkgreen",
visualize = TRUE
)

Index

∗ datasets
beads, 4
beads_large1, 5
beads_large2, 6
droplet_beads, 8
droplets, 7

adaptiveInterpolation, 2, 3, 10

beads, 4
beads_large1, 5
beads_large2, 6

cannyEdges, 9
changePixelColor, 6
colors, 7

droplet_beads, 8
droplets, 7

easyGParetoptim, 17
edgeDetection, 9, 10, 15

fillLineGaps, 3, 10

haralickCluster, 11

image_morphology, 3
image_read, 14
imager.combine, 3
imgPipe, 12
imgPipe(), 22
importImage, 3, 7, 9, 12, 13, 14, 16, 19
interactive_objectDetection, 14
interpolatePixels, 3, 15

load.image, 14, 22

makeCluster, 21

objectDetection, 10, 12, 14, 16, 16, 17, 19,
21–23

objectDetection(), 13, 19, 22, 23

proximityFilter, 13, 17, 18, 19, 21
proximityFilter(), 13, 19, 22

resultAnalytics, 19, 19
resultAnalytics(), 13, 22, 23

scanDir, 20
shapeFeatures, 22
sizeFilter, 12, 19, 21, 23, 24
sizeFilter(), 13, 19, 22
som, 23
SPE, 15

threshold, 10, 15

25

	adaptiveInterpolation
	beads
	beads_large1
	beads_large2
	changePixelColor
	droplets
	droplet_beads
	edgeDetection
	fillLineGaps
	haralickCluster
	imgPipe
	importImage
	interactive_objectDetection
	interpolatePixels
	objectDetection
	proximityFilter
	resultAnalytics
	scanDir
	shapeFeatures
	sizeFilter
	Index

