Package 'binomialtrend'

December 19, 2022

Title Calculates the Statistical Significance of a Trend in a Set of Measurements

Version 0.0.0.3

Description Detection of a statistically significant trend in the data provided by the user. This is based on the a signed test based on the binomial distribution. The package returns a trend test value, T, and also a p-value. A T value close to 1 indicates a rising trend, whereas a T value close to -1 indicates a decreasing trend. A T value close to 0 indicates no trend. There is also a command to visualize the trend. A test data set called gtsa_data is also available, which has global mean temperatures for January, April, July, and October for the years 1851 to 2022. Reference: Walpole, Myers, Ye. (2007, ISBN: 0-13-187711-9).

License GPL-3

Encoding UTF-8 RoxygenNote 7.2.3

Depends R (>= 2.10)

LazyData true

Imports pheatmap

NeedsCompilation no

Author Matthew Cserhati [aut, cre] (<https://orcid.org/0000-0002-3673-9152>)

Maintainer Matthew Cserhati <csmatyi@protonmail.com>

Repository CRAN

Date/Publication 2022-12-19 09:30:06 UTC

R topics documented:

X																				4	4
	trendmap																				
	binomialtre gsta data																				

Index

binomialtrend

Description

The package calculates whether there is a statistically significant trend in the date provided by the user. This is based on the a signed test based on the binomial distribution. The package returns a trend test value, T, and also a p-value. A T value close to 1 indicates a rising trend, whereas a T value close to -1 indicates a decreasing trend. A T value close to 0 indicates no trend. There is also a command to create a heatmap visualizing the trend.

Version 0.0.1. Author: Dr. Matthew Cserhati Email: csmatyi@protonmail.com December 14, 2022

Arguments

data a data frame with the measurement values

Value

The p-value and trend value of the data

References

Walpole, Myers, Myers, Ye. (2007) Probability & Statistics for Engineers and Scientists. Upper Saddle River, NJ, Pearson Prentice Hall.

Examples

```
meas <- c(1.1,4.5,7.8,5.9,10.2)
binomialtrend(meas)
binomialtrend(c(1,2,3,4,2,4,5,6,8,5,4,7,10,11))</pre>
```

gsta_data

Description

CRUTEM World Mean Temperature Data Set from 1851 to 2022

Usage

gsta_data

trendmap

Format

gsta_data:
A data set with 172 rows and 4 columns, for Jan, Apr, Jul and Oct from 1851-2022
Jan world mean temperature for January
Apr world mean temperature for April
Jul world mean temperature for July
Oct world mean temperature for October

Source

https://crudata.uea.ac.uk/cru/data/temperature/CRUTEM.5.0.1.0.stat4post.txt.gz

trendmap Calculates The Statistical Significance Of A Teend In A Set Of Measurements

Description

The package calculates whether there is a statistically significant trend in the date provided by the user. This is based on the a signed test based on the binomial distribution. The package returns a trend test value, T, and also a p-value. A T value close to 1 indicates a rising trend, whereas a T value close to -1 indicates a decreasing trend. A T value close to 0 indicates no trend. There is also a command to create a heatmap visualizing the trend.

Version 0.0.1. Author: Dr. Matthew Cserhati Email: csmatyi@protonmail.com December 14, 2022

Arguments

data

a data frame with the measurement values

Value

nil

References

Walpole, Myers, Myers, Ye. (2007) Probability & Statistics for Engineers and Scientists. Upper Saddle River, NJ, Pearson Prentice Hall.

Examples

meas <- c(1.1,4.5,7.8,5.9,10.2)
trendmap(meas)
trendmap(c(1,2,3,4,2,4,5,6,8,5,4,7,10,11))</pre>

Index

* datasets

gsta_data, 2

binomialtrend, 2

 $gsta_data, 2$

trendmap, 3