Package ‘biganalytics’

March 28, 2024

Version 1.1.22

Title Utilities for 'big.matrix' Objects from Package 'bigmemory’
Maintainer Michael J. Kane <bigmemoryauthors@gmail.com>
Contact Jay and Mike <bigmemoryauthors@gmail . com>

Depends stats, utils, bigmemory (>= 4.0.0), foreach, biglm, methods
LinkingTo Rcpp, bigmemory, BH

Description Extend the 'bigmemory' package with various analytics.
Functions 'bigkmeans' and 'binit' may also be used with native R objects.
For 'tapply'-like functions, the bigtabulate package may also be helpful.
For linear algebra support, see 'bigalgebra’. For mutex (locking) support
for advanced shared-memory usage, see 'synchronicity'.

License LGPL-3 | Apache License 2.0
Copyright (C) 2013 John W. Emerson and Michael J. Kane

URL http://www.bigmemory.org
LazyLoad yes

Encoding UTF-8

Biarch yes

RoxygenNote 7.3.1
NeedsCompilation yes

Author John W. Emerson [aut],
Michael J. Kane [cre, aut] (<https://orcid.org/0000-0003-1899-6662>),
Saksham Chandra [ctb]

Repository CRAN
Date/Publication 2024-03-28 16:50:02 UTC

R topics documented:

biganalytics-package
apply,big.matrix-method
bigglm.big.matrix

http://www.bigmemory.org
https://orcid.org/0000-0003-1899-6662

2 apply,big.matrix-method

bigkmeans e e e 4
binit e e 5
colmino e e e 7
Index 10

biganalytics-package Utilities for big.matrix objects of package bigmemory

Description

Extend the bigmemory package with various analytics. In addition to the more obvious sum-
mary statistics (see colmean, etc...), biganalytics offers biglm.big.matrix, bigglm.big.matrix,
bigkmeans, binit, and apply for big.matrix objects. Some of the functions may be used with
native R objects, as well, providing gains in speed and memory-efficiency.

apply,big.matrix-method
apply() for big.matrix objects

Description

apply for big.matrix objects. Note that the performance may be degraded (compared to apply
with regular R matrices) because of S4 overhead associated with extracting data from big.matrix
objects. This sort of limitation is unavoidable and would be the case (or even worse) with other
"custom" data structures. Of course, this would only be partically significant if you are applying
over lengthy rows or columns.

Usage
S4 method for signature 'big.matrix'
apply (X, MARGIN, FUN, ..., simplify = TRUE)
Arguments
X a big.matrix object.
MARGIN the margin. May be may only be 1 or 2, but otherwise conforming to what you

would expect from apply ().
FUN the function to apply.
other parameters to pass to the FUN parameter.

simplify see the base::apply documentation.

bigglm.big.matrix 3

Examples

library(bigmemory)

options(bigmemory.typecast.warning=FALSE)

x <- big.matrix(5, 2, type="integer"”, init=0,
dimnames=1ist(NULL, c("alpha"”, "beta")))

x[,] <= round(rnorm(10))

biganalytics::apply(x, 1, mean)

bigglm.big.matrix Use Thomas Lumley’s “biglm” package with a “big.matrix”

Description

This is a wrapper to Thomas Lumley’s biglm package, allowing it to be used with massive data
stored in big.matrix objects.

Usage

bigglm.big.matrix(
formula,
data,
chunksize = NULL,
fc = NULL,
getNextChunkFunc = NULL

biglm.big.matrix(
formula,
data,
chunksize = NULL,

L

fc = NULL,

getNextChunkFunc = NULL
)
Arguments
formula a model formula.
data abig.matrix.
chunksize an integer maximum size of chunks of data to process iteratively.
fc either column indices or names of variables that are factors.
e options associated with the biglm
getNextChunkFunc

a function which retrieves chunk data

4 bigkmeans

Value

an object of class biglm

Examples

Not run:

library(bigmemory)

x <- matrix(unlist(iris), ncol=5)
colnames(x) <- names(iris)

X <- as.big.matrix(x)

head(x)

silly.biglm <- biglm.big.matrix(Sepal.Length ~ Sepal.Width + Species,
data=x, fc="Species")
summary(silly.biglm)

y <- data.frame(x[,])
y$Species <- as.factor(y$Species)
head(y)

silly.1m <- lm(Sepal.Length ~ Sepal.Width + Species, data=y)
summary(silly.1lm)

End(Not run)

bigkmeans Memory-efficient k-means cluster analysis

Description

k-means cluster analysis without the memory overhead, and possibly in parallel using shared mem-

ory.
Usage
bigkmeans(x, centers, iter.max = 10, nstart = 1, dist = "euclid”)
Arguments
X abig.matrix object.
centers a scalar denoting the number of clusters, or for k clusters, a k by ncol (x) matrix.
iter.max the maximum number of iterations.
nstart number of random starts, to be done in parallel if there is a registered backend

(see below).

dist the distance function. Can be "euclid" or "cosine".

binit 5
Details

The real benefit is the lack of memory overhead compared to the standard kmeans function. Part
of the overhead from kmeans() stems from the way it looks for unique starting centers, and could
be improved upon. The bigkmeans() function works on either regular R matrix objects, or on
big.matrix objects. In either case, it requires no extra memory (beyond the data, other than record-
ing the cluster memberships), whereas kmeans () makes at least two extra copies of the data. And
kmeans() is even worse if multiple starts (nstart>1) are used. If nstart>1 and you are using
bigkmeans() in parallel, a vector of cluster memberships will need to be stored for each worker,
which could be memory-intensive for large data. This isn’t a problem if you use are running the
multiple starts sequentially.

Unless you have a really big data set (where a single run of kmeans not only burns memory but
takes more than a few seconds), use of parallel computing for multiple random starts is unlikely to
be much faster than running iteratively.

Only the algorithm by MacQueen is used here.

Value

An object of class kmeans, just as produced by kmeans.

Note

A comment should be made about the excellent package foreach. By default, it provides foreach,
which is used much like a for loop, here over the nstart and doing a final comparison of all
results).

When a parallel backend has been registered (see packages doSNOW, doMC, and doMPI, for
example), bigkmeans() automatically distributes the nstart random starting points across the
available workers. This is done in shared memory on an SMP, but is distributed on a cluster *IF* the
big.matrix is file-backed. If used on a cluster with an in-RAM big.matrix, it will fail horribly.
We’re considering an extra option as an alternative to the current behavior.

binit Count elements appearing in bins of one or two variables

Description

Provides preliminary counting functionality to eventually support graphical exploration or as an
alternative to table. Note the availability of bigtabulate.

Usage

binit(x, cols, breaks = 10)

Arguments

X
cols

breaks

Details

binit

abig.matrix oramatrix.
a vector of column indices or names of length 1 or 2.

a number of bins to span the range from the maximum to the minimum, or a
vector (1-variable case) or list of two vectors (2-variable case) where each vector
is a triplet of min, max, and number of bins.

The user may specify the number of bins to be used, of equal widths, spanning the range of the data
(the default is 10 bins). The user may also specify the range to be spanned along with the number of
bins, in case a summary of a subrange of the data is desired. Either univariate or bivariate counting
is supported.

The function uses left-closed intervals [a,b) except in the right-most bin, where the interval is en-
tirely closed.

Value

a list containing (a) a vector (1-variable case) or a matrix (2-variable case) of counts of the numbers
of cases appearing in each of the bins, (b) description(s) of bin centers, and (c) description(s) of
breaks between the bins.

Examples

y <- matrix(rnorm(40), 20, 2)
y[1,1] <= NA
X <- as.big.matrix(y, type="double")

x[,1
binit(y,
binit(x,

binit(y,
binit(x,

binit(y,
binit(x,

binit(y,
binit(x,

1:
1:

»
b

NN

, list(c(-1,1,5), c(-1,1,2)))
, list(c(-1,1,5), c(-1,1,2)))

x <- as.big.matrix(matrix(rnorm(400), 200, 2), type="double")

x[,1] <= x[,1]1 + 3

x.binit <- binit(x, 1:2)

filled.contour(round(x.binit$rowcenters,2), round(x.binit$colcenters,?2),
x.binit$counts, xlab="Variable 1",

ylab="Variable 2")

colmin

colmin

Basic summary statistics for “big.matrix” objects

Description

Functions operate on columns of a big.matrix object

Usage

colmin(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colmin(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
min(x, ..., na.rm = FALSE)

colmax(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colmax(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
max(x, ..., na.rm = FALSE)

colprod(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colprod(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
prod(x, ..., na.rm = FALSE)

colsum(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colsum(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
sum(x, ..., na.rm = FALSE)

colrange(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colrange(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'

8 colmin

range(x, ..., na.rm = FALSE)
colmean(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colmean(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
mean(x, ...)

colvar(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colvar(x, cols = NULL, na.rm = FALSE)

colsd(x, cols = NULL, na.rm = FALSE)

S4 method for signature 'big.matrix'
colsd(x, cols = NULL, na.rm = FALSE)

colna(x, cols = NULL)

S4 method for signature 'big.matrix'
colna(x, cols = NULL)

S4 method for signature 'big.matrix'

summary (object)
Arguments
X abig.matrix object.
cols a scalar or vector of column(s) to be summarized.
na.rm if TRUE, remove NA values before summarizing.

options associated with the correspoding default R function.

object abig.matrix object.

Details

These functions essentially apply summary functions to each column (or each specified column) of
the big.matrix in turn.

Value

For colrange, a matrix with two columns and length(cols) rows; column 1 contains the mini-
mum, and column 2 contains the maximum for that column. The other functions return vectors of
length length(cols).

colmin

Examples

X <- as.big.matrix(
matrix(sample(1:10, 20, replace=TRUE), 5, 4,
dimnames=list(NULL, c("a", "b", "c", "d"))))
x[,]
mean(x)
colmean(x)
colmin(x)
colmin(x, 1)
colmax(x)
colmax(x, "b")
colsd(x)
colrange(x)
range(x)
colsum(x)
colprod(x)

Index

_PACKAGE (biganalytics-package), 2 matrix, 6

max,big.matrix-method (colmin), 7
apply, 2 mean,big.matrix-method (colmin), 7
apply,big.matrix-method, 2 min,big.matrix-method (colmin), 7

big.matrix, 24, 6-8

prod,big.matrix-method (colmin), 7
biganalytics (biganalytics-package), 2

biganalytics-package, 2 range,big.matrix-method (colmin), 7
bigglm.big.matrix, 2,3

bigkmeans, 2, 4 sum,big.matrix-method (colmin), 7
biglm, 3 summary,big.matrix-method (colmin), 7

biglm.big.matrix, 2
biglm.big.matrix (bigglm.big.matrix), 3
binit, 2,5

colmax (colmin), 7
colmax,big.matrix-method (colmin), 7
colmean, 2
colmean (colmin), 7
colmean,big.matrix-method (colmin), 7
colmin, 7
colmin,big.matrix-method (colmin), 7
colmin,min, colmax,max,colprod,prod,colsum,sum,colrange, range,colmean,mean,colvar,var,colsd,sd,colna, sun
(colmin), 7
colna (colmin), 7
colna,big.matrix-method (colmin), 7
colprod (colmin), 7
colprod,big.matrix-method (colmin), 7
colrange (colmin), 7
colrange,big.matrix-method (colmin), 7
colsd (colmin), 7
colsd,big.matrix-method (colmin), 7
colsum(colmin), 7
colsum,big.matrix-method (colmin), 7
colvar (colmin), 7
colvar,big.matrix-method (colmin), 7

foreach, 5
formula, 3

kmeans, 5

10

	biganalytics-package
	apply,big.matrix-method
	bigglm.big.matrix
	bigkmeans
	binit
	colmin
	Index

