Package ‘bigsnpr’

November 26, 2024
Encoding UTF-8

Type Package
Title Analysis of Massive SNP Arrays

Version 1.12.18
Date 2024-11-26

Description Easy-to-use, efficient, flexible and scalable tools for analyzing
massive SNP arrays. Privé et al. (2018) <doi:10.1093/bioinformatics/bty185>.

License GPL-3

LazyData TRUE

Language en-US

ByteCompile TRUE

SystemRequirements A few functions from package 'bigsnpr' wrap
existing software such as 'PLINK'
<www.cog-genomics.org/plink2>. Functions are provided to
download these software. Note that these external software

might not work for some operating systems (e.g. 'PLINK' might
not work on Solaris).

Depends R (>=3.4), bigstatsr (>=1.5.11)

Imports bigassertr (>= 0.1.6), bigparallelr, bigsparser (>= 0.6),
bigreadr, bigutilsr (>= 0.3.3), data.table (>= 1.12.4), doRNG,
foreach, ggplot2, magrittr, Matrix (>= 1.3.0), methods, Rcpp,
runonce (>= 0.2.3), stats, vctrs

LinkingTo bigsparser, bigstatsr, Rcpp, ReppArmadillo (>= 0.9.600),
rmio, roptim (>= 0.1.6)

Suggests bindata, covr, dbplyr (>= 1.4), dplyr, gaston, glue, Hmisc,
microbenchmark, pcadapt (>= 4.1), quadprog, RhpcBLASctl,
rmutil, RSpectra, RSQLite, R.utils, spelling, testthat, tibble,
xgboost

RoxygenNote 7.3.2

URL https://privefl.github.io/bigsnpr/

https://doi.org/10.1093/bioinformatics/bty185
https://privefl.github.io/bigsnpr/

2 Contents

BugReports https://github.com/privefl/bigsnpr/issues
NeedsCompilation yes

Author Florian Privé [aut, cre],
Michael Blum [ths],
Hugues Aschard [ths],
Bjarni J6hann Vilhjdlmsson [ths]

Maintainer Florian Privé <florian.prive.21@gmail.com>
Repository CRAN
Date/Publication 2024-11-26 10:30:02 UTC

Contents
bed-class e 3
bed_clumping 4
bed_counts e 7
bed_cprodVec 8
bed_MAF e 9
bed_prodVec e e 10
bed_projectPCA 11
bed_projectSelfPCA 13
bed_randomSVD 14
bed_scaleBinom e 15
bed_tcrossprodSelf 16
bigSNP-class e 17
coef to_liab e 18
download_1000G e e 19
download_beagle 19
download_genetic_map 20
download_plink L. 21
LD.wiki34 e e e e e 22
same_ref L e 22
SCT . . s 23
seq_log . .o e e e e 25
SOP_anCestry_SUMMATLY ¢ ¢ vt v v e et i e e e e e e e e e e e 26
snp_asGeneticPos L 27
snp_attach L L e e 28
snp_attachExtdata 29
snp_autoSVD . . .o 30
snp_beagleImpute e e 33
] 1) o JK 1) 34
snp_fastlmpute 35
snp_fastlmputeSimple L. e 37
SNp_fSt . . . e 38
SIP_SC . v v o v e e e e e e e e e e e 39
snp_getSamplelnfos L 40

snp_lassosum?2 L 41

https://github.com/privefl/bigsnpr/issues

bed-class 3
snp_ldpred2_inf 43
Snp_ldsc . . .o e e e e 46
snp_ldsplit L 48
SNp_ld_SCOres e e e e 50
snp_MAF 52
snp_manhattan L. L e e e e e e e e e e 53
snp_match L e e e e 54
snp_MAX3 . e 56
snp_modifyBuild 57
snp_pcadapt L 58
snp_plinkIBDQC e e 60
snp_plinkKINGQC e 61
snp_plinkQC 63
snp_plinkRmSamples 64
snp_prodBGEN 65
snp_PRS . . e 67
SIP_QQ + « « v e e e e e e e e e e e e e e e e e e e 68
snp_readBed 69
snp_readBGEN 71
snp_readBGIL 72
SIP_SAVE .« v v o e e e e e e e e e e e e e e e e e e e 73
snp_scaleAlpha 74
snp_simuPheno 75
SNp_splito e e 76
snp_subset L e 77
snp_thr_correct e 78
snp_writeBed L e 79
sub_bed e e e 80

Index 82

bed-class Class bed

Description

A reference class for storing a pointer to a mapped version of a bed file.

Usage

bed(bedfile)

Arguments

bedfile

Path to file with extension ".bed" to read. You need the corresponding ".bim"
and ".fam" in the same directory.

Details

A bed object has many field:

bed_clumping

$address: address of the external pointer containing the underlying C++ object, to be used

internally as a XPtr<bed> in C++ code
$extptr: use $address instead

$bedfile: path to the bed file

$bimfile: path to the corresponding bim file
$famfile: path to the corresponding fam file
$prefix: path without extension

$nrow: number of samples in the bed file
$ncol: number of variants in the bed file
$map: data frame read from $bimfile

$fam: data frame read from $famfile
$.map: use $map instead

$.fam: use $faminstead

$light: get a lighter version of this object for parallel algorithms to not have to transfer e.g.

$.map.

Examples

bedfile <- system.file("extdata”, "example-missing.bed”, package = "bigsnpr")

(obj

.bed <- bed(bedfile))

bed_clumping LD clumping

Description

For a bigSNP:

snp_pruning(): LD pruning. Similar to

--indep-pairwise (size+1) 1 thr.r2" in

PLINK. This function is deprecated (see this article).

* snp_clumping() (and bed_clumping()): LD clumping. If you do not provide any statistic
to rank SNPs, it would use minor allele frequencies (MAFs), making clumping similar to

pruning.

* snp_indLRLDR(): Get SNP indices of long-range LD regions for the human genome.

https://www.cog-genomics.org/plink/1.9/ld
https://privefl.github.io/bigsnpr/articles/pruning-vs-clumping.html

bed_clumping

Usage

bed_clumping(

)

obj.bed,

ind.row = rows_along(obj.bed),
S = NULL,

thr.r2 = 0.2,

size = 100/thr.r2,

exclude = NULL,

ncores = 1

snp_clumping(

)

G,

infos.chr,

ind.row = rows_along(G),
S = NULL,

thr.r2 = 0.2,

size = 100/thr.r2,
infos.pos = NULL,
is.size.in.bp = NULL,
exclude = NULL,

ncores = 1

snp_pruning(

)

snp_indLRLDR(infos.chr, infos.pos, LD.regions

Arguments
obj.bed
bed(bedfile) to get this object.
ind.row
all rows are used.
Don’t use negative indices.
S

G,

infos.chr,

ind.row = rows_along(G),
size = 49,

is.size.in.bp = FALSE,
infos.pos = NULL,

thr.r2 = 0.2,
exclude = NULL,
nploidy = 2,
ncores = 1

= LD.wiki34)

Object of type bed, which is the mapping of some bed file. Use obj.bed <-

An optional vector of the row indices (individuals) that are used. If not specified,

A vector of column statistics which express the importance of each SNP (the
more important is the SNP, the greater should be the corresponding statistic).

thr.r2

size

exclude

ncores

G

infos.chr

infos.pos

is.size.in.bp

nploidy

LD.regions

Value

bed_clumping

For example, if S follows the standard normal distribution, and "important"
means significantly different from 0, you must use abs(S) instead.
If not specified, MAFs are computed and used.

Threshold over the squared correlation between two SNPs. Default is 0. 2.

For one SNP, window size around this SNP to compute correlations. Default
is 100 / thr.r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If not
providing infos.pos (NULL, the default), this is a window in number of SNPs,
otherwise it is a window in kb (genetic distance). I recommend that you provide
the positions if available.

Vector of SNP indices to exclude anyway. For example, can be used to exclude
long-range LD regions (see Price2008). Another use can be for thresholding
with respect to p-values associated with S.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.

Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical.pos.

Deprecated.

Number of trials, parameter of the binomial distribution. Default is 2, which
corresponds to diploidy, such as for the human genome.

A data. frame with columns "Chr", "Start" and "Stop". Default use LD.wiki34.

e snp_clumping() (and bed_clumping()): SNP indices that are kept.

::nb_cores().

e snp_indLRLDR(): SNP indices to be used as (part of) the "exclude’ parameter of snp_clumping().

References

Price AL, Weale ME, Patterson N, et al. Long-Range LD Can Confound Genome Scans in Admixed
Populations. Am J Hum Genet. 2008;83(1):132-135. doi:10.1016/j.ajhg.2008.06.005

Examples

test <- snp_attachExtdata()
G <- test$genotypes

clumping (prioritizing higher MAF)
ind.keep <- snp_clumping(G, infos.chr = testmapchromosome,

infos.pos = testmapphysical.pos,
thr.r2 = 0.1)

https://doi.org/10.1016/j.ajhg.2008.06.005

bed_counts 7

keep most of them -> not much LD in this simulated dataset
length(ind.keep) / ncol(G)

bed_counts Counts

Description

Counts the number of Os, 1s, 2s and NAs by variants in the bed file.

Usage

bed_counts(
obj.bed,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
byrow = FALSE,

ncores = 1
)
Arguments
obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
byrow Whether to count by individual rather than by variant? Default is FALSE (count
by variant).
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
Value

A matrix of with 4 rows and length(ind.col) columns.

Examples

bedfile <- system.file("extdata”, "example-missing.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

bed_counts(obj.bed, ind.col = 1:5)

bed_counts(obj.bed, ind.row = 1:5, byrow = TRUE)

8 bed_cprodVec

bed_cprodVec Cross-product with a vector

Description

Cross-product between a "bed" object and a vector.

Missing values are replaced by O (after centering), as if they had been imputed using parameter
center.

Usage

bed_cprodVec(
obj.bed,
y.row,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
center = rep(@, length(ind.col)),
scale = rep(1, length(ind.col)),

ncores = 1
)
Arguments
obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.
y.row A vector of same size as ind. row.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
center Vector of same length of ind. col to subtract from columns of X.
scale Vector of same length of ind. col to divide from columns of X.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
Value
XT .y,
Examples

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

bed MAF 9

y.row <- rep(1, nrow(obj.bed))
str(bed_cprodVec(obj.bed, y.row))

bed_MAF Allele frequencies

Description

Allele frequencies of a bed object.

Usage

bed_MAF (
obj.bed,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),

ncores = 1
)
Arguments
obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr::nb_cores().
Value

A data.frame with

¢ $ac: allele counts,

¢ $mac: minor allele counts,

$af: allele frequencies,

* $maf: minor allele frequencies,

* $N: numbers of non-missing values.

Examples

bedfile <- system.file("extdata”, "example-missing.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

bed_MAF (obj.bed, ind.col = 1:5)

10 bed_prodVec

bed_prodVvec Product with a vector

Description

Product between a "bed" object and a vector.

Missing values are replaced by 0 (after centering), as if they had been imputed using parameter
center.

Usage

bed_prodVec(
obj.bed,
y.col,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
center = rep(@, length(ind.col)),
scale = rep(1, length(ind.col)),

ncores = 1
)
Arguments
obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.
y.col A vector of same size as ind.col.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
center Vector of same length of ind. col to subtract from columns of X.
scale Vector of same length of ind. col to divide from columns of X.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
Value
X .
Examples

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

bed_projectPCA

y.col <- rep(1, ncol(obj.bed))
str(bed_prodVec(obj.bed, y.col))

11

bed_projectPCA

Projecting PCA

Description

Computing and projecting PCA of reference dataset to a target dataset.

Usage

bed_projectPCA(

obj.bed.ref,
obj.bed.new,
k =10,

ind.row.new
ind.row.ref
ind.col.ref

rows_along(obj.bed.new),
rows_along(obj.bed.ref),
cols_along(obj.bed.ref),

strand_flip = TRUE,
join_by_pos = TRUE,
match.min.prop = 0.5,
build.new = "hgl19"”,
build.ref = "hgl9"”,

liftOver = NULL,

L

verbose = TRUE,

ncores = 1

Arguments

obj.bed.ref

>

obj.bed.new

k
ind.row.new
ind.row.ref

ind.col.ref

strand_f1lip

join_by_pos

Object of type bed, which is the mapping of the bed file of the reference data.
Use obj.bed <- bed(bedfile) to get this object.

Object of type bed, which is the mapping of the bed file of the target data. Use
obj.bed <- bed(bedfile) to get this object.

Number of principal components to compute and project.
Rows to be used in the target data. Default uses them all.
Rows to be used in the reference data. Default uses them all.

Columns to be potentially used in the reference data. Default uses all the ones
in common with target data.

Whether to try to flip strand? (default is TRUE) If so, ambiguous alleles A/T and
C/G are removed.

Whether to join by chromosome and position (default), or instead by rsid.

12 bed_projectPCA

match.min.prop Minimum proportion of variants in the smallest data to be matched, otherwise
stops with an error. Default is 20%.

build.new Genome build of the target data. Default is hg19.
build.ref Genome build of the reference data. Default is hg19.
liftOver Path to liftOver executable. Binaries can be downloaded at https://hgdownload.

cse.ucsc.edu/admin/exe/mac0SX.x86_64/1iftOver for Mac and at https:
//hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/1iftOver for Linux.

Arguments passed on to bed_autoSVD

fun.scaling A function with parameters X (or obj.bed), ind.rowand ind.col,
and that returns a data.frame with $center and $scale for the columns cor-
responding to ind.col, to scale each of their elements such as followed:

X ; — center;
scalej

Default uses binomial scaling. You can also provide your own center and
scale by using bigstatsr::as_scaling_fun().

roll.size Radius of rolling windows to smooth log-p-values. Default is 50.

int.min.size Minimum number of consecutive outlier variants in order to be
reported as long-range LD region. Default is 20.

thr.r2 Threshold over the squared correlation between two variants. Default
is @.2. Use NA if you want to skip the clumping step.

alpha. tukey Default is @.1. The type-I error rate in outlier detection (that is
further corrected for multiple testing).

min.mac Minimum minor allele count (MAC) for variants to be included. De-
fault is 10. Can actually be higher because of min.maf.

min.maf Minimum minor allele frequency (MAF) for variants to be included.
Default is 0.02. Can actually be higher because of min.mac.

max.iter Maximum number of iterations of outlier detection. Default is 5.

size For one SNP, window size around this SNP to compute correlations. De-
fault is 100 / thr.r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If
not providing infos.pos (NULL, the default), this is a window in number of
SNPs, otherwise it is a window in kb (genetic distance). I recommend that
you provide the positions if available.

verbose Output some information on the iterations? Default is TRUE.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr::nb_cores().
Value

A list of 3 elements:

* $obj.svd.ref: big_SVD object computed from reference data.
* $simple_proj: simple projection of new data into space of reference PCA.

* $0ADP_proj: Online Augmentation, Decomposition, and Procrustes (OADP) projection of
new data into space of reference PCA.

https://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver

bed_projectSelfPCA 13

bed_projectSelfPCA Projecting PCA

Description

Projecting PCA using individuals from one dataset to other individuals from the same dataset.

Usage
bed_projectSelfPCA(
obj.svd,
obj.bed,
ind.row,
ind.col = attr(obj.svd, "subset"),
ncores = 1
)
snp_projectSelfPCA(
obj.svd,
G,
ind.row,
ind.col = attr(obj.svd, "subset"),
ncores = 1
)
Arguments
obj.svd List with v, d, center and scale. Typically the an object of type "big_SVD".
obj.bed Object of type bed, which is the mapping of the bed file of the data containing
both the individuals that were used to compute the PCA and the other individuals
to be projected.
ind.row Rows (individuals) to be projected.
ind.col Columns that were used for computing PCA. If bed_autoSVD was used, then
attr(obj.svd, "subset") is automatically used by default. Otherwise (e.g. if
bed_randomSVD was used), you have to pass ind. col.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
G The FBM.code256 that was used to compute obj. svd.
Value

A list of 3 elements:

* $obj.svd.ref: big_SVD object computed from reference data.
* $simple_proj: simple projection of new data into space of reference PCA.

* $0ADP_proj: Online Augmentation, Decomposition, and Procrustes (OADP) projection of
new data into space of reference PCA.

14 bed _randomSVD

bed_randomSVD Randomized partial SVD

Description

Partial SVD (or PCA) of a genotype matrix stored as a PLINK (.bed) file.#

Usage

bed_randomSVD(
obj.bed,
fun.scaling = bed_scaleBinom,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),

k =10,
tol = 1e-04,
verbose = FALSE,
ncores = 1
)
Arguments
obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.
fun.scaling A function with parameters X, ind. row and ind. col, and that returns a data.frame
with $center and $scale for the columns corresponding to ind.col, to scale
each of their elements such as followed:
X;,; — center;
scale;
Default doesn’t use any scaling. You can also provide your own center and
scale by using as_scaling_fun().
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
k Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute only a few singular vectors/values.
tol Precision parameter of svds. Default is 1e-4.
verbose Should some progress be printed? Default is FALSE.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

bed_scaleBinom 15

Value

A named list (an S3 class "big_SVD") of

d, the singular values,

u, the left singular vectors,

v, the right singular vectors,

niter, the number of the iteration of the algorithm,
nops, number of Matrix-Vector multiplications used,
center, the centering vector,

scale, the scaling vector.

Note that to obtain the Principal Components, you must use predict on the result. See examples.

Examples

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

str(bed_randomSVD(obj.bed))

bed_scaleBinom Binomial(2, p) scaling

Description

Binomial(2, p) scaling where p is estimated.

Usage

bed_scaleBinom(
obj.bed,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),

ncores = 1
)
Arguments

obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

ind.col An optional vector of the column indices (SNPs) that are used. If not specified,

all columns are used.
Don’t use negative indices.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

16 bed_tcrossprodSelf

Details

You will probably not use this function as is but as parameter fun.scaling of other functions (e.g.
bed_autoSVD and bed_randomSVD).

Value

A data frame with $center and $scale.

References

This scaling is widely used for SNP arrays. Patterson N, Price AL, Reich D (2006). Population
Structure and Eigenanalysis. PLoS Genet 2(12): €190. doi:10.1371/journal.pgen.0020190.

Examples

bedfile <- system.file("extdata”, "example-missing.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

str(bed_scaleBinom(obj.bed))

str(bed_randomSVD(obj.bed, bed_scaleBinom))

bed_tcrossprodSelf tcrossprod / GRM

Description

Compute GG from a bed object, with possible filtering and scaling of G. For example, this can be
used to compute GRMs.

Usage

bed_tcrossprodSelf(
obj.bed,
fun.scaling = bed_scaleBinom,
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
block.size = block_size(length(ind.row))

Arguments

obj.bed Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

https://doi.org/10.1371/journal.pgen.0020190

bigSNP-class 17

fun.scaling A function with parameters X (or obj.bed), ind.row and ind.col, and that
returns a data.frame with $center and $scale for the columns corresponding
to ind. col, to scale each of their elements such as followed:

X ; — center;
scale; '
Default uses binomial scaling. You can also provide your own center and
scale by using bigstatsr::as_scaling_fun().

ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

block.size Maximum number of columns read at once. Default uses block_size.

Value
A temporary FBM, with the following two attributes:

* anumeric vector center of column scaling,

* a numeric vector scale of column scaling.

Matrix parallelization

Large matrix computations are made block-wise and won’t be parallelized in order to not have to
reduce the size of these blocks. Instead, you can use the MKL or OpenBLAS in order to accelerate
these block matrix computations. You can control the number of cores used by these optimized
matrix libraries with bigparallelr::set_blas_ncores().

Examples

bedfile <- system.file("extdata"”, "example.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

K <- bed_tcrossprodSelf(obj.bed)
K[1:4, 1:6] / ncol(obj.bed)

bigSNP-class Class bigSNP

Description

An S3 class for representing information on massive SNP arrays.

https://forum.posit.co/t/intel-mkl-integration-to-r-on-windows/176071

18 coef_to_liab

Value

A named list with at least 3 slots:

genotypes A FBM.code256 which is a special Filebacked Big Matrix encoded with type raw (one
byte unsigned integer), representing genotype calls and possibly imputed allele dosages. Rows
are individuals and columns are SNPs.

fam A data.frame containing some information on the individuals (read from a ".fam" file).

map A data.frame giving some information on the variants (read from a ".bim" file).

See Also

snp_readBed

coef_to_liab Liability scale

Description

Coefficient to convert to the liability scale. E.g. h2_liab = coef * h2_obs.

Usage

coef_to_liab(K_pop, K_gwas = 0.5)

Arguments

K_pop Prevalence in the population.

K_gwas Prevalence in the GWAS. You should provide this if you used (n_case + n_control)
as sample size. If using the effective sample size 4 / (1 / n_case + 1 / n_control)
instead, you should keep the default value of K_gwas = 0.5 as the GWAS case-
control ascertainment is already accounted for in the effective sample size.

Value

Scaling coefficient to convert e.g. heritability to the liability scale.

Examples

h2 <- 0.2
h2 * coef_to_liab(0.02)

download_1000G 19

download_1000G Download 1000G

Description

Download 1000 genomes project (phase 3) data in PLINK bed/bim/fam format, including 2490
(mostly unrelated) individuals and ~1.7M SNPs in common with either HapMap3 or the UK Biobank.

Usage

download_1000G(dir, overwrite = FALSE, delete_zip = TRUE)

Arguments
dir The directory where to put the downloaded files.
overwrite Whether to overwrite files when downloading and unzipping? Default is FALSE.
delete_zip Whether to delete zip after decompressing the file in it? Default is TRUE.

Value

The path of the downloaded bed file.

download_beagle Download Beagle 4.1

Description

Download Beagle 4.1 from https://faculty.washington.edu/browning/beagle/beagle.html

Usage
download_beagle(dir = tempdir())

Arguments
dir The directory where to put the Beagle Java Archive. Default is a temporary
directory.
Value

The path of the downloaded Beagle Java Archive.

https://faculty.washington.edu/browning/beagle/beagle.html

20 download_genetic_map

download_genetic_map Download a genetic map

Description

This function uses linear interpolation, whereas snp_asGeneticPos() uses nearest neighbors.

Usage

download_genetic_map(
type = c("hg19_OMNI", "hgl19_hapmap”, "hg38_price"),
dir,
ncores = 1

)

snp_asGeneticPos2(infos.chr, infos.pos, genetic_map)

Arguments
type Which genetic map to download.
dir Directory where to download and decompress files.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr::nb_cores().
infos.chr Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.
infos.pos Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical.pos.
genetic_map A data frame with 3 columns: chr, pos, and pos_cM. You can get it using
download_genetic_map().
Details

The hg19 genetic maps are downloaded from https://github.com/joepickrell/1000-genomes-genetic-maps/
while the hg38 one is downloaded from https: //alkesgroup.broadinstitute.org/Eagle/downloads/tables/.
Value

A data frame with 3 columns: chr, pos, and pos_cM.

The new vector of genetic positions.

https://github.com/joepickrell/1000-genomes-genetic-maps/

download_plink 21

download_plink Download PLINK

Description

Download PLINK 1.9 from https://www.cog-genomics.org/plink2.

Download PLINK 2.0 from https://www.cog-genomics.org/plink/2.0/.

Usage
download_plink(dir = tempdir(), overwrite = FALSE, verbose = TRUE)

download_plink2(
dir = tempdir(),

AVX2 = TRUE,
ARM = FALSE,
AMD = FALSE,

overwrite = FALSE,
verbose = TRUE

)
Arguments
dir The directory where to put the PLINK executable. Default is a temporary direc-
tory.
overwrite Whether to overwrite file? Default is FALSE.
verbose Whether to output details of downloading. Default is TRUE.
AVX2 Whether to download the AVX2 version? This is only available for 64 bits
architectures. Default is TRUE.
ARM Whether to download an ARM version. Default is FALSE.
AMD Whether to download an AMD version. Default is FALSE.
Value

The path of the downloaded PLINK executable.

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink/2.0/

22 same_ref

LD.wiki34 Long-range LD regions

Description

34 long-range Linkage Disequilibrium (LD) regions for the human genome based on this wiki table.

Usage

LD.wiki34

Format
A data frame with 34 rows (regions) and 4 variables:

* Chr: region’s chromosome
e Start: starting position of the region (in bp)
* Stop: stopping position of the region (in bp)

* ID: some ID of the region.

same_ref Determine reference divergence

Description

Determine reference divergence while accounting for strand flips. This does not remove ambigu-
ous alleles.

Usage

same_ref(ref1, altl, ref2, alt2)

Arguments
refil The reference alleles of the first dataset.
alt1 The alternative alleles of the first dataset.
ref2 The reference alleles of the second dataset.
alt2 The alternative alleles of the second dataset.
Value

A logical vector whether the references alleles are the same. Missing values can result from missing
values in the inputs or from ambiguous matching (e.g. matching A/C and A/G).

https://genome.sph.umich.edu/wiki/Regions_of_high_linkage_disequilibrium_(LD)

SCT 23

See Also

snp_match()

Examples

same_ref (ref1 c("A", "C", "T", "G", NA),
alt1l c('c", "T", "C", "A", "A"),
ref2 = c("A", "C", "A", "A", "C"),
alt2 = c("C", "G", "G", "G", "A"))

SCT Stacked C+T (SCT)

Description

Polygenic Risk Scores for a grid of clumping and thresholding parameters.

Stacking over many Polygenic Risk Scores, corresponding to a grid of many different parameters
for clumping and thresholding.

Usage

snp_grid_clumping(
G,
infos.chr,
infos.pos,
1ps,
ind.row = rows_along(G),
grid.thr.r2 = c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95),
grid.base.size = c(50, 100, 200, 500),
infos.imp = rep(1, ncol(G)),
grid.thr.imp = 1,
groups = list(cols_along(G)),
exclude = NULL,
ncores = 1

)

snp_grid_PRS(
G,
all_keep,
betas,
1ps,
n_thr_lpS = 50,
grid.1lpS.thr = 0.9999 * seq_log(max(@.1, min(1pS, na.rm = TRUE)), max(1lpS, na.rm =
TRUE), n_thr_1pS),
ind.row = rows_along(G),
backingfile = tempfile(),
type = c("float”, "double"),

24 SCT

ncores = 1
)
snp_grid_stacking(
multi_PRS,
y.train,
alphas = c(1, 0.01, 1e-04),
ncores = 1,
)
Arguments
G A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.
infos.chr Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.
infos.pos Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical.pos.
1psS Numeric vector of -1og10(p-value) associated with betas.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
grid.thr.r2 Grid of thresholds over the squared correlation between two SNPs for clumping.

Defaultis c(@.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95).

grid.base.size Grid for base window sizes. Sizes are then computed as base.size / thr.r2
(in kb). Default is c(50, 100, 200, 500).

infos.imp Vector of imputation scores. Default is all 1 if you do not provide it.
grid.thr.imp Grid of thresholds over infos. imp (default is 1), but you should change it (e.g.
c(0.3, 0.6, 0.9, 0.95)) if providing infos. imp.

groups List of vectors of indices to define your own categories. This could be used
e.g. to derive C+T scores using two different GWAS summary statistics, or to
include other information such as functional annotations. Default just makes
one group with all variants.

exclude Vector of SNP indices to exclude anyway.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
all_keep Output of snp_grid_clumping() (indices passing clumping).

betas Numeric vector of weights (effect sizes from GWAS) associated with each vari-

ant (column of G). If alleles are reversed, make sure to multiply corresponding
effects by -1.

n_thr_1pS Length for default grid. 1pS. thr. Default is 50.

grid.1pS.thr Sequence of thresholds to apply on 1pS. Default is a grid (of length n_thr_1pS)
evenly spaced on a logarithmic scale, i.e. on a log-log scale for p-values.

seq_log 25

backingfile Prefix for backingfiles where to store scores of C+T. As we typically use a large
grid, this can result in a large matrix so that we store it on disk. Default uses a
temporary file.
type Type of backingfile values. Either "float” (the default) or "double”. Using
"float" requires half disk space.
multi_PRS Output of snp_grid_PRS().
y.train Vector of phenotypes. If there are two levels (binary 0/1), ituses bigstatsr: :big_spLogReg()

for stacking, otherwise bigstatsr: :big_spLinReg().
alphas Vector of values for grid-search. See bigstatsr::big_spLogReg(). Default
for this function is c(1, .01, 0.0001).

Other parameters to be passed to bigstatsr::big_splLogReg(). For example,
using covar.train, you can add covariates in the model with all C+T scores.
You can also use pf. covar if you do not want to penalize these covariates.

Value

snp_grid_PRS(): An FBM (matrix on disk) that stores the C+T scores for all parameters of the grid
(and for each chromosome separately). It also stores as attributes the input parameters all_keep,
betas, 1pS and grid. 1pS. thr that are also needed in snp_grid_stacking().

seq_log Sequence, evenly spaced on a logarithmic scale

Description

Sequence, evenly spaced on a logarithmic scale

Usage

seq_log(from, to, length.out)

Arguments
from, to the starting and (maximal) end values of the sequence. Of length 1 unless just
from is supplied as an unnamed argument.
length.out desired length of the sequence. A non-negative number, which for seq and
seq.int will be rounded up if fractional.
Value

A sequence of length length.out, evenly spaced on a logarithmic scale between from and to.

Examples

seq_log(1, 1000, 4)
seq_log(1, 100, 5)

26 snp_ancestry_summary

snp_ancestry_summary Estimation of ancestry proportions

Description

Estimation of ancestry proportions. Make sure to match summary statistics using snp_match()
(and to reverse frequencies correspondingly).

Usage

snp_ancestry_summary (
freq,
info_freq_ref,
projection,
correction,
min_cor = 0.4,
sum_to_one = TRUE

Arguments

freq Vector of frequencies from which to estimate ancestry proportions.

info_freq_ref A data frame (or matrix) with the set of frequencies to be used as reference (one
population per column).

projection Matrix of "loadings" for each variant/PC to be used to project allele frequencies.
correction Coefficients to correct for shrinkage when projecting.
min_cor Minimum correlation between observed and predicted frequencies. Default is

0.4. When correlation is lower, an error is returned. For individual genotypes,
this should be larger than 0.6. For allele frequencies, this should be larger than
0.9.

sum_to_one Whether to force ancestry coefficients to sum to 1? Default is TRUE (otherwise,
the sum can be lower than 1).

Value

Vector of coefficients representing the ancestry proportions. Also (as attributes) cor_each, the cor-
relation between input frequencies and each reference frequencies, and cor_pred, the correlation
between input and predicted frequencies.

Examples

Not run:
GWAS summary statistics for Epilepsy (supposedly in EUR+EAS+AFR)

gz <- runonce: :download_file(
"http://www.epigad.org/gwas_ilae2018_16loci/all_epilepsy_METAL.gz",

snp_asGeneticPos 27

dir = "tmp-data")
readLines(gz, n = 3)

library(dplyr)
sumstats <- bigreadr::fread2(
gz, select = c("CHR", "BP", "Allele2", "Allelel”, "Freql"),
col.names = c("chr”, "pos”, "a@", "al", "freq")
) %%
mutate_at(3:4, toupper)
It is a good idea to filter for similar per-variant N (when available..)

all_freq <- bigreadr::fread2(
runonce: :download_file("https://figshare.com/ndownloader/files/31620968",
dir = "tmp-data”, fname = "ref_freqgs.csv.gz"))
projection <- bigreadr::fread2(
runonce: :download_file("https://figshare.com/ndownloader/files/31620953",
dir = "tmp-data”, fname = "projection.csv.gz"))

matched <- snp_match(
mutate(sumstats, chr = as.integer(chr), beta = 1),
all_freq[1:5],
return_flip_and_rev = TRUE
) %%
mutate(freq = ifelse("_REV_", 1 - freq, freq))
res <- snp_ancestry_summary(
freq = matched$freq,
info_freq_ref = all_freqlmatched$> _NUM_ID_~, -(1:5)1,
projection = projection[matched$>_NUM_ID_", -(1:5)1,
correction = ¢(1, 1, 1, 1.008, 1.021, 1.034, 1.052, 1.074, 1.099,
1.123, 1.15, 1.195, 1.256, 1.321, 1.382, 1.443)
)

Some ancestry groups are very close to each other, and should be merged

group <- colnames(all_freq)[-(1:5)]

group[group %in% c("Scandinavia”, "United Kingdom”, "Ireland”)] <- "Europe (North West)"
group[group %in% c("Europe (South East)”, "Europe (North East)")] <- "Europe (East)”
tapply(res, factor(group, unique(group)), sum)

End(Not run)

snp_asGeneticPos Interpolate to genetic positions

Description

Use genetic maps available at https://github.com/joepickrell/1000-genomes-genetic-maps/
to interpolate physical positions (in bp) to genetic positions (in cM).

https://github.com/joepickrell/1000-genomes-genetic-maps/

28

Usage

snp_asGen
infos.c
infos.p
dir = t
ncores
rsid =
type =

Arguments

infos.chr

infos.pos

dir

ncores

rsid

type

Value

snp_attach

eticPos(

hr,

0s,

empdir(),

=1,

NULL,

c("OMNI", "hapmap")

Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical. pos.

Directory where to download and decompress files. Default is tempdir(). Di-
rectly use uncompressed files there if already present. You canuseR.utils::gunzip()
to uncompress local files.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

If providing rsIDs, the matching is performed using those (instead of positions)
and variants not matched are interpolated using spline interpolation of variants
that have been matched.

Whether to use the genetic maps interpolated from "OMNI" (the default), or
from "hapmap".

The new vector of genetic positions.

snp_attach

Attach a "bigSNP" from backing files

Description

Load a bigSNP from backing files into R.

Usage

snp_attach(rdsfile)

Arguments

rdsfile

The path of the ".rds" which stores the bigSNP object.

snp_attachExtdata 29

Details

This is often just a call to readRDS. But it also checks if you have moved the two (".bk" and ".rds")
backing files to another directory.

Value

The bigSNP object.

Examples

(bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr"))

Reading the bedfile and storing the data in temporary directory
rds <- snp_readBed(bedfile, backingfile = tempfile())

Loading the data from backing files
test <- snp_attach(rds)

str(test)
dim(G <- test$genotypes)
G[1:8, 1:8]
snp_attachExtdata Attach a "bigSNP" for examples and tests
Description

Attach a "bigSNP" for examples and tests

Usage

snp_attachExtdata(bedfile = c("example.bed”, "example-missing.bed"))

Arguments
bedfile Name of one example bed file. Either
e "example.bed"” (the default),
* "example-missing.bed".
Value

The example "bigSNP", filebacked in the "/tmp/" directory.

30 snp_autoSVD
snp_autoSVD Truncated SVD while limiting LD

Description
Fast truncated SVD with initial pruning and that iteratively removes long-range LD regions. Some
variants are removing due to the initial clumping, then more and more variants are removed at each
iteration. You can access the indices of the remaining variants with attr(*, "subset"”). If some
of the variants removed are contiguous, the regions are reported in attr(*, "lrldr").

Usage

snp_autoSVD(

)

G,

infos.chr,

infos.pos = NULL,
ind.row = rows_along(G),
ind.col = cols_along(G),
fun.scaling = snp_scaleBinom(),
thr.r2 = 0.2,

size = 100/thr.r2,

k =10,

roll.size = 50,
int.min.size = 20,
alpha.tukey = 0.05,
min.mac = 10,

min.maf = 0.02,

max.iter = 5,
is.size.in.bp = NULL,
ncores = 1,

verbose = TRUE

bed_autoSVD(

obj.bed,

ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
fun.scaling = bed_scaleBinom,
thr.r2 = 0.2,

size = 100/thr.r2,

k =10,

roll.size = 50,

int.min.size = 20,

alpha.tukey = 0.05,

min.mac = 10,

min.maf = 0.02,

max.iter = 5,

snp_autoSVD

ncores = 1,

31

verbose = TRUE

Arguments

G

infos.chr

infos.pos

ind.row

ind.col

fun.scaling

thr.r2

size

roll.size

int.min.size

alpha. tukey

min.mac

A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.

Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical. pos.

An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

A function with parameters X (or obj.bed), ind.row and ind.col, and that
returns a data.frame with $center and $scale for the columns corresponding
to ind. col, to scale each of their elements such as followed:

X ; — center;
scale; ’

Default uses binomial scaling. You can also provide your own center and
scale by using bigstatsr::as_scaling_fun().

Threshold over the squared correlation between two variants. Default is 0. 2.
Use NA if you want to skip the clumping step.

For one SNP, window size around this SNP to compute correlations. Default
is 100 / thr.r2 for clumping (0.2 -> 500; 0.1 -> 1000; 0.5 -> 200). If not
providing infos.pos (NULL, the default), this is a window in number of SNPs,
otherwise it is a window in kb (genetic distance). I recommend that you provide
the positions if available.

Number of singular vectors/values to compute. Default is 10. This algorithm
should be used to compute a few singular vectors/values.

Radius of rolling windows to smooth log-p-values. Default is 50.

Minimum number of consecutive outlier variants in order to be reported as long-
range LD region. Default is 20.

Defaultis @. 1. The type-I error rate in outlier detection (that is further corrected
for multiple testing).

Minimum minor allele count (MAC) for variants to be included. Default is 10.
Can actually be higher because of min.maf.

32

min.maf

max.iter
is.size.in.bp
ncores
verbose

obj.bed

Details

snp_autoSVD

Minimum minor allele frequency (MAF) for variants to be included. Default is
0.02. Can actually be higher because of min.mac.

Maximum number of iterations of outlier detection. Default is 5.

Deprecated.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr
Output some information on the iterations? Default is TRUE.

Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

If you don’t have any information about variants, you can try using

e infos.chr =
e size =ncol(

e roll.size=

Value

rep(1, ncol(G)),
G) (if variants are not sorted),

0 (if variants are not sorted).

A named list (an S3 class "big_SVD") of

* d, the singular values,

* u, the left singular vectors,

* v, the right singular vectors,

* niter, the number of the iteration of the algorithm,

* nops, number of Matrix-Vector multiplications used,

* center, the centering vector,

* scale, the scaling vector.

Note that to obtain

Examples

ex <- snp_attachE
G <- ex$genotypes

obj.svd <- snp_au

str(obj.svd)

the Principal Components, you must use predict on the result. See examples.

xtdata()

toSVD(G,
infos.chr = exmapchromosome,
infos.pos = exmapphysical.position)

::nb_cores().

snp_beagleImpute

33

snp_beagleImpute

Imputation

Description

Imputation using Beagle version 4.

Usage

snp_beagleImpute(

beagle.path,
plink.path,
bedfile.in,
bedfile.out =

NULL,

memory.max = 3,

ncores = 1,
extra.options
plink.options

nn

nn

verbose = TRUE

Arguments

beagle.path
plink.path
bedfile.in
bedfile.out

memory.max

ncores

extra.options

plink.options

verbose

Details

Path to the executable of Beagle v4+.
Path to the executable of PLINK 1.9.
Path to the input bedfile.

Path to the output bedfile. Default is created by appending " _impute” to prefix
(bedfile.in without extension).

Max memory (in GB) to be used. It is internally rounded to be an integer. De-
fault is 3.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

Other options to be passed to Beagle as a string. More options can be found at
Beagle’s website.

Other options to be passed to PLINK as a string. More options can be found at
https://www.cog-genomics.org/plink2/filter.

Whether to show PLINK log? Default is TRUE.

Downloads and more information can be found at the following websites

* PLINK,
* Beagle.

.in

::nb_cores().

https://www.cog-genomics.org/plink2/filter
https://www.cog-genomics.org/plink2
https://faculty.washington.edu/browning/beagle/beagle.html

34 snp_cor

Value

The path of the new bedfile.

References

Browning, Brian L., and Sharon R. Browning. "Genotype imputation with millions of reference
samples." The American Journal of Human Genetics 98.1 (2016): 116-126.

See Also

download_plink download_beagle

snp_cor Correlation matrix

Description

Get significant (Pearson) correlations between nearby SNPs of the same chromosome (p-values are
computed using a two-sided t-test).

Usage

snp_cor(
Gna,
ind.row = rows_along(Gna),
ind.col = cols_along(Gna),

size = 500,
alpha = 1,
thr_r2 = 0,
fill.diag = TRUE,
infos.pos = NULL,
ncores = 1

)

bed_cor(
obj.bed,

ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
size = 500,

alpha = 1,
thr_r2 = @
fill.diag
infos.pos
ncores = 1

TRUE,
NULL,

snp_fastImpute

Arguments

Gna

ind.row

ind.col

size

alpha
thr_r2
fill.diag

infos.pos

ncores
obj.bed

Value

35

A FBM.code256 (typically <bigSNP>$genotypes).
You can have missing values in these data.

An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

For one SNP, window size around this SNP to compute correlations. Default is
500. If not providing infos. pos (NULL, the default), this is a window in number
of SNPs, otherwise it is a window in kb (genetic distance).

Type-I error for testing correlations. Default is 1 (no threshold is applied).
Threshold to apply on squared correlations. Default is 0.
Whether to fill the diagonal with 1s (the default) or to keep it as Os.

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.

Typically <bigSNP>mapphysical.pos.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

The (Pearson) correlation matrix. This is a sparse symmetric matrix.

Examples

test <- snp_attachExtdata()
G <- test$genotypes

corr <- snp_cor(G, ind.col = 1:1000)

corr[1:10, 1:10]

Sparsity

length(corr@x) / length(corr)

snp_fastImpute

Fast imputation

Description

Fast imputation algorithm based on local XGBoost models.

::nb_cores().

36 snp_fastImpute

Usage

snp_fastImpute(
Gna,
infos.chr,
alpha = 1e-04,
size = 200,
p.train = 0.8,
n.cor = nrow(Gna),

seed = NA,
ncores = 1
)
Arguments
Gna A FBM.code256 (typically <bigSNP>$genotypes).
You can have missing values in these data.
infos.chr Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.
alpha Type-I error for testing correlations. Default is 1e-4.
size Number of neighbor SNPs to be possibly included in the model imputing this
particular SNP. Default is 200.
p.train Proportion of non missing genotypes that are used for training the imputation
model while the rest is used to assess the accuracy of this imputation model.
Defaultis 0. 8.
n.cor Number of rows that are used to estimate correlations. Default uses them all.
seed An integer, for reproducibility. Default doesn’t use seeds.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
Value
An FBM with

* the proportion of missing values by SNP (first row),

* the estimated proportion of imputation errors by SNP (second row).

See Also

snp_fastImputeSimple()

Examples

Not run:

fake <- snp_attachExtdata(”example-missing.bed")
G <- fake$genotypes

CHR <- fakemapchromosome

infos <- snp_fastImpute(G, CHR)

snp_fastImputeSimple

infos[, 1:5]

Still missing values

big_counts(G, ind.col = 1:10)

You need to change the code of G

To make this permanent, you need to save (modify) the file on disk
fake$genotypes$code256 <- CODE_IMPUTE_PRED

fake <- snp_save(fake)

big_counts(fake$genotypes, ind.col = 1:10)

Plot for post-checking

Here there is no SNP with more than 1% error (estimated)
pvals <- c(0.01, 0.005, 0.002, 0.001); colvals <- 2:5

df <- data.frame(pNA = infos[1, 1, pError = infos[2, 1)

base R

plot(subset(df, pNA > 0.001), pch = 20)

idc <- lapply(seg_along(pvals), function(i) {

curve(pvals[i] / x, from = @, lwd = 2,

col = colvals[i], add = TRUE)

»

legend("topright”, legend = pvals, title = "p(NA & Error)”,
col = colvals, 1ty =1, lwd = 2)

ggplot2
library(ggplot2)
Reduce(function(p, i) {
p + stat_function(fun = function(x) pvals[i] / x, color = colvals[i])
}, x = seq_along(pvals), init = ggplot(df, aes(pNA, pError))) +
geom_point() +
coord_cartesian(ylim = range(df$pError, na.rm = TRUE)) +
theme_bigstatsr()

End(Not run)

37

snp_fastImputeSimple Fast imputation

Description

Fast imputation via mode, mean, sampling according to allele frequencies, or O.

Usage
snp_fastImputeSimple(
Gna,
method = c("mode”, "mean@"”, "mean2"”, "random"),
ncores = 1

38 snp_fst

Arguments
Gna A FBM.code256 (typically <bigSNP>$genotypes).
You can have missing values in these data.
method Either "random” (sampling according to allele frequencies), "mean@” (rounded
mean), "mean2” (rounded mean to 2 decimal places), "mode” (most frequent
call).
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
Value

A new FBM. code256 object (same file, but different code).

See Also

snp_fastImpute()

Examples

bigsnp <- snp_attachExtdata(”example-missing.bed")

G <- bigsnp$genotypes

G[, 2] # some missing values

G2 <- snp_fastImputeSimple(G)

G2[, 2] # no missing values anymore

G[, 2] # imputed, but still returning missing values

G$copy(code = CODE_IMPUTE_PRED)[, 2] # need to decode imputed values

G$copy(code = c(0, 1, 2, rep(@, 253)))[, 21 # "imputation” by @

snp_fst Fixation index (Fst)

Description

Fixation index (Fst), either per variant, or genome-wide

Usage

snp_fst(list_df_af, min_maf = @, overall = FALSE)

Arguments
list_df_af List of data frames with $af (allele frequency per variant) and $N (sample size
per variant). Typically, the outputs of bed_MAF (). Each new data frame of the
list should correspond to a different population.
min_maf Minimum MAF threshold (for the average of populations) to be included in the

final results. Default is @ (remove monomorphic variants).

overall Whether to compute Fst genome-wide (TRUE) or per variant (FALSE, the default).

snp_gc 39

Value

If overall, then one value, otherwise a value for each variant with missing values for the variants
not passing min_maf. This should be equivalent to using *--fst --within’ in PLINK.

References

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population
structure. Evolution, 1358-1370.

Examples

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
obj.bed <- bed(bedfile)

pop <- rep(1:3, c(143, 167, 207))
ind_pop <- split(seqg_along(pop), pop)
list_df_af <- lapply(ind_pop, function(ind) bed_MAF(obj.bed, ind.row = ind))

snp_fst(list_df_af)

snp_fst(list_df_af[c(1, 2)], overall = TRUE)
snp_fst(list_df_af[c(1, 3)]1, overall = TRUE)
snp_fst(list_df_af[c(3, 2)], overall = TRUE)

snp_gc Genomic Control

Description

Genomic Control

Usage

snp_gc(gwas)

Arguments
gwas A mhtest object with the p-values associated with each SNP. Typically, the out-
put of bigstatsr::big_univLinReg, bigstatsr::big_univLogReg or snp_pcadapt.
Value
A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.
References

Devlin, B., & Roeder, K. (1999). Genomic control for association studies. Biometrics, 55(4),
997-1004.

https://r4ds.had.co.nz/data-visualisation.html

40

Examples

set.seed(9)

test <- snp_attachExtdata()

G <- test$genotypes
y <= rnorm(nrow(G))

gwas <- big_univLinReg(G,

snp_qq(gwas)

gwas_gc <- snp_gc(gwas) # this modifies ~attr(gwas_gc, "transfo")"

snp_qq(gwas_gc)

The next plot should be

snp_manhattan(gwas_gc,
infos.chr =
infos.pos =

ggplot2::geom_hline(yintercept = -logl@(5e-8), linetype = 2, color

p <- snp_qq(gwas_gc) +

y)

prettier with a real dataset

testmapchromosome,
testmapphysical.pos) +

ggplot2::aes(text = asPlotlyText(test$map)) +
ggplot2::labs(subtitle = NULL, x = "Expected -logl@(p)"”, y = "Observed -loglo(p)")
Not run: plotly::ggplotly(p, tooltip = "text")

snp_getSamplelnfos

= "red"”)

snp_getSampleInfos

Get sample information

Description

Get information of individuals by matching from an external file.

Usage
snp_getSampleInfos(
X’
df.or.files,

col.family.ID = 1,
col.sample.ID = 2,

col.infos = -c(1, 2),
pair.sep = "-_-",
)
Arguments
X A bigSNP.
df.or.files Either

e A data.frame,

snp_lassosum2

col.family.ID

col.sample.ID

col.infos
pair.sep
Value

41

* A character vector of file names where to find at the information you want.
You should have one column for family IDs and one for sample IDs.

Index of the column containing the family IDs to match with those of the study.
Default is the first one.

Index of the column containing the sample IDs to match with those of the study.
Default is the second one.

Indices of the column containing the information you want. Default is all but
the first and the second columns.

Separator used for concatenation of family and sample IDs to make unique IDs

n

for matching between the two datasets. Default is "-_-".

Any additional parameter to pass to bigreadr: : fread2(). Particularly, option
header = FALSE is sometimes needed.

The requested information as a data. frame.

See Also

list.files

Examples

test <- snp_attachExtdata()
table(testfamfamily.ID)

Get populations clusters from external files

files <- system.file("extdata”, paste@("cluster”, 1:3), package = "bigsnpr")
bigreadr::fread2(files[1])

bigreadr::fread2(files[1], header = FALSE) # need header option here

infos <- snp_getSampleInfos(test, files, header = FALSE)

table(infos[[1]1)

snp_lassosum2

lassosum?2

Description

lassosum?2

42 snp_lassosum2

Usage

snp_lassosum?2(
corr,
df_beta,
delta = c(0.001, 0.01, 0.1, 1),
nlambda = 30,
lambda.min.ratio = 0.01,
dfmax = 2e+05,
maxiter = 1000,

tol = 1e-05,
ind.corr = cols_along(corr),
ncores = 1
)
Arguments
corr Sparse correlation matrix as an SFBM. If corr is a dsCMatrix or a dgCMatrix,
you can use as_SFBM(corr).
df_beta A data frame with 3 columns:
* $beta: effect size estimates
* $beta_se: standard errors of effect size estimates
* $n_eff: either GWAS sample size(s) when estimating beta for a contin-
uous trait, or in the case of a binary trait, this is 4 / (1 / n_control +1/
n_case); in the case of a meta-analysis, you should sum the effective sam-
ple sizes of each study instead of using the total numbers of cases and con-
trols, see doi:10.1016/j.biopsych.2022.05.029; when using a mixed model,
the effective sample size needs to be adjusted as well, see doi:10.1016/
j-xhgg.2022.100136.
delta Vector of shrinkage parameters to try (L2-regularization). Default is c(0.001,
0.01, 0.1, 1).
nlambda Number of different lambdas to try (L1-regularization). Default is 30.

lambda.min.ratio
Ratio between last and first lambdas to try. Default is 0.01.

dfmax Maximum number of non-zero effects in the model. Default is 200e3.

maxiter Maximum number of iterations before convergence. Default is 1000.

tol Tolerance parameter for assessing convergence. Default is 1e-5.

ind.corr Indices to "subset" corr, as if this was run with corr[ind.corr, ind.corr]

instead. No subsetting by default.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

Value

A matrix of effect sizes, one vector (column) for each row in attr(<res>, "grid_param"). Miss-
ing values are returned when strong divergence is detected.

https://doi.org/10.1016/j.biopsych.2022.05.029
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1016/j.xhgg.2022.100136

snp_Idpred2_inf 43

snp_ldpred2_inf LDpred2

Description

LDpred2. Tutorial at https://privefl.github.io/bigsnpr/articles/LDpred2.html

Usage

snp_ldpred2_inf(corr, df_beta, h2)

snp_ldpred2_grid(
corr,
df_beta,
grid_param,
burn_in = 50,
num_iter = 100,
ncores = 1,
return_sampling_betas = FALSE,
ind.corr = cols_along(corr)

)

snp_ldpred2_auto(
corr,
df_beta,
h2_init,
vec_p_init = 0.1,
burn_in = 500,
num_iter = 200,
sparse = FALSE,
verbose = FALSE,
report_step = num_iter + 1L,
allow_jump_sign = TRUE,
shrink_corr = 1,
use_MLE = TRUE,
p_bounds = c(1e-05, 1),
alpha_bounds = c(-1.5, 0.5),
ind.corr = cols_along(corr),
ncores = 1

Arguments

corr Sparse correlation matrix as an SFBM. If corr is a dsCMatrix or a dgCMatrix,
you can use as_SFBM(corr).

df_beta A data frame with 3 columns:

https://privefl.github.io/bigsnpr/articles/LDpred2.html

44 snp_Idpred2_inf

* $beta: effect size estimates
* $beta_se: standard errors of effect size estimates
* $n_eff: either GWAS sample size(s) when estimating beta for a contin-
uous trait, or in the case of a binary trait, this is 4 / (1 / n_control +1/
n_case); in the case of a meta-analysis, you should sum the effective sam-
ple sizes of each study instead of using the total numbers of cases and con-
trols, see doi:10.1016/j.biopsych.2022.05.029; when using a mixed model,
the effective sample size needs to be adjusted as well, see doi:10.1016/
j-xhgg.2022.100136.
h2 Heritability estimate.
grid_param A data frame with 3 columns as a grid of hyper-parameters:
* $p: proportion of causal variants
* $h2: heritability (captured by the variants used)
* $sparse: boolean, whether a sparse model is sought They can be run in
parallel by changing ncores.

burn_in Number of burn-in iterations.
num_iter Number of iterations after burn-in.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr:

return_sampling_betas
Whether to return all sampling betas (after burn-in)? This is useful for as-
sessing the uncertainty of the PRS at the individual level (see doi:10.1101/
2020.11.30.403188). Default is FALSE (only returns the averaged final vectors
of betas). If TRUE, only one set of parameters is allowed.

ind.corr Indices to "subset" corr, as if this was run with corr[ind.corr, ind.corr]
instead. No subsetting by default.

h2_init Heritability estimate for initialization.

vec_p_init Vector of initial values for p. Defaultis 0. 1.

sparse In LDpred2-auto, whether to also report a sparse solution by running LDpred?2-

grid with the estimates of p and h2 from LDpred2-auto, and sparsity enabled.
Default is FALSE.

verbose Whether to print "p // h2" estimates at each iteration. Disabled when parallelism
is used.
report_step Step to report sampling betas (after burn-in and before unscaling). Nothing is

reported by default. If using num_iter = 200 and report_step = 20, then 10
vectors of sampling betas are reported (as a sparse matrix with 10 columns).
allow_jump_sign
Whether to allow for effects sizes to change sign in consecutive iterations?
Default is TRUE (normal sampling). You can use FALSE to force effects to go
through O first before changing sign. Setting this parameter to FALSE could be
useful to prevent instability (oscillation and ultimately divergence) of the Gibbs
sampler. This would also be useful for accelerating convergence of chains with
a large initial value for p.
shrink_corr Shrinkage multiplicative coefficient to apply to off-diagonal elements of the cor-
relation matrix. Default is 1 (unchanged). You can use e.g. 0. 95 to add a bit of
regularization.

:nb_cores().

https://doi.org/10.1016/j.biopsych.2022.05.029
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1101/2020.11.30.403188
https://doi.org/10.1101/2020.11.30.403188

snp_Idpred2_inf 45

use_MLE Whether to use maximum likelihood estimation (MLE) to estimate alpha and

the variance component (since v1.11.4), or assume that alpha is -1 and estimate
the variance of (scaled) effects as h2/(m*p), as it was done in earlier versions of
LDpred2-auto (e.g. in v1.10.8). Default is TRUE, which should provide a better
model fit, but might also be less robust.

p_bounds Boundaries for the estimates of p (the polygenicity). Default is c(1e-5, 1).

You can use the same value twice to fix p.

alpha_bounds Boundaries for the estimates of «. Default is c(-1.5, 0.5). You can use the

Details

same value twice to fix a.

For reproducibility, set.seed() can be used to ensure that two runs of LDpred2 give the exact
same results (since v1.10).

Value

snp_ldpred2_inf: A vector of effects, assuming an infinitesimal model.

snp_ldpred2_grid: A matrix of effect sizes, one vector (column) for each row of grid_param.
Missing values are returned when strong divergence is detected. If using return_sampling_betas,
each column corresponds to one iteration instead (after burn-in).

snp_ldpred2_auto: A list (over vec_p_init) of lists with

$beta_est: vector of effect sizes (on the allele scale); note that missing values are returned
when strong divergence is detected

$beta_est_sparse (only when sparse = TRUE): sparse vector of effect sizes
$postp_est: vector of posterior probabilities of being causal

$corr_est, the "imputed" correlations between variants and phenotypes, which can be used
for post-QCing variants by comparing those towith(df_beta, beta / sqrt(n_eff * beta_se”2
+ beta*2))

$sample_beta: sparse matrix of sampling betas (see parameter report_step), not on the
allele scale, for which you need to multiply by with(df_beta, sqrt(n_eff x beta_se*2 +
beta”2))

$path_p_est: full path of p estimates (including burn-in); useful to check convergence of the
iterative algorithm

$path_h2_est: full path of h2 estimates (including burn-in); useful to check convergence of
the iterative algorithm

$path_alpha_est: full path of alpha estimates (including burn-in); useful to check conver-
gence of the iterative algorithm

$h2_est: estimate of the (SNP) heritability (also see coef_to_liab)
$p_est: estimate of p, the proportion of causal variants

$alpha_est: estimate of alpha, the parameter controlling the relationship between allele fre-
quencies and expected effect sizes

$h2_init and $p_init: input parameters, for convenience

46

snp_Idsc

snp_ldsc LD score regression

Description

LD score regression

Usage

snp_ldsc(

)

1d_score,
ld_size,

chi2,
sample_size,
blocks = 200,
intercept = NULL,
chi2_thr1 = 30,
chi2_thr2 = Inf,
ncores = 1

snp_ldsc2(

chi2_thr1 = 30,
chi2_thr2 = Inf
)
Arguments
1d_score Vector of LD scores.
1d_size Number of variants used to compute 1d_score.
chi2 Vector of chi-squared statistics.

sample_size

blocks

intercept

corr,
df_beta,

blocks = NULL,

intercept = 1,

ncores = 1,

ind.beta = cols_along(corr),

or just a single value.

Sample size of GWAS corresponding to chi-squared statistics. Possibly a vector,

Either a single number specifying the number of blocks, or a vector of integers

specifying the block number of each chi2 value. Default is 200 for snp_ldsc(),
dividing into 200 blocks of approximately equal size. NULL can also be used to

skip estimating standard errors, which is the default for snp_ldsc2().
1). Default is NULL in

You can constrain the intercept to some value (e.g.

snp_ldsc() (the intercept is estimated) and is 1 in snp_ldsc2() (the intercept

is fixed to 1). This is equivalent to parameter --intercept-h2.

snp_Idsc

chi2_thri

chi2_thr2
ncores
corr

df__beta

ind.beta

Value

47

Threshold on chi2 in step 1. Default is 30. This is equivalent to parameter
--two-step.

Threshold on chi2 in step 2. Default is Inf (none).

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr
Sparse correlation matrix. Can also be an SFBM.

A data frame with 3 columns:

¢ $beta: effect size estimates
e $beta_se: standard errors of effect size estimates

* $n_eff: either GWAS sample size(s) when estimating beta for a contin-
uous trait, or in the case of a binary trait, this is 4 / (1 / n_control +1/
n_case); in the case of a meta-analysis, you should sum the effective sam-
ple sizes of each study instead of using the total numbers of cases and con-
trols, see doi:10.1016/j.biopsych.2022.05.029; when using a mixed model,
the effective sample size needs to be adjusted as well, see doi:10.1016/
j-xhgg.2022.100136.

Indices in corr corresponding to df _beta. Default is all.

Vector of 4 values (or only the first 2 if blocks = NULL):

e [["int"]]: LDSC regression intercept,

e [["int_se"]1]: SE of this intercept,
* [["h2"]1]: LDSC regression estimate of (SNP) heritability (also see coef_to_liab),
* [["h2_se"]1]: SE of this heritability estimate.

Examples

bigsnp <- snp_attachExtdata()

G <- bigsnp$genotypes

y <- bigsnp$fams$affection - 1

corr <- snp_cor(G, ind.col = 1:1000)

gwas <- big_univLogReg(G, y, ind.col = 1:1000)
df_beta <- data.frame(beta = gwas$estim, beta_se = gwas$std.err,

neff =4/ Q1 / sum(y ==0) + 1 / sum(y == 1)))

snp_ldsc2(corr, df_beta)
snp_ldsc2(corr, df_beta, blocks = 20, intercept = NULL)

::nb_cores().

https://doi.org/10.1016/j.biopsych.2022.05.029
https://doi.org/10.1016/j.xhgg.2022.100136
https://doi.org/10.1016/j.xhgg.2022.100136

48

snp_Idsplit

snp_ldsplit

Independent LD blocks

Description

Split a correlation matrix in blocks as independent as possible. This finds the splitting in blocks
that minimizes the sum of squared correlation between these blocks (i.e. everything outside these
blocks). In case of equivalent splits, it then minimizes the sum of squared sizes of the blocks.

Usage

snp_ldsplit(
corr,
thr_r2,
min_size,
max_size,
max_K = 500,
max_r2 = 0.3,

max_cost = ncol(corr)/200,
pos_scaled = rep(@, ncol(corr))

Arguments

corr
thr_r2

min_size

max_size

max_K

max_r2

Sparse correlation matrix. Usually, the output of snp_cor ().

Threshold under which squared correlations are ignored. This is useful to avoid
counting noise, which should give clearer patterns of costs vs. number of blocks.
It is therefore possible to have a splitting cost of 0. If this parameter is used, then
corr can be computed using the same parameter in snp_cor () (to increase the
sparsity of the resulting matrix).

Minimum number of variants in each block. This is used not to have a dispro-
portionate number of small blocks.

Maximum number of variants in each block. This is used not to have blocks that
are too large, e.g. to limit computational and memory requirements of applica-
tions that would use these blocks. For some long-range LD regions, it may be
needed to allow for large blocks. You can now provide a vector of values to try.

Maximum number of blocks to consider. All optimal solutions for K from 1 to
max_K will be returned. Some of these K might not have any corresponding so-
lution due to the limitations in size of the blocks. For example, splitting 10,000
variants in blocks with at least 500 and at most 2000 variants implies that there
are at least 5 and at most 20 blocks. Then, the choice of K depends on the ap-
plication, but a simple solution is to choose the largest K for which the cost is
lower than some threshold. Default is 500.

Maximum squared correlation allowed for one pair of variants in two different
blocks. This is used to make sure that strong correlations are not discarded and
also to speed up the algorithm. Default is 0. 3.

snp_Idsplit 49

max_cost Maximum cost reported. Default is ncol (corr) / 200.

pos_scaled Vector of positions. The positions should be scaled so that limits of a block must

Value

be separated by a distance of 1 at the maximum. E.g. if the positions are in base
pairs (bp), and you want a maximum distance of 10 Mbp, you need to provide
the vector of positions divided by 10e6.

Either NULL when no block splitting satisfies the conditions, or a tibble with seven columns:

* $max_size: Input parameter, useful when providing a vector of values to try.

* $n_block: Number of blocks.

* $cost: The sum of squared correlations outside the blocks.

e $cost2: The sum of squared sizes of the blocks.

* $perc_kept: Percentage of initial non-zero values kept within the blocks defined.
e $all_last: Last index of each block.

e $all_size: Sizes of the blocks.

* $block_num: Resulting block numbers for each variant. This is not reported anymore, but can
be computed with rep(seq_along(all_size), all_size).

Examples

Not run:

corr <- readRDS(url("https://www.dropbox.com/s/65u96jf7y32j2mj/spMat.rds?raw=1"))

adjust “THR_R2™ depending on sample size used to compute corr

use e.g. 0.05 for small sample sizes, and 0.01 for large sample sizes
THR_R2 <- 0.02

m <- ncol(corr)

(SEQ <- round(seq_log(m / 30, m / 5, length.out = 10)))

replace “min_size™ by e.g. 100 for larger data

(res <- snp_ldsplit(corr, thr_r2 = THR_R2, min_size = 10, max_size = SEQ))

add the variant block IDs corresponding to each split
res$block_num <- lapply(res$all_size, function(.) rep(seqg_along(.), .))

library(ggplot2)
trade-off cost / number of blocks
gplot(n_block, cost, color = factor(max_size, SEQ), data = res) +
theme_bw(14) +
scale_y_logio() +
theme(legend.position = "top"”) +
labs(x = "Number of blocks"”, color = "Maximum block size"”,
y = "Sum of squared correlations outside blocks")

trade-off cost / number of non-zero values

gplot(perc_kept, cost, color = factor(max_size, SEQ), data = res) +
theme_bw(14) +
scale_y_loglo() +

theme(legend.position = "top"”) +

snp_Id_scores

labs(x = "Percentage of non-zero values kept”, color = "Maximum block size",

y = "Sum of squared correlations outside blocks"”

~—

trade-off cost / sum of squared sizes

gplot(cost2, cost, color = factor(max_size, SEQ), data = res) +

theme_bw(14) +

scale_y_loglo() +
geom_vline(xintercept = @)+
theme(legend.position = "top"”) +

labs(x = "Sum of squared blocks"”, color = "Maximum block size",

y = "Sum of squared correlations outside blocks")

Pick one solution and visualize blocks
library(dplyr)
all_ind <- res %>%
arrange(cost2 * sqrt(5 + cost)) %>%
print() %>%
slice(1) %>%
pull(all_last)

Transform sparse representation into (i,j,x) triplets
corrT <- as(corr, "dgTMatrix")
upper <- (corrT@i <= corrT@j & corrT@x"2 >= THR_R2)
df <- data.frame(
i = corrT@il[upper] + 1L,
j corrT@jLupper] + 1L,
r2 = corrT@x[upper]*2

)
df$y <- (df$j - df$i) / 2

ggplot(df) +
geom_point(aes(i + vy, y, alpha = r2)) +
theme_minimal() +

theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(),

strip.background = element_blank(), strip.text.x = element_blank()) +

scale_alpha_continuous(range = 0:1) +

scale_x_continuous(expand = c(0.02, 0.02), minor_breaks = NULL,

breaks = head(all_ind[[1]], -1) + 0.5) +
facet_wrap(~ cut(i + vy, 4), scales = "free", ncol = 1) +
labs(x = "Position”, y = NULL)

End(Not run)

snp_ld_scores LD scores

Description

LD scores

snp_Id_scores

Usage

snp_ld_scores(

Gna,
ind.row
ind.col
size =

infos.pos

ncores =

)

bed_ld_scores(

obj.bed,
ind.row
ind.col
size =

infos.pos

ncores =

Arguments

Gna

ind.row

ind.col

size

infos.pos

ncores
obj.bed

Value

51

rows_along(Gna),
cols_along(Gna),
500,

NULL,

rows_along(obj.bed),
cols_along(obj.bed),
500,

NULL,

A FBM.code256 (typically <bigSNP>$genotypes).
You can have missing values in these data.

An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

For one SNP, window size around this SNP to compute correlations. Default is
500. If not providing infos. pos (NULL, the default), this is a window in number
of SNPs, otherwise it is a window in kb (genetic distance).

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical. pos.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

A vector of LD scores. For each variant, this is the sum of squared correlations with the neighboring
variants (including itself).

Examples

test <- snp_attachExtdata()

::nb_cores().

52

snp_ MAF

G <- test$genotypes

(1d <- snp_ld_scores(G, ind.col = 1:1000))

snp_MAF MAF
Description
Minor Allele Frequency.
Usage
snp_MAF (
G,
ind.row = rows_along(G),
ind.col = cols_along(G),
nploidy = 2,
ncores = 1
)
Arguments
G A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
nploidy Number of trials, parameter of the binomial distribution. Default is 2, which
corresponds to diploidy, such as for the human genome.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr
Value

A vector of MAFs, corresponding to ind. col.

Examples

obj.bigsnp <- snp_attachExtdata()
str(maf <- snp_MAF(obj.bigsnp$genotypes))

::nb_cores().

snp_manhattan

53

snp_manhattan

Manhattan plot

Description

Creates a manhattan plot.

Usage

snp_manhattan(
gwas,
infos.chr,
infos.pos,

colors = c("black”, "grey60"),

dist.sep.chrs
ind.highlight
col.highlight
labels = NULL

= le+0@7,
= integer(90),
Hred”’

’

npoints = NULL,

coeff = 1

Arguments

gwas

infos.chr

infos.pos

colors

dist.sep.chrs
ind.highlight

col.highlight
labels

npoints

coeff

A mhtest object with the p-values associated with each SNP. Typically, the out-
put of bigstatsr::big_univLinReg, bigstatsr::big_univLogReg or snp_pcadapt.

Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.

Vector of integers specifying the physical position on a chromosome (in base
pairs) of each SNP.
Typically <bigSNP>mapphysical. pos.

Colors used for each chromosome (they are recycled). Default is an alternation
of black and gray.

"Physical" distance that separates two chromosomes. Default is 10 Mbp.

Indices of SNPs you want to highlight (of interest). Default doesn’t highlight
any SNPs.

Color used for highlighting SNPs. Default uses red.

Labels of the x axis. Default uses the number of the chromosome there are
in infos.chr(sort(unique(infos.chr))). This may be useful to restrict the
number of labels so that they are not overlapping.

Number of points to keep (ranked by p-value) in order to get a lighter object
(and plot). Default doesn’t cut anything. If used, the resulting object will have
an attribute called subset giving the indices of the kept points.

Relative size of text. Default is 1.

54 snp_match

Details

If you don’t have information of chromosome and position, you should simply use plot instead.

Value

A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.

Examples

set.seed(9)

test <- snp_attachExtdata()
G <- test$genotypes
y <= rnorm(nrow(G))

gwas <- big_univLinReg(G, y)

snp_qq(gwas)
gwas_gc <- snp_gc(gwas) # this modifies ~attr(gwas_gc, "transfo")"

snp_qq(gwas_gc)

The next plot should be prettier with a real dataset
snp_manhattan(gwas_gc,
infos.chr = testmapchromosome,
infos.pos = testmapphysical.pos) +
ggplot2::geom_hline(yintercept = -logl@(5e-8), linetype = 2, color = "red")

p <- snp_qq(gwas_gc) +

ggplot2::aes(text = asPlotlyText(test$map)) +

ggplot2::labs(subtitle = NULL, x = "Expected -logl@(p)"”, y = "Observed -loglo(p)")
Not run: plotly::ggplotly(p, tooltip = "text")

snp_match Match alleles

Description

Match alleles between summary statistics and SNP information. Match by ("chr", "a0", "al") and
("pos" or "rsid"), accounting for possible strand flips and reverse reference alleles (opposite effects).

Usage
snp_match(
sumstats,
info_snp,
strand_flip = TRUE,
join_by_pos = TRUE,
remove_dups = TRUE,

https://r4ds.had.co.nz/data-visualisation.html

snp_match

55

match.min.prop = 0.2,
return_flip_and_rev = FALSE

Arguments

sumstats
info_snp

strand_flip

join_by_pos
remove_dups

match.min.prop

A data frame with columns "chr", "pos", "a0", "al" and "beta".
" "

A data frame with columns "chr", "pos", "a0" and "al".

Whether to try to flip strand? (default is TRUE) If so, ambiguous alleles A/T and
C/G are removed.

Whether to join by chromosome and position (default), or instead by rsid.
Whether to remove duplicates (same physical position)? Default is TRUE.

Minimum proportion of variants in the smallest data to be matched, otherwise
stops with an error. Default is 20%.

return_flip_and_rev

Value

Whether to return internal boolean variables " _FLIP_" (whether the alleles must
be flipped: A <—> T & C <—> G, because on the opposite strand) and "_REV_"
(whether alleles must be swapped: $a@ <—> $a1, in which case corresponding
$beta are multiplied by -1). Default is FALSE.

A single data frame with matched variants. Values in column $beta are multiplied by -1 for variants
with alleles reversed (i.e. swapped). New variable "_NUM_ID_.ss" returns the corresponding row
indices of the input sumstats (first argument of this function), and "_NUM_ID_" corresponding to
the input info_snp (second argument).

See Also

snp_modifyBuild

Examples

sumstats <- data.frame(

chr =1,

pos = c(86303,

86331, 162463, 752566, 755890, 758144),

a0 = c("T”, "G", "C", "A", "T", "G"),
al = c("G", "A", "T", "G", "A", "A"),

beta = c(-1.868, 0.250, -0.671, 2.112, 0.239, 1.272),
p = c(0.860, 0.346, 0.900, 0.456, 0.776, 0.383)

)

info_snp <- data.frame(
id = ¢("rs2949417", "rs115209712", "rs143399298", "rs3094315", "rs3115858"),

chr =1,

pos = c(86303,

86331, 162463, 752566, 755890),

a0 = C(HTII’ ”A”, an’ ”A", "T”),
al = C("G“, “G”, ”A", "G", ”A”)

56 snp_MAX3

snp_match(sumstats, info_snp)
snp_match(sumstats, info_snp, strand_flip = FALSE)

snp_MAX3 MAX3 statistic

Description

Compute the MAX3 statistic, which tests for three genetic models (additive, recessive and domi-
nant).

Usage

snp_MAX3(Gna, y@1.train, ind.train = rows_along(Gna), val = c(@, 0.5, 1))

Arguments
Gna A FBM.code256 (typically <bigSNP>$genotypes).
You can have missing values in these data.
y01.train Vector of responses, corresponding to ind.train. Must be only 0s and 1s.
ind.train An optional vector of the row indices that are used, for the training part. If not
specified, all rows are used. Don’t use negative indices.
val Computing max Z2 477 ().
r€val
* Defaultis c(@, 0.5, 1) and corresponds to the MAX3 statistic.
* Only c(@, 1) corresponds to MAX?2.
* And only 9.5 corresponds to the Armitage trend test.
* Finally, seq(@, 1, length.out = L) corresponds to MAXL.
Details

P-values associated with returned scores are in fact the minimum of the p-values of each test
separately. Thus, they are biased downward.

Value
An object of classes mhtest and data.frame returning one score by SNP. See methods(class =
"mhtest”).

References

Zheng, G., Yang, Y., Zhu, X., & Elston, R. (2012). Robust Procedures. Analysis Of Genetic
Association Studies, 151-206. doi:10.1007/9781461422457_6.

https://doi.org/10.1007/978-1-4614-2245-7_6

snp_modifyBuild 57

Examples

set.seed(1)

constructing a fake genotype big.matrix

N <- 50; M <- 1200

fake <- snp_fake(N, M)

G <- fake$genotypes

G[] <- sample(as.raw(@:3), size = length(G), replace = TRUE)
G[1:8, 1:10]

Specify case/control phenotypes
fakefamaffection <- rep(1:2, each = N / 2)

Get MAX3 statistics

y01 <- fakefamaffection - 1

str(test <- snp_MAX3(fake$genotypes, y0@1.train = y@1))
p-values are not well calibrated

snp_qq(test)

genomic control is not of much help
snp_qq(snp_gc(test))

Armitage trend test (well calibrated because only one test)
test2 <- snp_MAX3(fake$genotypes, y0@1.train = y@1, val = 0.5)
snp_qq(test2)

snp_modifyBuild Modify genome build

Description

Modify the physical position information of a data frame when converting genome build using
executable [liftOver.

Usage

snp_modifyBuild(
info_snp,
liftOver,
from = "hg18",
to = "hgl19",
check_reverse = TRUE,
local_chain = NULL,
base_url = "https://hgdownload. soe.ucsc.edu/goldenPath/"

58 snp_pcadapt

Arguments
info_snp A data frame with columns "chr" and "pos".
liftOver Path to liftOver executable. Binaries can be downloaded at https://hgdownload.
cse.ucsc.edu/admin/exe/macOSX.x86_64/1iftOver for Mac and at https:
//hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/1iftOver for Linux.
from Genome build to convert from. Default is hg18.
to Genome build to convert to. Default is hg19.

check_reverse Whether to discard positions for which we cannot go back to initial values by
doing ’from -> to -> from’. Default is TRUE.

local_chain Local chain file (e.g. hg18ToHg19.over.chain.gz) to use instead of down-
loading one from parameters from and to (the default). You can download one
such file from e.g. https://hgdownload. soe.ucsc.edu/goldenPath/hg18/
liftOver/. Provide a vector of two when using check_reverse.

base_url From where to download the chain files. Defaultis "https://hgdownload. soe.ucsc.edu/goldenPath;,
You can also try replacing https by http, and/or soe by cse.
Value

Input data frame info_snp with column "pos" in the new build.

References

Hinrichs, Angela S., et al. "The UCSC genome browser database: update 2006." Nucleic acids
research 34.suppl_1 (2006): D590-D598.

snp_pcadapt Outlier detection

Description

Method to detect genetic markers involved in biological adaptation. This provides a statistical tool
for outlier detection based on Principal Component Analysis. This corresponds to the statistic based
on mahalanobis distance, as implemented in package pcadapt.

Usage

snp_pcadapt(
G,
U.row,
ind.row = rows_along(G),
ind.col = cols_along(G),
ncores = 1

)

bed_pcadapt(

https://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver
https://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver
https://hgdownload.soe.ucsc.edu/goldenPath/hg18/liftOver/
https://hgdownload.soe.ucsc.edu/goldenPath/hg18/liftOver/

snp_pcadapt

obj.bed,
U.row,

59

ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),

ncores = 1

Arguments

G

U.row

ind.row

ind.col

ncores

obj.bed

Value

A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.

Left singular vectors (not scores, U7 U = I) corresponding to ind. row.

An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

Object of type bed, which is the mapping of some bed file. Use obj.bed <-
bed(bedfile) to get this object.

An object of classes mhtest and data.frame returning one score by SNP. See methods(class =

"mhtest").

References

Luu, K., Bazin, E., & Blum, M. G. (2017). pcadapt: an R package to perform genome scans for
selection based on principal component analysis. Molecular ecology resources, 17(1), 67-77.

See Also

snp_manhattan, snp_qq and snp_gc.

Examples

test <- snp_attachExtdata()

G <- test$genotypes

obj.svd <- big_SVD(G, fun.scaling = snp_scaleBinom(), k = 10)
plot(obj.svd) # there seems to be 3 "significant” components
pcadapt <- snp_pcadapt(G, obj.svd$ul, 1:31)

snp_qq(pcadapt)

::nb_cores().

60 snp_plinkIBDQC

snp_plinkIBDQC Identity-by-descent

Description

Quality Control based on Identity-by-descent (IBD) computed by PLINK 1.9 using its method-of-
moments.

Usage

snp_plinkIBDQC(
plink.path,
bedfile.in,
bedfile.out = NULL,
pi.hat = 0.08,
ncores 1,
pruning.args = c(100, 0.2),
do.blind.QC = TRUE,
extra.options = "",
verbose = TRUE

)

Arguments
plink.path Path to the executable of PLINK 1.9.
bedfile.in Path to the input bedfile.

bedfile.out Path to the output bedfile. Default is created by appending " _norel” to prefix.in
(bedfile.in without extension).

pi.hat PI_HAT value threshold for individuals (first by pairs) to be excluded. Default
is 0.08.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

pruning.args A vector of 2 pruning parameters, respectively the window size (in variant count)
and the pairwise $r72$ threshold (the step size is fixed to 1). Default is c(100,
0.2).

do.blind.QC Whether to do QC with pi.hat without visual inspection. Default is TRUE.
If FALSE, return the data.frame of the corresponding ".genome" file without
doing QC. One could use ggplot2::qplot(Z@, Z1, data =mydf, col =RT)
for visual inspection.

extra.options Other options to be passed to PLINK as a string (for the IBD part). More options
can be found at https://www.cog-genomics.org/plink/1.9/ibd.

verbose Whether to show PLINK log? Default is TRUE.

Value

The path of the new bedfile. If no sample is filter, no new bed/bim/fam files are created and then
the path of the input bedfile is returned.

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink/1.9/ibd

snp_plinkKINGQC 61

References

Chang, Christopher C, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M Pur-
cell, and James J Lee. 2015. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4 (1): 7. doi:10.1186/s1374201500478.

See Also
download_plink snp_plinkQC snp_plink KINGQC

Examples

Not run:

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
plink <- download_plink()

bedfile <- snp_plinkIBDQC(plink, bedfile,
bedfile.out = tempfile(fileext = ".bed"),
ncores = 2)

df_rel <- snp_plinkIBDQC(plink, bedfile, do.blind.QC = FALSE, ncores = 2)
str(df_rel)

library(ggplot2)
gplot(Z@, 71, data = df_rel, col = RT)
gplot(y = PI_HAT, data = df_rel) +
geom_hline(yintercept = 0.2, color = "blue”, linetype = 2)
snp_plinkRmSamples(plink, bedfile,
bedfile.out = tempfile(fileext = ".bed"),
df.or.files = subset(df_rel, PI_HAT > 0.2))

End(Not run)

snp_plinkKINGQC Relationship-based pruning

Description

Quality Control based on KING-robust kinship estimator. More information can be found at https:
//www.cog-genomics.org/plink/2.0/distance#king_cutoff.

Usage

snp_plinkKINGQC(
plink2.path,
bedfile.in,
bedfile.out = NULL,
thr.king = 2%-3.5,

https://doi.org/10.1186/s13742-015-0047-8
https://www.cog-genomics.org/plink/2.0/distance#king_cutoff
https://www.cog-genomics.org/plink/2.0/distance#king_cutoff

62 snp_plinkKINGQC

make.bed = TRUE,
ncores = 1,
extra.options =
verbose = TRUE

nn

Arguments

plink2.path Path to the executable of PLINK 2.
bedfile.in Path to the input bedfile.

bedfile.out Path to the output bedfile. Default is created by appending " _norel” to prefix.in
(bedfile.in without extension).

thr.king Note that KING kinship coefficients are scaled such that duplicate samples have
kinship 0.5, not 1. First-degree relations (parent-child, full siblings) correspond
to ~0.25, second-degree relations correspond to ~0.125, etc. It is conventional
to use a cutoff of ~0.354 (27-1.5, the geometric mean of 0.5 and 0.25) to screen
for monozygotic twins and duplicate samples, ~0.177 (27-2.5) to remove first-
degree relations as well, and ~0.0884 (2-3.5, default) to remove second-degree
relations as well, etc.

make . bed Whether to create new bed/bim/fam files (default). Otherwise, returns a table
with coefficients of related pairs.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().
extra.options Other options to be passed to PLINK2 as a string.
verbose Whether to show PLINK log? Default is TRUE.

Value

See parameter make-bed.

References

Manichaikul, Ani, Josyf C. Mychaleckyj, Stephen S. Rich, Kathy Daly, Michele Sale, and Wei-Min
Chen. "Robust relationship inference in genome-wide association studies." Bioinformatics 26, no.
22 (2010): 2867-2873.

See Also

download_plink2 snp_plinkQC
Examples
Not run:

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
plink2 <- download_plink2(AVX2 = FALSE)

bedfile2 <- snp_plinkKINGQC(plink2, bedfile,
bedfile.out = tempfile(fileext = ".bed"),

snp_plinkQC

63

ncores = 2)

df_rel <- snp_plinkKINGQC(plink2, bedfile, make.bed = FALSE, ncores = 2)

str(df_rel)

End(Not run)

snp_plinkQC

Quality Control

Description

Quality Control (QC) and possible conversion to bed/bim/fam files using PLINK 1.9.

Usage

snp_plinkQC(
plink.path,
prefix.in,
file.type = "--bfile”,
prefix.out = paste@(prefix.in, "_QC"),
maf = 0.01,
geno = 0.1,
mind = 0.1,
hwe = 1e-50,

autosome.only = FALSE,

nn

extra.options = R

verbose = TRUE

)
Arguments

plink.path Path to the executable of PLINK 1.9.

prefix.in Prefix (path without extension) of the dataset to be QCed.

file.type Type of the dataset to be QCed. Default is "--bfile” and corresponds to
bed/bim/fam files. You can also use "--file" for ped/map files, "--vcf" for a
VCEF file, or "--gzvcf" for a gzipped VCF. More information can be found at
https://www.cog-genomics.org/plink/1.9/input

prefix.out Prefix (path without extension) of the bed/bim/fam dataset to be created. Default
is created by appending "_QC" to prefix.in.

maf Minimum Minor Allele Frequency (MAF) for a SNP to be kept. Defaultis 0.01.

geno Maximum proportion of missing values for a SNP to be kept. Default is 0. 1.

mind Maximum proportion of missing values for a sample to be kept. Defaultis 0. 1.

hwe Filters out all variants which have Hardy-Weinberg equilibrium exact test p-

value below the provided threshold. Default is 1e-50.

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink/1.9/input

64 snp_plinkRmSamples

autosome.only Whether to exclude all unplaced and non-autosomal variants? Default is FALSE.

extra.options Other options to be passed to PLINK as a string. More options can be found at
https://www.cog-genomics.org/plink2/filter. If using PLINK 2.0, you
could e.g. use "--king-cutoff @.0884" to remove some related samples at the
same time of quality controls.

verbose Whether to show PLINK log? Default is TRUE.

Value

The path of the newly created bedfile.

References

Chang, Christopher C, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M Pur-
cell, and James J Lee. 2015. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4 (1): 7. doi:10.1186/s1374201500478.

See Also
download_plink snp_plinkIBDQC

Examples

Not run:

bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr")
prefix <- sub_bed(bedfile)
plink <- download_plink()
test <- snp_plinkQC(plink.path = plink,
prefix.in = prefix,
prefix.out = tempfile(),
file.type = "--bfile"”, # the default (for ".bed")
maf = 0.05,
geno = 0.05,
mind = 0.05,
hwe = 1e-10,
autosome.only = TRUE)
test

End(Not run)

snp_plinkRmSamples Remove samples

Description

Create new bed/bim/fam files by removing samples with PLINK.

https://www.cog-genomics.org/plink2/filter
https://doi.org/10.1186/s13742-015-0047-8

snp_prodBGEN

Usage

65

snp_plinkRmSamples(

plink.path,
bedfile.in,
bedfile.out,
df.or.files,
col.family.ID
col.sample.ID

I n
N =

verbose = TRUE

Arguments

plink.path
bedfile.in
bedfile.out
df.or.files

col.family.ID

col.sample.ID

verbose

Value

Path to the executable of PLINK 1.9.
Path to the input bedfile.

Path to the output bedfile.

Either

* A data.frame,
* A character vector of file names where to find at the information you want.
You should have one column for family IDs and one for sample IDs.
Index of the column containing the family IDs to match with those of the study.
Default is the first one.

Index of the column containing the sample IDs to match with those of the study.
Default is the second one.

Any additional parameter to pass to bigreadr: : fread2(). Particularly, option
header = FALSE is sometimes needed.

Whether to show PLINK log? Default is TRUE.

The path of the new bedfile.

See Also
download_plink

snp_prodBGEN

BGEN matrix product

Description

Compute a matrix
intermediate FBM

product between BGEN files and a matrix. This removes the need to read an
object with snp_readBGEN() to compute the product. Moreover, when using

dosages, they are not rounded to two decimal places anymore.

66 snp_prodBGEN

Usage

snp_prodBGEN(
bgenfiles,
beta,
list_snp_id,
ind_row = NULL,
bgi_dir = dirname(bgenfiles),

read_as = c("dosage”, "random"),
block_size = 1000,
ncores = 1
)
Arguments
bgenfiles Character vector of paths to files with extension ".bgen". The corresponding

".bgen.bgi" index files must exist.
beta A matrix (or a vector), with rows corresponding to 1ist_snp_id.

list_snp_id List of character vectors of SNP IDs to read, with one vector per BGEN file.
Each SNP ID should be in the form "<chr>_<pos>_<al1>_<a2>" (e.g. "1_88169_C_T"
or "01_88169_C_T"). If you have one BGEN file only, just wrap your vector of
IDs with 1ist(). This function assumes that these IDs are uniquely identi-
fying variants.

ind_row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used. Don’t use negative indices. You can access the sample IDs
corresponding to the genotypes from the .sample file, and use e.g. match() to
get indices corresponding to the ones you want.

bgi_dir Directory of index files. Default is the same as bgenfiles.
read_as How to read BGEN probabilities? Currently implemented:

* as dosages (rounded to two decimal places), the default,

* as hard calls, randomly sampled based on those probabilities (similar to
PLINK option ’--hard-call-threshold random’).

block_size Maximum size of temporary blocks (in number of variants). Default is 1000.
ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr::nb_cores().
Value

The product bgen_datalind_row, 'list_snp_id"'] %*% beta.

See Also

snp_readBGEN()

snp_PRS 67

snp_PRS PRS

Description

Polygenic Risk Scores with possible clumping and thresholding.

Usage
snp_PRS(
G,
betas.keep,
ind.test = rows_along(G),
ind.keep = cols_along(G),
same.keep = rep(TRUE, length(ind.keep)),
1pS.keep = NULL,
thr.list = @
)
Arguments
G A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.
betas.keep Numeric vector of weights associated with each SNP corresponding to ind. keep.
You may want to see bigstatsr::big_univLinReg or bigstatsr::big_univLogReg.
ind. test The individuals on whom to project the scores. Default uses all.
ind.keep Column (SNP) indices to use (if using clumping, the output of snp_clumping).
Default doesn’t clump.
same . keep A logical vector associated with betas. keep whether the reference allele is the
same for G. Default is all TRUE (for example when you train the betas on the
same dataset). Otherwise, use same_ref.
1pS.keep Numeric vector of -log10@(p-value) associated with betas.keep. Default
doesn’t use thresholding.
thr.list Threshold vector on 1pS.keep at which SNPs are excluded if they are not sig-
nificant enough. Default doesn’t use thresholding.
Value

A matrix of scores, where rows correspond to ind. test and columns correspond to thr.list.

68

Examples

test <- snp_attachExtdata()

G <- big_copy(test$genotypes, ind.col = 1:1000)
CHR <- testmapchromosome[1:1000]

POS <- testmapphysical.position[1:1000]

y01 <- testfamaffection - 1

PCA -> covariables
obj.svd <- snp_autoSVD(G, infos.chr = CHR, infos.pos = POS)

train and test set
ind.train <- sort(sample(nrow(G), 400))
ind.test <- setdiff(rows_along(G), ind.train) # 117

GWAS
gwas.train <- big_univLogReg(G, y@1.train = y@1[ind.train],
ind.train = ind.train,

covar.train = obj.svd$ulind.train, 1)

clumping
ind.keep <- snp_clumping(G, infos.chr = CHR,
ind.row = ind.train,
S = abs(gwas.train$score))
-log1@(p-values) and thresolding
summary (1pS.keep <- -predict(gwas.train)[ind.keep])
thrs <- seq(@, 4, by = 0.5)
nb.pred <- sapply(thrs, function(thr) sum(1lpS.keep > thr))

PRS
prs <- snp_PRS(G, betas.keep = gwas.train$estim[ind.keep],
ind.test = ind.test,
ind.keep = ind.keep,
1pS.keep = 1pS.keep,
thr.list = thrs)

AUC as a function of the number of predictors
aucs <- apply(prs, 2, AUC, target = y@1[ind.test])
library(ggplot2)
gplot(nb.pred, aucs) +
geom_line() +
scale_x_logl@(breaks = nb.pred) +
labs(x = "Number of predictors”, y = "AUC") +
theme_bigstatsr()

snp_qq

snp_qq Q-0 plot

Description

Creates a quantile-quantile plot from p-values from a GWAS study.

snp_readBed 69

Usage
snp_gq(gwas, lambdaGC = TRUE, coeff = 1)

Arguments
gwas A mhtest object with the p-values associated with each SNP. Typically, the out-
put of bigstatsr::big_univLinReg, bigstatsr::big_univLogReg or snp_pcadapt.
lambdaGC Add the Genomic Control coefficient as subtitle to the plot?
coeff Relative size of text. Default is 1.
Value

A ggplot2 object. You can plot it using the print method. You can modify it as you wish by
adding layers. You might want to read this chapter to get more familiar with the package ggplot2.

Examples

set.seed(9)

test <- snp_attachExtdata()
G <- test$genotypes
y <= rnorm(nrow(G))

gwas <- big_univLinReg(G, y)
snp_qq(gwas)

gwas_gc <- snp_gc(gwas) # this modifies “attr(gwas_gc, "transfo")
snp_qq(gwas_gc)

The next plot should be prettier with a real dataset
snp_manhattan(gwas_gc,
infos.chr = testmapchromosome,
infos.pos = testmapphysical.pos) +
ggplot2::geom_hline(yintercept = -logl@(5e-8), linetype = 2, color = "red")

p <- snp_gq(gwas_gc) +

ggplot2::aes(text = asPlotlyText(test$map)) +

ggplot2::labs(subtitle = NULL, x = "Expected -logl@(p)"”, y = "Observed -loglo(p)")
Not run: plotly::ggplotly(p, tooltip = "text")

snp_readBed Read PLINK files into a "bigSNP"

Description

Functions to read bed/bim/fam files into a bigSNP.

https://r4ds.had.co.nz/data-visualisation.html

70 snp_readBed

Usage
snp_readBed(bedfile, backingfile = sub_bed(bedfile))

snp_readBed2(
bedfile,
backingfile = sub_bed(bedfile),
ind.row = rows_along(obj.bed),
ind.col = cols_along(obj.bed),
ncores = 1

Arguments
bedfile Path to file with extension ".bed" to read. You need the corresponding ".bim"
and ".fam" in the same directory.

backingfile The path (without extension) for the backing files for the cache of the bigSNP
object. Default takes the bedfile without the ".bed" extension.

ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.

ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr

Details

For more information on these formats, please visit PLINK webpage. For other formats, please use
PLINK to convert them in bedfiles, which require minimal space to store and are faster to read. For
example, to convert from a VCF file, use the --vcf option. See snp_plinkQC.

Value

The path to the RDS file that stores the bigSNP object. Note that this function creates one other file
which stores the values of the Filebacked Big Matrix.
You shouldn’t read from PLINK files more than once. Instead, use snp_attach to load the
"bigSNP" object in any R session from backing files.

Examples

(bedfile <- system.file("extdata”, "example.bed”, package = "bigsnpr"))

Reading the bedfile and storing the data in temporary directory
rds <- snp_readBed(bedfile, backingfile = tempfile())

Loading the data from backing files
test <- snp_attach(rds)

::nb_cores().

https://www.cog-genomics.org/plink/1.9/formats#bed

snp_readBGEN 71

str(test)
dim(G <- test$genotypes)
G[1:8, 1:8]
snp_readBGEN Read BGEN files into a "bigSNP"
Description

Function to read the UK Biobank BGEN files into a bigSNP.

Usage

snp_readBGEN(
bgenfiles,
backingfile,
list_snp_id,
ind_row = NULL,
bgi_dir = dirname(bgenfiles),

read_as = c("dosage”, "random"),
ncores = 1
)
Arguments
bgenfiles Character vector of paths to files with extension ".bgen". The corresponding

".bgen.bgi" index files must exist.

backingfile The path (without extension) for the backing files (".bk" and ".rds") that are
created by this function for storing the bigSNP object.

list_snp_id List of character vectors of SNP IDs to read, with one vector per BGEN file.
Each SNP ID should be in the form "<chr>_<pos>_<al>_<a2>" (e.g. "1_88169_C_T"
or "01_88169_C_T"). If you have one BGEN file only, just wrap your vector of
IDs with 1ist(). This function assumes that these IDs are uniquely identi-
fying variants.

ind_row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used. Don’t use negative indices. You can access the sample IDs
corresponding to the genotypes from the .sample file, and use e.g. match() to
get indices corresponding to the ones you want.

bgi_dir Directory of index files. Default is the same as bgenfiles.
read_as How to read BGEN probabilities? Currently implemented:

* as dosages (rounded to two decimal places), the default,

* as hard calls, randomly sampled based on those probabilities (similar to
PLINK option ’--hard-call-threshold random’).

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

72 snp_readBGI

Details

For more information on this format, please visit BGEN webpage.

This function is designed to read UK Biobank imputation files. This assumes that variants have
been compressed with zlib, that there are only 2 possible alleles, and that each probability is stored
on 8 bits. For example, if you use gctool to generate your own BGEN files, please make sure you
are using options -ofiletype bgen_v1.2 -bgen-bits 8 -assume-chromosome’.

If the format is not the expected one, this will result in an error or even a crash of your R session.
Another common source of error is due to corrupted files; e.g. if using UK Biobank files, compare
the result of tools: :md5sum() with the ones at https://biobank.ndph.ox.ac.uk/ukb/refer.
cgi?id=998.

You can look at some example code from my papers on how to use this function:

* https://github.com/privefl/paper-infer/blob/main/code/prepare-geno-simu.R
e https://github.com/privefl/paper-misspec/blob/main/code/prepare-genotypes.R

Value

The path to the RDS file <backingfile>. rds that stores the bigSNP object created by this function.
Note that this function creates another file (.bk) which stores the values of the FBM ($genotypes).
The rows corresponds to the order of ind_row; the columns to the order of 1ist_snp_id. The $map
component of the bigSNP object stores some information on the variants (including allele frequen-
cies and INFO scores computed from the imputation probabilities). However, it does not have a
$fam component; you should use the individual IDs in the .sample file (filtered with ind_row) to
add external information on the individuals.

You shouldn’t read from BGEN files more than once. Instead, use snp_attach to load the
"bigSNP" object in any R session from backing files.

snp_readBGI Read variant info from one BGI file

Description

Read variant info from one BGI file

Usage
snp_readBGI(bgifile, snp_id = NULL)

Arguments
bgifile Path to one file with extension ".bgi".
snp_id Character vector of SNP IDs. These should be in the form "<chr>_<pos>_<al>_<a2>"

(e.g. "1_88169_C_T" or "01_88169_C_T"). This function assumes that these
IDs are uniquely identifying variants. Default is NULL, and returns informa-
tion on all variants.

https://code.enkre.net/bgen
https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=998
https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=998
https://github.com/privefl/paper-infer/blob/main/code/prepare-geno-simu.R
https://github.com/privefl/paper-misspec/blob/main/code/prepare-genotypes.R

snp_save 73

Value

A data frame containing variant information.

snp_save Save modifications

Description

Save a bigSNP after having made some modifications to it. As bigSNP is an S3 class, you can add
any slot you want to an object of this class, then use snp_save to save these modifications in the
corresponding ".rds" backing file.

Usage

snp_save(x, version = NULL)

Arguments
X A bigSNP.
version the workspace format version to use. NULL specifies the current default version
(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.
Value

The (saved) bigSNP.

Examples

set.seed(1)

Reading example
test <- snp_attachExtdata()

I can add whatever I want to an S3 class
testmap ™ p-values™ <- runif(nrow(test$map))
str(test$map)

Reading again

rds <- test$genotypes$rds

test2 <- snp_attach(rds)
str(test2$map) # new slot wasn't saved

Save it
snp_save(test)

Reading again
test3 <- snp_attach(rds)
str(test3$map) # it is saved now

74 snp_scaleAlpha

The complicated code of this function
snp_save

snp_scaleAlpha Binomial(n, p) scaling

Description

Binomial(n, p) scaling where n is fixed and p is estimated.

Usage
snp_scaleAlpha(alpha = -1)

snp_scaleBinom(nploidy = 2)

Arguments

alpha Assumes that the average contribution (e.g. heritability) of a SNP of frequency
p is proportional to [2p(1 — p)]'T®. The center is then 2p and the scale is
[2p(1 — p)]~ /2. Default is -1.

nploidy Number of trials, parameter of the binomial distribution. Default is 2, which
corresponds to diploidy, such as for the human genome.

Details
You will probably not use this function as is but as the fun.scaling parameter of other functions
of package bigstatsr.

Value
A new function that returns a data.frame of two vectors "center" and "scale" which are of the length
of ind. col.

References
This scaling is widely used for SNP arrays. Patterson N, Price AL, Reich D (2006). Population
Structure and Eigenanalysis. PLoS Genet 2(12): €190. doi:10.1371/journal.pgen.0020190.

Examples

set.seed(1)

a <- matrix(@, 93, 170)

p <-0.2

al] <- rbinom(length(a), 2, p)

X <- add_code256(big_copy(a, type = "raw"), code = c(@, 1, 2, rep(NA, 253)))

https://doi.org/10.1371/journal.pgen.0020190

snp_simuPheno

75

X.svd <- big_SVD(X, fun.scaling = snp_scaleBinom())

str(X.svd)

plot(X.svd$center)
abline(h = 2 * p, col = "red")

plot(X.svd$scale)

abline(h = sqrt(2 x p *x (1 - p)), col = "red")

snp_simuPheno

Simulate phenotypes

Description

Simulate phenotypes using a linear model. When a prevalence is given, the liability threshold is
used to convert liabilities to a binary outcome. The genetic and environmental liabilities are scaled
such that the variance of the genetic liability is exactly equal to the requested heritability, and the
variance of the total liability is equal to 1.

Usage
snp_simuPheno(
G,
h2,
M,
K = NULL,
alpha = -1,
ind.row = rows_along(G),
ind.possible = cols_along(G),
prob = NULL,
effects.dist = c("gaussian”, "laplace"),
ncores = 1
)
Arguments
G A FBM.code256 (typically <bigSNP>$genotypes).
You shouldn’t have missing values. Also, remember to do quality control, e.g.
some algorithms in this package won’t work if you use SNPs with 0 MAF.
h2 Heritability.
M Number of causal variants.
K Prevalence. Default is NULL, giving a continuous trait.
alpha Assumes that the average contribution (e.g. heritability) of a SNP of frequency
p is proportional to [2p(1 — p)]* <. Default is -1.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,

ind.possible

all rows are used.
Don’t use negative indices.

Indices of possible causal variants.

76

prob

effects.dist

ncores

Value

snp_split

Vector of probability weights for sampling causal indices. It can have Os (dis-
carded) and is automatically scaled to sum to 1. Default is NULL (all indices have
the same probability).

Distribution of effects. Either "gaussian” (the default) or "laplace”.

Number of cores used. Default doesn’t use parallelism. You may use bigstatsr: :nb_cores().

A list with 3 elements:

* $pheno: vector of phenotypes,

e $set: indices of causal variants,

* $effects: effect sizes (of scaled genotypes) corresponding to set.
e $allelic_effects: effect sizes, but on the allele scale (01112).

snp_split

Split-parApply-Combine

Description

A Split-Apply-Combine strategy to parallelize the evaluation of a function on each SNP, indepen-

dently.
Usage

snp_split(infos.chr, FUN, combine, ncores =1, ...)
Arguments

infos.chr Vector of integers specifying each SNP’s chromosome.
Typically <bigSNP>mapchromosome.

FUN The function to be applied. It must take a FBM.code256 as first argument and
ind.chr, an another argument to provide subsetting over SNPs. You can access
the number of the chromosome by using attr(ind.chr, "chr").

combine function that is used by foreach::foreach to process the tasks results as they
generated. This can be specified as either a function or a non-empty character
string naming the function. Specifying ’c’ is useful for concatenating the results
into a vector, for example. The values *cbind’ and ’rbind’ can combine vectors
into a matrix. The values '+’ and ’*’ can be used to process numeric data. By
default, the results are returned in a list.

ncores Number of cores used. Default doesn’t use parallelism. You may use bigstatsr
Extra arguments to be passed to FUN.

Details

This function splits indices for each chromosome, then apply a given function to each part (chro-
mosome) and finally combine the results.

::nb_cores().

snp_subset 77
Value
The result of foreach::foreach.
Examples
parallelize over chromosomes made easy
examples of functions from this package
snp_pruning
snp_clumping
snp_fastImpute
snp_subset Subset a bigSNP
Description
Subset (copy) of a bigSNP, also stored on disk.
Usage
snp_subset(
X,
ind.row = rows_along(x$genotypes),
ind.col = cols_along(x$%$genotypes),
backingfile = NULL
)
S3 method for class 'bigSNP'
subset(
X ’
ind.row = rows_along(x$fam),
ind.col = rows_along(x$map),
backingfile = NULL,
)
Arguments
X A bigSNP.
ind.row Indices of the rows (individuals) to keep. Negative indices can be used to ex-
clude row indices. Default: keep them all.
ind.col Indices of the columns (SNPs) to keep. Negative indices can be used to exclude

column indices. Default: keep them all.

backingfile Prefix of the two new files created (".bk" and ".rds"). By default, it is automat-
ically determined by appending "_sub" and a number to the prefix of the input

bigSNP backing files.
Not used.

78

Value

snp_thr_correct

The path to the RDS file that stores the bigSNP object.

See Also
bigSNP

Examples

str(test <- snp_attachExtdata())

keep only first 50 samples and SNPs
rdsfile <- snp_subset(test, ind.row = 1:50, ind.col = 1:50)
str(snp_attach(rdsfile))

remove only first 5@ samples and SNPs
rdsfile2 <- snp_subset(test, ind.row = -(1:50), ind.col = -(1:50))
str(snp_attach(rdsfile2))

snp_thr_correct

Thresholding and correction

Description

P-value thresholding and correction of summary statistics for winner’s curse.

Usage

snp_thr_correct(beta, beta_se, 1pS, thr_1pS)

Arguments

beta
beta_se
1psS

thr_1pS

Value

Vector of effect sizes.
Vector of standard errors for beta. Either beta_se or 1pS must be provided.

Vector of -log10(p-value) associated with beta. Either beta_se or 1pS must be
provided.

Threshold on 1pS (-logl0(p-value) at which variants are excluded if they not
significant enough.

beta after p-value thresholding and shrinkage.

References

Zhong, H., & Prentice, R. L. (2008). Bias-reduced estimators and confidence intervals for odds
ratios in genome-wide association studies. Biostatistics, 9(4), 621-634.

snp_writeBed 79

Examples

beta <- rnorm(1000)

beta_se <- runif (1000, min = 0.3, max = 0.5)

new_beta <- snp_thr_correct(beta, beta_se = beta_se, thr_1pS = 1)

plot(beta / beta_se, new_beta / beta_se, pch = 20); abline(@, 1, col = "red")
plot(beta, new_beta, pch = 20); abline(@, 1, col = "red")

Can provide -logl@(p-values) instead of standard errors

lpval <- -logl@(pchisq((beta / beta_se)*2, df = 1, lower.tail = FALSE))
new_beta2 <- snp_thr_correct(beta, 1pS = lpval, thr_1pS = 1)
all.equal(new_beta2, new_beta)

snp_writeBed Write PLINK files from a "bigSNP"

Description
Function to write bed/bim/fam files from a bigSNP. This will use the slot code rounded to write
0Os, 1s, 2s or NAs.

Usage

snp_writeBed(x, bedfile, ind.row = rows_along(G), ind.col = cols_along(G))

Arguments
X A bigSNP.
bedfile Path to file with extension ".bed" to create.
ind.row An optional vector of the row indices (individuals) that are used. If not specified,
all rows are used.
Don’t use negative indices.
ind.col An optional vector of the column indices (SNPs) that are used. If not specified,
all columns are used.
Don’t use negative indices.
Value
The input bedfile path.
Examples
N <- 17
M <- 911

fake <- snp_fake(N, M)
G <- fake$genotypes

80

G[] <- sample(as.

raw(0:3), size =

sub_bed

length(G), replace = TRUE)

Write the object as a bed/bim/fam object
tmp <- tempfile(fileext = ".bed")
bed <- snp_writeBed(fake, tmp)

Read this new file for the first time

rds <- snp_readBed(bed, backingfile

Attach object in R session
fake2 <- snp_attach(rds)

Same content

= tempfile())

all.equal(fake$genotypes[], fake2$genotypes[])
all.equal(fake$fam, fake2$fam)
all.equal(fake$map, fake2$map)

Two different backingfiles
fake$genotypes$backingfile
fake2$genotypes$backingfile

sub_bed Replace extension '.bed’
Description
Replace extension .bed’
Usage
sub_bed(path, replacement = "", stop_if_not_ext = TRUE)
Arguments
path String with extension ’.bed’.
replacement Replacement of ’.bed’. Default replaces by nothing. Can be useful to replace

stop_if_not_ext

Value

e.g. by .bim’ or ’.fam’.

If replacement !=
ing with a’.’).

, whether to error if replacement is not an extension (start-

String with extension ’.bed’ replaced by replacement.

sub_bed

Examples

path <- "toto.bed”

sub_bed(path)

sub_bed(path, ".bim")

sub_bed(path, ".fam")

sub_bed(path, "_QC", stop_if_not_ext = FALSE)

Index

* class
bigSNP-class, 17

+ datasets
LD.wiki34, 22

as_scaling_fun(), 14

bed, 5, 7-10, 14-16, 32, 35, 51, 59

bed (bed-class), 3

bed-class, 3

bed_autoSVD, 12, 13

bed_autoSVD (snp_autoSVD), 30

bed_clumping, 4

bed_cor (snp_cor), 34

bed_counts, 7

bed_cprodVec, 8

bed_1d_scores (snp_ld_scores), 50

bed_MAF, 9

bed_MAF (), 38

bed_pcadapt (snp_pcadapt), 58

bed_prodVec, 10

bed_projectPCA, 11

bed_projectSelfPCA, 13

bed_randomSVD, 13, 14

bed_RC (bed-class), 3

bed_scaleBinom, 15

bed_tcrossprodSelf, 16

bigreadr::fread2(), 41, 65

bigSNP, 28, 40, 69-71, 73, 77-79

bigSNP (bigSNP-class), 17

bigSNP-class, 17

bigstatsr::as_scaling_fun(), 12, 17, 31

bigstatsr::big_spLinReg(), 25

bigstatsr::big_spLogReg(), 25

bigstatsr::big_univLinReg, 39, 53,67, 69

bigstatsr::big_univLogReg, 39, 53,67, 69

bigstatsr::nb_cores(), 6-10, 12-15, 20,
24, 28, 32, 33, 35, 36, 38, 42,44, 47,
51, 52,59, 60,62, 66,70,71,76

block_size, 17

82

coef_to_liab, 18, 45, 47

download_1000G, 19
download_beagle, 19, 34
download_genetic_map, 20
download_genetic_map(), 20
download_plink, 21, 34, 61, 64, 65
download_plink2, 62
download_plink2 (download_plink), 21

FBM, 17, 36

FBM. code256, 6, 13, 18, 24, 31, 35, 36, 38, 51,
52, 56,59, 67,75, 76

foreach: :foreach, 76, 77

LD.wiki34, 6, 22
list.files, 41

predict, 15, 32

R.utils::gunzip(), 28
readRDS, 29

same_ref, 22, 67

SCT, 23

seq_log, 25

SFBM, 42, 43,47

snp_ancestry_summary, 26

snp_asGeneticPos, 27

snp_asGeneticPos2
(download_genetic_map), 20

snp_attach, 28, 70, 72

snp_attachExtdata, 29

snp_autoSVD, 30

snp_beagleImpute, 33

snp_clumping, 67

snp_clumping (bed_clumping), 4

snp_cor, 34

snp_cor(), 48

snp_fastImpute, 35

snp_fastImpute(), 38

INDEX

snp_fastImputeSimple, 37 subset.bigSNP (snp_subset), 77
snp_fastImputeSimple(), 36 svds, 14

snp_fst, 38

snp_gc, 39, 59 tools: :md5sum(), 72

snp_getSamplelInfos, 40
snp_grid_clumping (SCT), 23
snp_grid_PRS (SCT), 23
snp_grid_stacking (SCT), 23
snp_indLRLDR (bed_clumping), 4
snp_lassosum2, 41
snp_ld_scores, 50
snp_ldpred2_auto (snp_ldpred2_inf), 43
snp_ldpred2_grid (snp_ldpred2_inf), 43
snp_ldpred2_inf, 43
snp_ldsc, 46
snp_ldsc?2 (snp_ldsc), 46
snp_ldsplit, 48
snp_MAF, 52
snp_manhattan, 53, 59
snp_match, 54
snp_match(), 23, 26
snp_MAX3, 56
snp_modifyBuild, 55, 57
snp_pcadapt, 39, 53, 58, 69
snp_plinkIBDQC, 60, 64
snp_plinkKINGQC, 61, 61
snp_plinkQC, 61, 62, 63, 70
snp_plinkRmSamples, 64
snp_prodBGEN, 65
snp_projectSelfPCA
(bed_projectSelfPCA), 13
snp_PRS, 67
snp_pruning (bed_clumping), 4
snp_qqg, 59, 68
snp_readBed, 18, 69
snp_readBed?2 (snp_readBed), 69
snp_readBGEN, 71
snp_readBGEN(), 65, 66
snp_readBGI, 72
snp_save, 73
snp_scaleAlpha, 74
snp_scaleBinom (snp_scaleAlpha), 74
snp_simuPheno, 75
snp_split, 76
snp_subset, 77
snp_thr_correct, 78
snp_writeBed, 79
sub_bed, 80

	bed-class
	bed_clumping
	bed_counts
	bed_cprodVec
	bed_MAF
	bed_prodVec
	bed_projectPCA
	bed_projectSelfPCA
	bed_randomSVD
	bed_scaleBinom
	bed_tcrossprodSelf
	bigSNP-class
	coef_to_liab
	download_1000G
	download_beagle
	download_genetic_map
	download_plink
	LD.wiki34
	same_ref
	SCT
	seq_log
	snp_ancestry_summary
	snp_asGeneticPos
	snp_attach
	snp_attachExtdata
	snp_autoSVD
	snp_beagleImpute
	snp_cor
	snp_fastImpute
	snp_fastImputeSimple
	snp_fst
	snp_gc
	snp_getSampleInfos
	snp_lassosum2
	snp_ldpred2_inf
	snp_ldsc
	snp_ldsplit
	snp_ld_scores
	snp_MAF
	snp_manhattan
	snp_match
	snp_MAX3
	snp_modifyBuild
	snp_pcadapt
	snp_plinkIBDQC
	snp_plinkKINGQC
	snp_plinkQC
	snp_plinkRmSamples
	snp_prodBGEN
	snp_PRS
	snp_qq
	snp_readBed
	snp_readBGEN
	snp_readBGI
	snp_save
	snp_scaleAlpha
	snp_simuPheno
	snp_split
	snp_subset
	snp_thr_correct
	snp_writeBed
	sub_bed
	Index

