
Package ‘bggum’
October 12, 2022

Title Bayesian Estimation of Generalized Graded Unfolding Model
Parameters

Version 1.0.2

Date 2020-01-18

Description Provides a Metropolis-coupled Markov chain Monte Carlo sampler,
post-processing and parameter estimation functions, and plotting utilities
for the generalized graded unfolding model of Roberts, Donoghue, and
Laughlin (2000) <doi:10.1177/01466216000241001>.

URL https://github.com/duckmayr/bggum

BugReports https://github.com/duckmayr/bggum/issues

Depends R (>= 3.5.0)

Imports stats, graphics, Rcpp (>= 0.12.14)

LinkingTo Rcpp, RcppDist

License GPL (>= 2)

Suggests devtools, testthat, covr, knitr, rmarkdown, dplyr, tidyr

Collate 'bggum-package.R' 'RcppExports.R' 'ggumProbability.R'
'tune_proposals.R' 'tune_temps.R' 'ggumMCMC.R' 'ggumMC3.R'
'ggum_simulation.R' 'color_palettes.R' 'irf.R' 'icc.R'
'summary.R' 'post_process.R'

Encoding UTF-8

RoxygenNote 6.1.1

VignetteBuilder knitr

NeedsCompilation yes

Author JBrandon Duck-Mayr [aut, cre] (<https://orcid.org/0000-0002-2231-1294>),
Jacob Montgomery [aut],
Patrick Silva [ctb],
Luwei Ying [ctb]

Maintainer JBrandon Duck-Mayr <j.duckmayr@gmail.com>

Repository CRAN

Date/Publication 2020-01-19 08:40:02 UTC

1

https://doi.org/10.1177/01466216000241001
https://github.com/duckmayr/bggum
https://github.com/duckmayr/bggum/issues
https://orcid.org/0000-0002-2231-1294

2 bggum

R topics documented:

bggum . 2
color_palettes . 3
ggumMC3 . 4
ggumMCMC . 8
ggumProbability . 10
ggum_simulation . 12
icc . 13
irf . 15
post_process . 16
summary.ggum . 18
tune_proposals . 20
tune_temperatures . 22

Index 24

bggum bggum

Description

bggum provides R tools for the Bayesian estimation of generalized graded unfolding model (Roberts,
Donoghue, and Laughlin 2000) parameters. Please see the vignette (via vignette("bggum")) for a
practical guide to Bayesian estimation of GGUM parameters. Duck-Mayr and Montgomery (2019)
provides a more detailed theoretical discussion of Bayesian estimation of GGUM parameters.

Author(s)

JBrandon Duck-Mayr and Jacob Montgomery

References

Duck-Mayr, JBrandon, and Jacob Montgomery. 2019. “Ends Against the Middle: Scaling Votes
When Ideological Opposites Behave the Same for Antithetical Reasons.” http://jbduckmayr.
com/papers/ggum.pdf.

Roberts, James S., John R. Donoghue, and James E. Laughlin. 2000. “A General Item Response
Theory Model for Unfolding Unidimensional Polytomous Responses.” Applied Psychological Mea-
surement 24(1): 3–32.

http://jbduckmayr.com/papers/ggum.pdf
http://jbduckmayr.com/papers/ggum.pdf

color_palettes 3

color_palettes Color palettes provided by bggum.

Description

bggum provides color palettes that can be used with its plotting functions. The okabe_ito palette
is the eight color, colorblind-friendly palette from Okabe and Ito (2008). The tango palette is
comprised of six colors from the Tango palette (Tango Desktop Project 2013).

Usage

okabe_ito(n)

tango(n)

Arguments

n An integer vector of length one; the number of colors to return. If n is greater
than the number of colors in the palette, the colors will be recycled so that the
result is of length n.

Palettes provided

okabe_ito c("#e69f00", "#56b4e9", "#009e73", "#f0e442", "#0072b2", "#d55e00", "#cc79a7",
"#000000")

tango c("#cc0000", "#75507b", "#73d216", "#f57900", "#3465a4", "#555753")

References

Okabe, Masataka and Kei Ito. 2008. “Color Universal Design.” https://jfly.uni-koeln.de/
color/.

Tango Desktop Project. 2013. “Tango Icon Theme Guidelines.” https://web.archive.org/web/
20160202102503/http://tango.freedesktop.org/Tango_Icon_Theme_Guidelines

Examples

Palettes that are a subset of the total available colors
okabe_ito(3)
tango(3)
Palettes that need more colors than are available -- leads to recycling
okabe_ito(10)
tango(10)

https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/color/
https://web.archive.org/web/20160202102503/http://tango.freedesktop.org/Tango_Icon_Theme_Guidelines
https://web.archive.org/web/20160202102503/http://tango.freedesktop.org/Tango_Icon_Theme_Guidelines

4 ggumMC3

ggumMC3 GGUM MC3

Description

Metropolis Coupled Markov Chain Monte Carlo (MC3) Sampling for the GGUM

Usage

ggumMC3(data, sample_iterations = 10000, burn_iterations = 10000,
sd_tune_iterations = 5000, temp_tune_iterations = 5000,
temp_n_draws = 2500, swap_interval = 1, flip_interval = NA,
n_temps = length(temps), temps = NULL, optimize_temps = TRUE,
temp_multiplier = 0.1, proposal_sds = NULL, theta_init = NULL,
alpha_init = NULL, delta_init = NULL, tau_init = NULL,
theta_prior_params = c(0, 1), alpha_prior_params = c(1.5, 1.5, 0.25,
4), delta_prior_params = c(2, 2, -5, 5), tau_prior_params = c(2, 2,
-6, 6), return_sds = TRUE, return_temps = TRUE)

Arguments

data An integer matrix giving the individuals’ responses; note the item options should
be of the form 0, 1, ... (an example of preparing data for analysis is given in the
vignette, available via vignette("bggum"))

sample_iterations

An integer vector of length one giving the number of iterations the sampler
should complete (default is 10000)

burn_iterations

An integer vector of length one giving the number of iterations to burn in (default
is 10000)

sd_tune_iterations

An integer vector of length one; the number of iterations to use to tune the
proposals before the burn-in period begins (default is 5000). If 0 is given, the
proposals are not tuned.

temp_tune_iterations

An integer vector of length one; if a temperature schedule is not provided in
the temps argument and optimize_temps = TRUE, temp_tune_iterations
gives the number of iterations to use to tune each temperature before the burn-in
period begins (default is 5000) – see tune_temperatures

temp_n_draws An integer vector of length one; if a temperature schedule is not provided in
the temps argument and optimize_temps = TRUE, temp_n_draws gives the
number of draws from the temperature finding algorithm to calculate each tem-
perature (default is 2500) – see tune_temperatures

swap_interval The period by which to attempt chain swaps; e.g. if swap_interval = 100, a state
swap will be proposed between two adjacent chains every 100 iterations (default
is 1)

ggumMC3 5

flip_interval (Optional) If given, provides the number of iterations after which the sign of the
thetas and deltas should be changed. For example, if flip_interval = 1000,
every 1000 iterations the theta and delta parameters will be multiplied by -1 (a
valid parameter value change as discussed in Geyer (1991)).

n_temps The number of chains; should only be given if temps is not specified

temps (Optional) A numeric vector giving the temperatures; if not provided and optimize_temps
= FALSE, each temperature T_t for t > 1 is given by 1 / (1 + temp_multiplier
* (t-1)), and T_1 = 1, while if optimize_temps = TRUE, the temperature sched-
ule is determined according to an optimal temperature finding algorithm – see
tune_temperatures

optimize_temps A logical vector of length one; if TRUE and a temperature schedule is not pro-
vided in the temps argument, an algorithm is run to determine the optimal tem-
perature schedule (default is TRUE) – see tune_temperatures

temp_multiplier

A numeric vector of length one; if a temperature schedule is not provided and
optimize_temps = FALSE, controls the differences between temperatures as de-
scribed in the description of the temps argument (default is 0.1)

proposal_sds (Optional) A list of length four where is element is a numeric vector giving stan-
dard deviations for the proposals; the first element should be a numeric vector
with a standard deviation for the proposal for each respondent’s theta parameter
(the latent trait), the second a vector with a standard deviation for each item’s
alpha (discrimination) parameter, the third a vector with a standard deviation for
each item’s delta (location) parameter, and the fourth a vector with a standard
deviation for each item’s tau (option threshold) parameters. If not given, the
standard deviations are all set to 1.0 before any tuning begins.

theta_init (Optional) Either a numeric vector giving an initial value for each respondent’s
theta parameter, or a numeric matrix giving an initial value for each respondent’s
theta parameter for each parallel chain; if not given, the initial values are drawn
from the prior distribution

alpha_init (Optional) Either a numeric vector giving an initial value for each item’s alpha
parameter, or a numeric matrix giving an initial value for each item’s alpha pa-
rameter for each parallel chain; if not given, the initial values are drawn from
the prior distribution

delta_init (Optional) Either a numeric vector giving an initial value for each item’s delta
parameter, or a numeric matrix giving an initial value for each item’s delta pa-
rameter for each parallel chain; if not given, the initial values are drawn from
the prior distribution

tau_init (Optional) Either a list giving an initial value for each item’s tau vector, or a list
of lists giving an initial value for each item’s tau vector for each parallel chain;
if not given, the initial values are drawn from the prior distribution

theta_prior_params

A numeric vector of length two; the mean and standard deviation of theta pa-
rameters’ prior distribution (where the theta parameters have a normal prior; the
default is 0 and 1)

6 ggumMC3

alpha_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for alpha parameters’ prior distribution (where the alpha parameters have a four
parameter beta prior; the default is 1.5, 1.5, 0.25, and 4)

delta_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for delta parameters’ prior distribution (where the delta parameters have a four
parameter beta prior; the default is 2, 2, -5, and 5)

tau_prior_params

A numeric vector of length four; the two shape parameters and a and b val-
ues for tau parameters’ prior distribution (where the tau parameters have a four
parameter beta prior; the default is 2, 2, -6, and 6)

return_sds A logical vector of length one; if TRUE, the proposal standard deviations are
stored in an attribute of the returned object named "proposal_sds." The default
is TRUE.

return_temps A logical vector of length one; if TRUE, the temperatures of the parallel chains
are stored in an attribute of the returned object named "temps." The default is
TRUE.

Details

ggumMC3 provides R implementation of the MC3 algorithm from Duck-Mayr and Montgomery
(2019). Some details are provided in this help file, but please see the vignette (via vignette("bggum"))
for a full in-depth practical guide to Bayesian estimation of GGUM parameters.

Our sampler creates random initial values for the parameters of the model, according to their prior
distributions. N parallel chains are run, each at a different inverse "temperature"; the first "cold"
chain has an inverse temperature of 1, and each subsequent chain has increasingly lower values
(still greater than zero, i.e. fractional values). At each iteration, for each chain, new parameter
values are proposed from a normal distribution with a mean of the current parameter value, and the
proposal is accepted probabilistically using a Metropolis-Hastings acceptance ratio. The purpose
of the chains’ "temperatures" is to increase the probability of accepting proposals for chains other
than the "cold" chain recorded for inference; the acceptance probability in the Metropolis-Hastings
update steps for parameter values are raised to the power of the chain’s inverse temperature. After
every swap_intervalth iteration of the sampler, a proposal is made to swap states between adjacent
chains as a Metropolis step. For details, please read the vignette via vignette("bggum"), or see
Duck-Mayr and Montgomery (2019); see also Gill (2008) and Geyer (1991).

Before burn-in, the standard deviation of the proposal densities can be tuned to ensure that the ac-
ceptance rate is neither too high nor too low (we keep the acceptance rate between 0.2 and 0.25).
This is done if proposal standard deviations are not provided as an argument and sd_tune_iterations
is greater than 0.

The temperature schedule can also be tuned using an implementation of the temperature tuning
algorithm in Atchadé, Roberts, and Rosenthal (2011). This is done if a temperature schedule is not
provided as an argument and optimize_temps = TRUE. If a temperature schedule is not provided
and optimize_temps = FALSE, each temperature T_t for t > 1 is given by 1 / (1 + temp_multiplier
* (t-1)), and T_1 = 1.

ggumMC3 7

Value

A numeric matrix giving the parameter values at each iteration for the cold chain. The matrix will
additionally have classes "ggum" (so that summary.ggum can be called on the result) and "mcmc"
with an "mcpar" attribute (so that functions from the coda package can be used, e.g. to assess
convergence). If return_sds is TRUE, the result also has an attribute "proposal_sds", which will
be a list of length four giving the standard deviations of the proposal densities for the theta, alpha,
delta, and tau parameters respectively. If return_temps is TRUE, the result also has an attribute
"temps", which will be a numeric vector giving the parallel chains’ inverse temperatures.

References

Atchadé, Yves F., Gareth O. Roberts, and Jeffrey S. Rosenthal. 2011. “Towards Optimal Scaling of
Metropolis-Coupled Markov Chain Monte Carlo.” Statistics and Computing 21(4): 555–68.

Duck-Mayr, JBrandon, and Jacob Montgomery. 2019. “Ends Against the Middle: Scaling Votes
When Ideological Opposites Behave the Same for Antithetical Reasons.” http://jbduckmayr.
com/papers/ggum.pdf.

Geyer, Charles J. 1991. “Markov Chain Monte Carlo Maximum Likelihood.” In Computing Science
and Statistics. Proceedings of the 23rd Symposium on the Interface, edited by E. M. Keramides,
156–63. Fairfax Station, VA: Interface Foundation.

Gill, Jeff. 2008. Bayesian Methods: A Social and Behavioral Sciences Approach. 2d ed. Boca
Raton, FL: Taylor & Francis.

See Also

ggumProbability, ggumMCMC, tune_temperatures

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of sampling interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can generate posterior draws:
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
draws <- ggumMC3(data = sim_data$response_matrix, n_temps = 2,

sd_tune_iterations = 100, temp_tune_iterations = 100,
temp_n_draws = 50,
burn_iterations = 100, sample_iterations = 100)

http://jbduckmayr.com/papers/ggum.pdf
http://jbduckmayr.com/papers/ggum.pdf

8 ggumMCMC

ggumMCMC GGUM MCMC Sampler

Description

MCMC sampler for the generalized graded unfolding model (GGUM), utilizing a Metropolis-
Hastings algorithm

Usage

ggumMCMC(data, sample_iterations = 50000, burn_iterations = 50000,
tune_iterations = 5000, flip_interval = NA, proposal_sds = NULL,
theta_init = NULL, alpha_init = NULL, delta_init = NULL,
tau_init = NULL, theta_prior_params = c(0, 1),
alpha_prior_params = c(1.5, 1.5, 0.25, 4), delta_prior_params = c(2,
2, -5, 5), tau_prior_params = c(2, 2, -6, 6), return_sds = TRUE)

Arguments

data An integer matrix giving the response by each respondent to each item; note the
item options should be of the form 0, 1, ... (an example of preparing data for
analysis is given in the vignette, available via vignette("bggum"))

sample_iterations

An integer vector of length one; the number of iterations the sampler should
store (default is 50000)

burn_iterations

An integer vector of length one; the number of "burn-in" iterations to run, during
which parameter draws are not stored (default is 50000).

tune_iterations

An integer vector of length one; the number of iterations to use to tune the
proposals before the burn-in period begins (default is 5000). If 0 is given, the
proposals are not tuned.

flip_interval (Optional) If given, provides the number of iterations after which the sign of the
thetas and deltas should be changed. For example, if flip_interval = 1000,
every 1000 iterations the theta and delta parameters will be multiplied by -1 (a
valid parameter value change as discussed in Geyer (1991)).

proposal_sds (Optional) A list of length four where is element is a numeric vector giving stan-
dard deviations for the proposals; the first element should be a numeric vector
with a standard deviation for the proposal for each respondent’s theta parameter
(the latent trait), the second a vector with a standard deviation for each item’s
alpha (discrimination) parameter, the third a vector with a standard deviation for
each item’s delta (location) parameter, and the fourth a vector with a standard
deviation for each item’s tau (option threshold) parameters. If not given, the
standard deviations are all set to 1.0 before any tuning begins.

theta_init (Optional) A numeric vector giving an initial value for each respondent’s theta
parameter; if not given, the initial values are drawn from the prior distribution

ggumMCMC 9

alpha_init (Optional) A numeric vector giving an initial value for each item’s alpha param-
eter; if not given, the initial values are drawn from the prior distribution

delta_init (Optional) A numeric vector giving an initial value for each item’s delta param-
eter; if not given, the initial values are drawn from the prior distribution

tau_init (Optional) A list giving an initial value for each item’s tau vector; if not given,
the initial values are drawn from the prior distribution

theta_prior_params

A numeric vector of length two; the mean and standard deviation of theta pa-
rameters’ prior distribution (where the theta parameters have a normal prior; the
default is 0 and 1)

alpha_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for alpha parameters’ prior distribution (where the alpha parameters have a four
parameter beta prior; the default is 1.5, 1.5, 0.25, and 4)

delta_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for delta parameters’ prior distribution (where the delta parameters have a four
parameter beta prior; the default is 2, 2, -5, and 5)

tau_prior_params

A numeric vector of length four; the two shape parameters and a and b val-
ues for tau parameters’ prior distribution (where the tau parameters have a four
parameter beta prior; the default is 2, 2, -6, and 6)

return_sds A logical vector of length one; if TRUE, the proposal standard deviations are
stored in an attribute of the returned object named "proposal_sds." The default
is TRUE.

Details

ggumMCMC provides R implementation of an MCMC sampler for the GGUM, based heavily on the
algorithm given in de la Torre et al (2006); though the package allows parameter estimation from
R, the functions are actually written in C++ to allow for reasonable execution time. Some details are
provided in this help file, but please see the vignette (via vignette("bggum")) for a full in-depth
practical guide to Bayesian estimation of GGUM parameters.

Our sampler creates random initial values for the parameters of the model, according to their prior
distributions. At each iteration, new parameter values are proposed from a normal distribution with a
mean of the current parameter value, and the proposal is accepted probabilistically using a standard
Metropolis-Hastings acceptance ratio. During burn-in, parameter draws are not stored. Before
burn-in, the standard deviation of the proposal densities can be tuned to ensure that the acceptance
rate is neither too high nor too low (we keep the acceptance rate between 0.2 and 0.25). This is
done if proposal standard deviations are not provided as an argument and sd_tune_iterations is
greater than 0.

Value

A numeric matrix with sample_iterations rows and one column for every parameter of the model,
so that each element of the matrix gives the value of a parameter for a particular iteration of the
MCMC algorithm. The matrix will additionally have classes "ggum" (so that summary.ggum can

10 ggumProbability

be called on the result) and "mcmc" with an "mcpar" attribute (so that functions from the coda
package can be used, e.g. to assess convergence). If return_sds is TRUE, the result also has an
attribute "proposal_sds", which will be a list of length four giving the standard deviations of the
proposal densities for the theta, alpha, delta, and tau parameters respectively.

References

de la Torre, Jimmy, Stephen Stark, and Oleksandr S. Chernyshenko. 2006. “Markov Chain Monte
Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model.” Applied Psy-
chological Measurement 30(3): 216–232.

Geyer, Charles J. 1991. “Markov Chain Monte Carlo Maximum Likelihood.” In Computing Science
and Statistics. Proceedings of the 23rd Symposium on the Interface, edited by E. M. Keramides,
156–63. Fairfax Station, VA: Interface Foundation.

Roberts, James S., John R. Donoghue, and James E. Laughlin. 2000. “A General Item Response
Theory Model for Unfolding Unidimensional Polytomous Responses.” Applied Psychological Mea-
surement 24(1): 3–32.

See Also

ggumProbability, ggumMC3

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of sampling interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can generate posterior draws:
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
draws <- ggumMCMC(data = sim_data$response_matrix,

tune_iterations = 100,
burn_iterations = 100,
sample_iterations = 100)

ggumProbability GGUM Probability Function

Description

Calculate the probability of a response according to the GGUM

Usage

ggumProbability(response, theta, alpha, delta, tau)

ggumProbability 11

Arguments

response A numeric vector or matrix giving the response(s) for which probability should
be calculated.

theta A numeric vector of latent trait score(s) for respondent(s)

alpha A numeric vector of discrimination parameter(s)

delta A numeric vector of location parameter(s)

tau A numeric vector (if responses to one item are given) or a list (if responses to
multiple items are given); the tau parameters for each item is a numeric vector
of length K (the number of possible responses) giving the options’ threshold
parameters; the first element of tau should be zero

Details

The General Graded Unfolding Model (GGUM) is an item response model designed to consider
the possibility of disagreement for opposite reasons. This function gives the probability of a re-
spondent’s response to a test item given item and respondent parameters. The user can calculate the
probability of one particular response to an item, for any number of the possible responses to the
item, the probability of a vector of responses (either responses by one person to multiple items, or
by multiple people to one item), or the probability of each response in a response matrix.

The probability that respondent i chooses option k for item j is given by

exp(αj [k(θi − δj)−
∑k

m=0 τjm]) + exp(αj [(2K − k − 1)(θi − δj)−
∑k

m=0 τjm])∑K−1
l=0 [exp(αj [l(θi − δj)−

∑l
m=0 τjm]) + exp(αj [(2K − l − 1)(θi − δj)−

∑l
m=0 τjm])]

, where θi is i’s latent trait parameter, αj is the item’s discrimination parameter, δj is the item’s
location parameter, τj0, . . . , τj(K−1) are the options’ threshold parameters, and τj0 is 0, K is the
number of options for item j, and the options are indexed by k = 0, . . . ,K − 1.

Value

A matrix or vector of the same dimensions/length of response.

Note

Please note that items’ options should be zero-indexed.

References

de la Torre, Jimmy, Stephen Stark, and Oleksandr S. Chernyshenko. 2006. “Markov Chain Monte
Carlo Estimation of Item Parameters for the Generalized Graded Unfolding Model.” Applied Psy-
chological Measurement 30(3): 216–232.

Roberts, James S., John R. Donoghue, and James E. Laughlin. 2000. “A General Item Response
Theory Model for Unfolding Unidimensional Polytomous Responses.” Applied Psychological Mea-
surement 24(1): 3–32.

12 ggum_simulation

Examples

What is the probability of a 1 response to a dichotomous item
with discrimination parameter 2, location parameter 0, and
option threshold vector (0, -1) for respondents at -1, 0, and 1
on the latent scale?
ggumProbability(response = rep(1, 3), theta = c(-1, 0, 1), alpha = 2,

delta = 0, tau = c(0, -1))
We can also use this function for getting the probability of all
observed responses given the data and item and person parameter estimtes.
Here's an example of that with some simulated data:
Simulate data with 10 items, each with four options, and 100 respondents
set.seed(123)
sim_data <- ggum_simulation(100, 10, 4)
head(ggumProbability(response = sim_data$response_matrix,

theta = sim_data$theta,
alpha = sim_data$alpha,
delta = sim_data$delta,
tau = sim_data$tau))

ggum_simulation GGUM Simulation

Description

Generates randomly drawn item and person parameters, and simulated responses.

Usage

ggum_simulation(n, m, K, theta = NULL, alpha = NULL, delta = NULL,
tau = NULL, theta_params = c(0, 1), alpha_params = c(1.5, 1.5,
0.25, 4), delta_params = c(2, 2, -5, 5), tau_params = c(1.5, 1.5, -2,
0))

Arguments

n An integer vector of length one giving the number of respondents

m An integer vector of length one giving the number of items

K An integer vector giving the number of options for each item; if the vector is of
length one, all m items will have the same number of options.

theta (Optional) A numeric vector of respondents’ latent traits; if not given, the values
are drawn from a normal distribution whose mean and standard deviation are
given by the theta_params parameter

alpha (Optional) A numeric vector of items’ discrimination parameters; if not given,
the values are drawn from a four parameter beta distribution whose parameters
are given by alpha_params

icc 13

delta (Optional) A numeric vector of items’ location parameters; if not given, the
values are drawn from a four parameter beta distribution whose parameters are
given by delta_params

tau (Optional) A list of numeric vectors giving each item’s option thresholds; if
not given, the values are drawn from a four parameter beta distribution whose
parameters are given by tau_params

theta_params A numeric vector of length two; the mean and standard deviation of the normal
distribution theta is drawn from

alpha_params A numeric vector of length four; the two shape parameters and a and b values
for the four parameter beta distribution alpha is drawn from; the default is 1.5,
1.5, 0.25, and 4

delta_params A numeric vector of length four; the two shape parameters and a and b values
for the four parameter beta distribution delta is drawn from; the default is 2, 2,
-5, and 5

tau_params A numeric vector of length four;the two shape parameters and a and b values for
the four parameter beta distribution each tau vector is drawn from; the default is
1.5, 1.5, -2, and 0

Value

A list with five elements; "theta" containing the theta draws, "alpha" containing the alpha draws,
"delta" containing the delta draws, "tau" containing the tau draws, and "response_matrix" containing
the simulated response matrix.

See Also

ggumProbability

Examples

Simulate data with 10 items, each with four options, and 100 respondents
set.seed(123)
sim_data <- ggum_simulation(100, 10, 4)
str(sim_data)

icc Item Characteristic Curve

Description

Plots item characteristic curves given alpha, delta, and tau parameters.

Usage

icc(a, d, t, from = -3, to = 3, by = 0.01, layout_matrix = 1,
main_title = "Item Characteristic Curve", sub = "",
color = "black", plot_responses = FALSE, thetas = NULL,
responses = NULL, response_color = "#0000005f")

14 icc

Arguments

a A numeric vector of alpha parameters

d A numeric vector of delta parameters

t Either a list of numeric vectors for the tau parameters for each option, or a
numeric vector if the IRF for only one item is desired – note the first element of
each vector should be zero

from A numeric vector of length one, the lowest theta value to estimate response
probabilities for; default is -3

to A numeric vector of length one, the highest theta value to estimate response
probabilities for; default is 3

by A numeric vector of length one giving the spacing between theta values; default
is 0.01

layout_matrix An integer matrix dictating the layout of the plot; the default is a one-column
matrix with one element for each item

main_title A character vector giving the plots’ main titles; default is "Item Characteristic
Curve".

sub An optional character vector of subtitles for the resulting plots, to be pasted onto
the main title (helpful for titling individual plots when plotting multiple items’
ICCs).

color The color to plot the ICC line in; default is "black"

plot_responses A logical vector of length one specifying whether to draw points at the theta
estimates of actual responses; default is FALSE

thetas An optional vector of theta estimates for response drawing; if plot_responses
= TRUE and thetas is not provided, an error will be thrown.

responses An optional matrix or vector (if the ICC for only one item is desired) of re-
sponses; if plot_responses = TRUE and responses is not provided, an error
will be thrown. NOTE: The lowest response for each item should be 0, not 1.

response_color The color to plot the response points when plot_responses = TRUE; the default
is "#0000005f".

Examples

We'll simulate data to use for these examples:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 4)
You can plot the ICC for one item:
icc(sim_data$alpha[1], sim_data$delta[1], sim_data$tau[[1]])
Or multiple items:
icc(sim_data$alpha[1:2], sim_data$delta[1:2], sim_data$tau[1:2], sub = 1:2)
You can also plot the actual responses over the expected response line:
icc(sim_data$alpha[1], sim_data$delta[1], sim_data$tau[[1]],

plot_responses = TRUE, responses = sim_data$response_matrix[, 1],
thetas = sim_data$theta)

irf 15

irf Item Response Function

Description

Plots response functions given alpha, delta, and tau parameters.

Usage

irf(a, d, t, from = -3, to = 3, by = 0.01, layout_matrix = 1,
main_title = "Item Response Function", sub = "",
option_names = NULL, line_types = NULL, color = "black",
rug = FALSE, thetas = NULL, responses = NULL, sides = 1,
rug_colors = "black")

Arguments

a A numeric vector of alpha parameters

d A numeric vector of delta parameters

t Either a list of numeric vectors for the tau parameters for each option, or a
numeric vector if the IRF for only one item is desired – note the first element of
each vector should be zero

from A numeric vector of length one, the lowest theta value to estimate response
probabilities for; default is -3

to A numeric vector of length one, the highest theta value to estimate response
probabilities for; default is 3

by A numeric vector of length one giving the spacing between theta values; default
is 0.01

layout_matrix An integer matrix dictating the layout of the plot; the default is a one-column
matrix with one element for each item

main_title A character vector giving the plots’ main titles; default is "Item Response Func-
tion".

sub An optional character vector of subtitles for the resulting plots, to be pasted onto
the main title (helpful for titling individual plots when plotting multiple items’
IRFs).

option_names An optional character vector giving names for the items’ options; if NULL,
generic names (e.g. "Option 1", "Option 2", etc.) are used

line_types An optional integer vector specifying lty for each option; if not provided, the
first option for each question will have lty = 1, the second will have lty = 2, etc.

color A specification of the colors to draw lines in. Colors can be specified by either a
character vector of colors (either names that R recognizes or hexidecimal spec-
ifications) or a function taking a single argument for the number of colors to
return. See color_palettes for a list of color palettes provided by bggum. The
default is "black" (for all lines).

16 post_process

rug A logical vector of length one specifying whether to draw a rug of theta esti-
mates; the default is FALSE

thetas An optional vector of theta estimates for rug drawing; if rug = TRUE and thetas
is not provided, an error will be thrown.

responses An optional matrix or vector (if the IRF for only one item is desired) of re-
sponses; if rug = TRUE and responses is not provided, an error will be thrown.
NOTE: The lowest response for each item should be 0, not 1.

sides A vector giving the side(s) to draw the rug on if rug = TRUE; if the vector is of
length > 1, the first option for each item will be drawn on the side given by the
first element of the vector, the rug for the second option for each item will be
drawn on the side given by the second element of the vector, etc.

rug_colors A vector giving the color(s) to draw the rug in if rug = TRUE or a function taking
a single argument for the number of colors to return. See color_palettes for
a list of color palettes provided by bggum. The default is "black" (for all rugs).

Examples

We'll simulate data to use for these examples:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 4)
You can plot the IRF for one item:
irf(sim_data$alpha[1], sim_data$delta[1], sim_data$tau[[1]],

option_names = 0:3)
Or multiple items:
irf(sim_data$alpha[1:2], sim_data$delta[1:2], sim_data$tau[1:2],

option_names = 0:3, sub = 1:2)
You can plot it in color:
irf(sim_data$alpha[1], sim_data$delta[1], sim_data$tau[[1]],

option_names = 0:3, color = tango)
You can also plot a rug of the repsondents' theta estimates with the IRF
irf(sim_data$alpha[1], sim_data$delta[1], sim_data$tau[[1]],

rug = TRUE, responses = sim_data$response_matrix[, 1],
thetas = sim_data$theta, option_names = 0:3)

post_process Post-process a Posterior Sample

Description

Post-process the results of ggumMCMC or ggumMC3 using an artificial identifiability constraint (AIC).

Usage

post_process(sample, constraint, expected_sign)

post_process 17

Arguments

sample A numeric matrix of posterior draws as returned by ggumMCMC or ggumMC3.

constraint An integer vector of length one giving the column number of the parameter to
constrain, or a character vector of length one giving the column name for the
constraint.

expected_sign A character vector of length one giving the sign for the constraint; it should be
either "-" if the constrained parameter is to be negative or "+" if the constrained
parameter is to be positive.

Details

Since under the GGUM the probability of a response is the same for any given choice of theta and
delta parameters and the negative of that choice; i.e.

Pr(z|θ, α, δ, τ) = Pr(z| − θ, α,−δ, τ),

if symmetric priors are used, the posterior has a reflective mode. This function transforms a pos-
terior sample by enforcing a constraint that a particular parameter is of a given sign, essentially
transforming it into a sample from only one of the reflective modes if a suitable constraint is cho-
sen; using a sufficiently extreme parameter is suggested.

Please see the vignette (via vignette("bggum")) for a full in-depth practical guide to Bayesian
estimation of GGUM parameters.

Value

A numeric matrix, the post-processed sample.

See Also

ggumMCMC, ggumMC3

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of sampling interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can generate posterior draws
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
draws <- ggumMC3(data = sim_data$response_matrix, n_temps = 2,

sd_tune_iterations = 100, temp_tune_iterations = 100,
temp_n_draws = 50,
burn_iterations = 100, sample_iterations = 100)

Then you can post-process the output
processed_draws <- post_process(sample = draws,

18 summary.ggum

constraint = which.min(sim_data$theta),
expected_sign = "-")

summary.ggum Summarize Posterior Draws for GGUM Parameters

Description

Summarize the results of ggumMCMC or ggumMC3.

Usage

S3 method for class 'ggum'
summary(object, ...)

S3 method for class 'list'
summary(object, ..., combine = TRUE)

Arguments

object A numeric matrix of posterior draws as returned by ggumMCMC or ggumMC3, or a
list of such matrices.

... Arguments to be passed to or from other methods

combine A logical vector of length one; if TRUE and object is a list of ggum result objects,
the matrices are combined and a summary of the combined sample is given; if
FALSE and object is a list of ggum result objects, each matrix will be summa-
rized individually; and if object is not a list, it has no effect. The default is
TRUE.

Details

This function provides the posterior mean, median, standard deviation, and 0.025 and 0.975 quan-
tiles for GGUM parameters from posterior samples drawn using ggumMCMC or ggumMC3. Please note
that the quantiles are calculated using the type 8 algorithm from Hyndman and Fan (1996), as sug-
gested by Hyndman and Fan (1996), rather than the type 7 algorithm that would be the default from
R’s quantile()). Before calling this function, care should be taken to ensure that post-processing
has been done if necessary to identify the correct reflective posterior mode, as discussed in the
vignette and Duck-Mayr and Montgomery (2019).

Please see the vignette (via vignette("bggum")) for a full in-depth practical guide to Bayesian
estimation of GGUM parameters.

summary.ggum 19

Value

A list with three elements: estimates (a list of length four; a numeric vector giving the means of
the theta draws, a numeric vector giving the means of the alpha draws, a numeric vector giving
the means of the delta draws, and a list where the means of the tau draws are collated into a tau
estimate vector for each item), sds (a list of length four giving the posterior standard deviations
for the theta, alpha, delta, and tau draws), and statistics (a matrix with five columns and one row
for each parameter giving the 0.025 quantile, the 0.5 quantile, the mean, the 0.975 quantile, and the
standard deviation of the posterior draws for each parameter; please note the quantiles are calculated
using the type 8 algorithm from Hyndman and Fan 1996, as suggested by Hyndman and Fan 1996,
rather than the type 7 algorithm that would be the default from R’s quantile()).

If object is a list and combine is FALSE, a list of such lists will be returned.

References

Duck-Mayr, JBrandon, and Jacob Montgomery. 2019. “Ends Against the Middle: Scaling Votes
When Ideological Opposites Behave the Same for Antithetical Reasons.” http://jbduckmayr.
com/papers/ggum.pdf.

Hyndman, R. J. and Fan, Y. 1996. “Sample Quantiles in Packages.” American Statistician 50,
361–365.

See Also

ggumMCMC, ggumMC3

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of sampling interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can generate posterior draws
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
draws <- ggumMC3(data = sim_data$response_matrix, n_temps = 2,

sd_tune_iterations = 100, temp_tune_iterations = 100,
temp_n_draws = 50,
burn_iterations = 100, sample_iterations = 100)

Then post-process the output
processed_draws <- post_process(sample = draws,

constraint = which.min(sim_data$theta),
expected_sign = "-")

And now we can obtain a summary of the posterior
posterior_summary <- summary(processed_draws)
It contains all the parameter estimates
str(posterior_summary$estimates)
As well as the posterior standard deviations
str(posterior_summary$sds)

http://jbduckmayr.com/papers/ggum.pdf
http://jbduckmayr.com/papers/ggum.pdf

20 tune_proposals

And a matrix of the mean (estimates), median, standard deviations,
and 0.025 and 0.975 quantiles
head(posterior_summary$statistics)

tune_proposals Tune proposal densities

Description

Tunes the standard deviation for the parameters’ proposal densities

Usage

tune_proposals(data, tune_iterations, K = NULL, thetas = NULL,
alphas = NULL, deltas = NULL, taus = NULL,
theta_prior_params = c(0, 1), alpha_prior_params = c(1.5, 1.5, 0.25,
4), delta_prior_params = c(2, 2, -5, 5), tau_prior_params = c(2, 2,
-6, 6))

Arguments

data An integer matrix giving the response by each respondent to each item
tune_iterations

An integer vector of length one; the number of iterations to complete

K (Optional) A numeric vector with an element for each item giving the number
of options for the item; if not provided, it is generated by taking the number of
unique options observed in the data

thetas (Optional) A numeric vector giving an initial value for each respondent’s theta
parameter; if not given, the initial values are drawn from the prior distribution

alphas (Optional) A numeric vector giving an initial value for each item’s alpha param-
eter; if not given, the initial values are drawn from the prior distribution

deltas (Optional) A numeric vector giving an initial value for each item’s delta param-
eter; if not given, the initial values are drawn from the prior distribution

taus (Optional) A list giving an initial value for each item’s tau vector; if not given,
the initial values are drawn from the prior distribution

theta_prior_params

A numeric vector of length two; the mean and standard deviation of theta pa-
rameters’ prior distribution (where the theta parameters have a normal prior; the
default is 0 and 1)

alpha_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for alpha parameters’ prior distribution (where the alpha parameters have a four
parameter beta prior; the default is 1.5, 1.5, 0.25, and 4)

tune_proposals 21

delta_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for delta parameters’ prior distribution (where the delta parameters have a four
parameter beta prior; the default is 2, 2, -5, and 5)

tau_prior_params

A numeric vector of length four; the two shape parameters and a and b val-
ues for tau parameters’ prior distribution (where the tau parameters have a four
parameter beta prior; the default is 2, 2, -6, and 6)

Details

This function runs the MCMC algorithm for the number of iterations specified in tune_iterations,
updating parameter values at each iteration. Every 100 iterations, the function determines how many
of the previous 100 iterations resulted in an accepted proposal for each parameter. If the number of
acceptances was less than 20, the standard deviation of the proposal for that parameter is decreased
by (20 - N) * 0.01, where N is the number of acceptances in the previous 100 iterations. If N is
greater than 25, the proposal standard deviation is increased by (N - 25) * 0.01.

Please see the vignette (via vignette("bggum")) for a full in-depth practical guide to Bayesian
estimation of GGUM parameters.

Value

A list, where each element is a numeric vector; the first element is a numeric vector of standard
deviations for the theta parameters’ proposals, the second for the alpha parameters, the third for the
delta parameters, and the fourth for the tau parameters

Warning

The parameters are updated in place; that is, if you supply objects for the theta, alpha, delta, and
tau arguments, the objects will not hold the same values after the function is run (in the underlying
C++ function, these objects are passed by reference).

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of tuning interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can tune the proposal densities
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
proposal_sds <- tune_proposals(data = sim_data$response_matrix,

tune_iterations = 100)

22 tune_temperatures

tune_temperatures tune_temperatures

Description

Find Optimal Temperatures for the GGUM MCMCMC Sampler

Usage

tune_temperatures(data, n_temps, temp_tune_iterations = 5000,
n_draws = 2500, K = NULL, proposal_sds = NULL,
sd_tune_iterations = 5000, theta_prior_params = c(0, 1),
alpha_prior_params = c(1.5, 1.5, 0.25, 4), delta_prior_params = c(2,
2, -5, 5), tau_prior_params = c(2, 2, -6, 6))

Arguments

data An integer matrix giving the response by each respondent to each item

n_temps How many temperatures to make?
temp_tune_iterations

How many iterations should the temperature tuning algorithm run for each tem-
perature? (default is 5000)

n_draws How many draws should be used to determine each temperature? (specifying
n_draws < temp_tune_iterations will result in an error; default is 2500).

K (Optional) A numeric vector with an element for each item giving the number
of options for the item; if not provided, it is generated by taking the number of
unique options observed in the data

proposal_sds (Optional) A list of length four where is element is a numeric vector giving stan-
dard deviations for the proposals; the first element should be a numeric vector
with a standard deviation for the proposal for each respondent’s theta parameter
(the latent trait), the second a vector with a standard deviation for each item’s
alpha (discrimination) parameter, the third a vector with a standard deviation for
each item’s delta (location) parameter, and the fourth a vector with a standard
deviation for each item’s tau (option threshold) parameters. If not given, the
standard deviations are all set to 1.0 before any tuning begins.

sd_tune_iterations

A numeric vector of length one; if proposal standard deviations are not given,
this provides the number of iterations to use to tune the proposals before the
temperature finding algorithm begins (default is 5000)

theta_prior_params

A numeric vector of length two; the mean and standard deviation of theta pa-
rameters’ prior distribution (where the theta parameters have a normal prior; the
default is 0 and 1)

tune_temperatures 23

alpha_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for alpha parameters’ prior distribution (where the alpha parameters have a four
parameter beta prior; the default is 1.5, 1.5, 0.25, and 4)

delta_prior_params

A numeric vector of length four; the two shape parameters and a and b values
for delta parameters’ prior distribution (where the delta parameters have a four
parameter beta prior; the default is 2, 2, -5, and 5)

tau_prior_params

A numeric vector of length four; the two shape parameters and a and b val-
ues for tau parameters’ prior distribution (where the tau parameters have a four
parameter beta prior; the default is 2, 2, -6, and 6)

Details

Atchadé, Roberts, and Rosenthal (2011) determine the optimal swap-acceptance rate for Metropolis-
coupled MCMC and provide an algorithm for building optimal temperature schedules. We imple-
ment this algorithm in the context of the GGUM to provide a temperature schedule that should
result in approximately 0.234 swap acceptance rate between adjacent chains.

Please see the vignette (via vignette("bggum")) for a full in-depth practical guide to Bayesian
estimation of GGUM parameters.

Value

A numeric vector of temperatures

References

Atchadé, Yves F., Gareth O. Roberts, and Jeffrey S. Rosenthal. 2011. “Towards Optimal Scaling of
Metropolis-Coupled Markov Chain Monte Carlo.” Statistics and Computing 21(4): 555–68.

See Also

ggumMCMC, ggumMC3

Examples

NOTE: This is a toy example just to demonstrate the function, which uses
a small dataset and an unreasonably low number of sampling interations.
For a longer practical guide on Bayesian estimation of GGUM parameters,
please see the vignette (via vignette("bggum")).
We'll simulate data to use for this example:
set.seed(123)
sim_data <- ggum_simulation(100, 10, 2)
Now we can tune the temperature schedule:
(for the purposes of example, we use 100 iterations,
though in practice you would use much more)
temps <- tune_temperatures(data = sim_data$response_matrix, n_temps = 5,

temp_tune_iterations = 100, n_draws = 50,
sd_tune_iterations = 100)

Index

bggum, 2
bggum-package (bggum), 2

color_palettes, 3, 15, 16

ggum_simulation, 12
ggumMC3, 4, 10, 16–19, 23
ggumMCMC, 7, 8, 16–19, 23
ggumProbability, 7, 10, 10, 13

icc, 13
irf, 15

okabe_ito (color_palettes), 3

post_process, 16

summary.ggum, 7, 9, 18
summary.list (summary.ggum), 18

tango (color_palettes), 3
tune_proposals, 20
tune_temperatures, 4, 5, 7, 22

24

	bggum
	color_palettes
	ggumMC3
	ggumMCMC
	ggumProbability
	ggum_simulation
	icc
	irf
	post_process
	summary.ggum
	tune_proposals
	tune_temperatures
	Index

