Package ‘bigSurvSGD’

October 12, 2022
Type Package
Title Big Survival Analysis Using Stochastic Gradient Descent
Version 0.0.1
Date 2020-09-11

Description Fits Cox model via stochastic gradient descent. This implementation avoids computa-
tional instability of the standard Cox Model when dealing large datasets. Further-
more, it scales up with large datasets that do not fit the memory. It also han-
dles large sparse datasets using proximal stochastic gradient descent algorithm. For more de-
tails about the method, please see Aliasghar Tarkhan and Noah Si-
mon (2020) <arXiv:2003.00116v2>.

License GPL (>=2)

Imports Rcpp (>= 1.0.4), bigmemory, doParallel, survival
Depends foreach, parallel, R (>=3.5.0)

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.1.0

BugReports https://github.com/atarkhan/bigSurvSGD/issues
NeedsCompilation yes
Author Aliasghar Tarkhan [aut, cre],
Noah Simon [aut]
Maintainer Aliasghar Tarkhan <atarkhan@uw.edu>
Repository CRAN
Date/Publication 2020-10-01 08:40:02 UTC

R topics documented:

bigSurvSGD
lambdaMaxC
oneChunkC
oneObsPlugingC
sparseSurvData oL
survData oL e

https://arxiv.org/abs/2003.00116v2
https://github.com/atarkhan/bigSurvSGD/issues

2 bigSurvSGD

Index 9

bigSurvSGD Big survival data analysis using stochastic gradient descent

Description

Fits Cox model via stochastic gradient descent (SGD). This implementation avoids computational
instability of the standard Cox Model when datasets are large. Furthermore, it scales up with very
large datasets that do not fit the memory. It also handles large sparse datasets using the proximal
stochastic gradient descent algorithm. For more details about the method, please see Aliasghar
Tarkhan and Noah Simon (2020) <arXiv:2003.00116v2>.

Usage
bigSurvSGD(
formula = Surv(time = time, status = status) ~ .,
data,
norm.method = "standardize"”,

features.mean = NULL,
features.sd = NULL,
opt.method = "AMSGrad”,
beta.init = NULL,
beta.type = "averaged”,
lr.const = 0.12,

lr.tau = 0.5,
strata.size = 20,
batch.size = 1,
num.epoch = 100,

bl = 0.9,

b2 = 0.99,

eps = 1e-08,
inference.method = "plugin”,

num.boot = 1000,
num.epoch.boot = 100,
boot.method = "SGD",
lr.const.boot = 0.12,
1r.tau.boot = 0.5,
num.sample.strata = 1000,
sig.level = 0.05,

betad = 0,

alpha = NULL,

lambda = NULL,

nlambda = 100,
num.strata.lambda = 10,
lambda.scale = 1,
parallel.flag = FALSE,
num.cores = NULL,

bigSurvSGD 3

bigmemory.flag = FALSE,
num.rows.chunk = 1e+06,
col.names = NULL

S3 method for class 'bigSurvSGD'

print(x, ...)

S3 method for class 'bigSurvSGD'

norm.method

features.mean

features.sd

opt.method

beta.init

beta.type

lr.const

1r.tau

strata.size
batch.size

num. epoch

plot(x, ...)
Arguments
formula a formula in format of Surv(time=time, status=status)~featurel+feature2+... de-
scribing time-to-event variable, status variable, and features to be included in
model. Default is "Surv(time, status)~." that regresses on all the features in-
cluded in the dataset.
data survival dataset. It can be in form of data.frame or a path to a .csv file if we aim

not to read data off the memory. If we aim to read data off the memory, it must
be a path to a .csv data.

normalization method before starting the analysis. "center" only centers the
features by subtracting the mean, "scale" only scales the features by dividing
features to their standard deviation, "normalization" does both centering and
scaling, and "none" does not perform any pre-processing. The default is "nor-
malization".

mean vector of features used for normalization. The default is NULL where our
alorithm calculates it.

standard deviation vector of features used for normalization. The default is
NULL where our alorithm calculates it.

optimization algorithm: "SGD" estimates the coefficients using the standard
stochastic gradient descent; "ADAM" estimates the coefficients using ADAM
optimizer; "AMSGrad" estimates the coefficients using AMSGrad optimizer.
The default is "AMSGrad".

initialization for coefficient. The default is NULL where our algorithm starts
with an all-zero vector.

type of coefficient to be returned. If specified as "single", the last updated coef-
ficient is returned. If specified as "averaged", the Polyak-Ruppert (i.e., average
over iterates) is returned. The default is "averaged".

proportional constant for the learning rate. The higher values give faster but
noisier estimates and vice versa. The default is 0.12 for "AMSGrad" optimizer.

the power of iteration index in the learning rate. The bigger value represents the
faster decay in the lerning rate and vice versa. The default is 0.5.

strata size. The default is 20 patients per stratum.
batch size. The default is 1 stratum per batch.
Number of epochs for the SGD-based algorithms. The default is 100.

bigSurvSGD

b1 hyper parameter for "AMSGrad" and "ADAM". The default is 0.9. See https:
//arxiv.org/abs/1412.6980 for "ADMA" and https://arxiv.org/abs/1904.
03590 for "AMSGrad".

b2 hyper parameter for "AMSGrad" and "ADAM". The default is 0.99.

eps hyper parameter for "AMSGrad" and "ADAM". The default is le-8.

inference.method
method for inference, i.e., constructing confidence interval (CI): "bootstrap"
constructs CI usin non-parametric bootstrap; "plugin": constructs CI using asymp-
totic properties of U-statistics; The default is "plugin" which returns estimates,
confidence intervals, test statistics, and p-values.

num.boot number of boostrap resamples. Default is 1000.

num.epoch.boot number of epochs for each boorstrap resamples. Default is 100.

boot.method optimization method for bootstrap. Default is "SGD".

lr.const.boot proportional constant for the learning rate for bootstrap resamples. Defauls is
"0.12"

1r.tau.boot power of iteration index in the learning rate for bootstrap resamples. Defauls is
"0.5"

num.sample.strata
number of sample strata per observation to estimate standard error using plugin
method. Default value is 1000.

sig.level significance level for constructing (1-sig.level) confidence interval. Default is
0.05.
beta@ null vector of coefficients for calculating p-value using plugin method. Default

1S zero vector.

alpha penalty coeficient between 0 and 1. alpha=0 only considers the ridge penlaty
and alpha=1 only considers the lasso penalty. Otherwise, it considers a convex
combination of these two penalties. Defualt is NULL, i.e., no penalty.

lambda coeficient for the elastic net penalty. There are three possible scenarios: (1) If
alpha is defined NULL, no penalty (ridge or lasso) is considered regardless of
values of lambda; (2) If alpha is not NULL but lambda is NULL, it first calcu-
lates the largest value of lambda (lambda.max) for which all coefficients become
zero. Then it considers an exponentially decreasing sequence of lambda start-
ing from lambda.max ges toward lambda.min (lambda.min=0.01*lambda.max if
p>n, otherewise lambda.min=0.0001*lambda.max) and return their correspond-
ing coefficients. (3) If a value for lambda is specified, our algorithm returns
coefficients for specified pair of (lambda, alpha). The default is NULL.

nlambda number of elements to be considered for scenario (2) above. Default is 100.

num.strata.lambda

number of sample strata to estimate maximum lambda (lambda.max) when al-
pha is not NULL and lambda=NULL (see lambda).

lambda.scale we scale lambda.max to make sure we start with a lambda for which we get all
coefficients equal to 0. Default is 1.

parallel.flag to specify if we want to use parallel computing for inference. Default is "F", i.e.,
no parallel computing.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1904.03590
https://arxiv.org/abs/1904.03590

bigSurvSGD 5

num.cores number of cores for parallel computing. The default is "NULL" for which if
parallel.flag=T, it uses all available cores on your system.

bigmemory.flag determins if data needs to be read off the memory in case data does not fit mem-
ory. Default is F, not to use bigmemoty package.

num. rows.chunk maximum number of rows per chunk to be read off the memory. This is crucial
for the large datasets that do not fit memory. Use fewer number of rows for
the large number of features, especially if you receive an error due to lack of
memory. The default value is 1e6 rows.

col.names a vector of characters for column names of data. If NULL, the column names
of dataset "data" will be selected. The default is NULL (i.e., reads columns of
given dataset).

X a ’bigSurvSGD’ object

additional argument used

Value

coef: Log of hazards ratio. If no inference is used, it returns a vector for estimated coefficients: If
inference is used, it returns a matrix including estimates and confidence intervals of coefficients. In
case of penalization, it resturns a matrix with columns corresponding to lambdas.

coef.exp: Exponentiated version of coef (hazards ratio).
lambda: Returns lambda(s) used for penalizarion.

alpha: Returns alpha used for penalizarion.

features.mean: Returns means of features, if given or calculated

features.sd: Returns standard deviations of features, if given or calculated.

Examples

Simulated survival data - just estimation and no confidence interval

data(survData) # a dataset with 1000 observations (rows) and 10 features (columns)
resultsBig <- bigSurvSGD(formula=Surv(time, status)~.,data=survData, inference.method="none",
parallel.flag=TRUE, num.cores=2)

resultsBig

Simulated survival data

data(survData) # a dataset with 1000 observations (rows) and 10 features (columns)
resultsBig <- bigSurvSGD(formula=Surv(time, status)~.,data=survData, inference="none",
parallel.flag=TRUE, num.cores=2)

resultsBig

Simulated survival data to be read off the memory

data(survData) # a dataset with 1000 observations (rows) and 10 features (columns)
Save dataset survSGD as bigSurvSGD to be read chunk-by-chunk off the memory
write.csv(survData, file.path(tempdir(), "bigSurvData.csv"), row.names = FALSE)

6 oneObsPlugingC

dataPath <- file.path(tempdir(), "bigSurvData.csv") # path to where data is
resultsBigOffMemory <- bigSurvSGD(formula=Surv(time, status)~., data=dataPath,
bigmemory.flag=TRUE, parallel.flag=TRUE, num.cores=2)

resultsBigOffMemory

Simulated sparse survival data

data(sparseSurvData) # a sparse data with 100 observations (rows) and 150 features (columns)
resultsBigSparse <- bigSurvSGD(formula=Surv(time, status)~.,data=sparseSurvData,
alpha=0.9, lambda=0.1)

resultsBigSparse
lambdaMaxC Calculates the maximum penalty coefficient lambda for which all co-
efficients become zero
Description

Calculates the maximum penalty coefficient lambda for which all coefficients become zero

oneChunkC Updates the coefficients based on one pass of data

Description

Updates the coefficients based on one pass of data

oneObsPlugingC Calculates the gradient and Hessian corresponding to one individual

Description

Calculates the gradient and Hessian corresponding to one individual

sparseSurvData 7

sparseSurvData Simulated sparse survival dataset

Description

Simulated sparse survival dataset

Usage

data(sparseSurvData)

Format

An object of class data.frame including 100 observations (rows) and 150 features (columns)

References

Ralf Bender, Thomas Augustin, and Maria Blettner (Generating survival times to simulate Cox
proportional hazards models)

Examples

data(sparseSurvData)

survData Simulated survival dataset

Description

Simulated survival dataset

Usage

data(survData)

Format

An object of class data.frame including 1000 observations (rows) and 10 features (columns)

References

Ralf Bender, Thomas Augustin, and Maria Blettner (Generating survival times to simulate Cox
proportional hazards models)

https://onlinelibrary.wiley.com/doi/10.1002/sim.2059
https://onlinelibrary.wiley.com/doi/10.1002/sim.2059
https://onlinelibrary.wiley.com/doi/10.1002/sim.2059
https://onlinelibrary.wiley.com/doi/10.1002/sim.2059

8 survData

Examples

data(survData)

Index

x datasets
sparseSurvData, 7
survData, 7

bigSurvSGD, 2
lambdaMaxC, 6

oneChunkC, 6
oneObsPlugingC, 6

plot.bigSurvSGD (bigSurvSGD), 2
print.bigSurvSGD (bigSurvSGD), 2

sparseSurvData, 7
survData, 7

	bigSurvSGD
	lambdaMaxC
	oneChunkC
	oneObsPlugingC
	sparseSurvData
	survData
	Index

