
Package ‘bdpar’
December 12, 2023

Type Package

Title Big Data Preprocessing Architecture

Version 3.1.0

Description Provide a tool to easily build customized data flows to pre-process large volumes
of information from different sources. To this end, 'bdpar' allows to (i) easily use and
create new functionalities and (ii) develop new data source extractors according to the
user needs. Additionally, the package provides by default a predefined data flow
to extract and pre-process the most relevant information (tokens, dates, ...) from some textual
sources (SMS, Email, YouTube comments).

Date 2023-12-11

License GPL-3

URL https://github.com/miferreiro/bdpar

BugReports https://github.com/miferreiro/bdpar/issues

Depends R (>= 3.5.0)

Imports digest, parallel, R6, rlist, tools, utils

Suggests cld2, knitr, rex, rjson, rmarkdown, stringi, stringr,
testthat (>= 2.3.1), tuber

VignetteBuilder knitr

RoxygenNote 7.2.3

SystemRequirements Python (>= 2.7 or >= 3.6)

Encoding UTF-8

NeedsCompilation no

Collate 'AbbreviationPipe.R' 'bdpar.log.R' 'wrapper.R' 'Bdpar.R'
'BdparOptions.R' 'Connections.R' 'ContractionPipe.R'
'DefaultPipeline.R' 'DynamicPipeline.R' 'ExtractorEml.R'
'ExtractorFactory.R' 'ExtractorSms.R' 'ExtractorYtbid.R'
'File2Pipe.R' 'FindEmojiPipe.R' 'FindEmoticonPipe.R'
'FindHashtagPipe.R' 'FindUrlPipe.R' 'FindUserNamePipe.R'
'GenericPipe.R' 'GenericPipeline.R' 'GuessDatePipe.R'
'GuessLanguagePipe.R' 'Instance.R' 'InterjectionPipe.R'

1

https://github.com/miferreiro/bdpar
https://github.com/miferreiro/bdpar/issues

2 R topics documented:

'MeasureLengthPipe.R' 'ResourceHandler.R' 'SlangPipe.R'
'StopWordPipe.R' 'StoreFileExtPipe.R' 'TargetAssigningPipe.R'
'TeeCSVPipe.R' 'ToLowerCasePipe.R' 'bdpar.Options.R'
'bdparData.R' 'eml.R' 'emojisData.R' 'operator-pipe.R'
'runPipeline.R' 'zzz.R'

Author Miguel Ferreiro-Díaz [aut, cre],
David Ruano-Ordás [aut, ctr],
Tomás R. Cotos-Yañez [aut, ctr],
José Ramón Méndez Reboredo [aut, ctr],
University of Vigo [cph]

Maintainer Miguel Ferreiro-Díaz <miguel.ferreiro.diaz@gmail.com>

Repository CRAN

Date/Publication 2023-12-12 18:00:10 UTC

R topics documented:
AbbreviationPipe . 3
Bdpar . 6
bdpar.log . 8
bdpar.Options . 9
bdparData . 12
Connections . 12
ContractionPipe . 14
DefaultPipeline . 16
DynamicPipeline . 19
emojisData . 21
ExtractorEml . 21
ExtractorFactory . 23
ExtractorSms . 26
ExtractorYtbid . 27
File2Pipe . 29
FindEmojiPipe . 30
FindEmoticonPipe . 32
FindHashtagPipe . 34
FindUrlPipe . 36
FindUserNamePipe . 39
GenericPipe . 41
GenericPipeline . 43
GuessDatePipe . 44
GuessLanguagePipe . 46
Instance . 47
InterjectionPipe . 52
MeasureLengthPipe . 54
operator-pipe . 56
ResourceHandler . 57
runPipeline . 58

AbbreviationPipe 3

SlangPipe . 60
StopWordPipe . 62
StoreFileExtPipe . 65
TargetAssigningPipe . 66
TeeCSVPipe . 68
ToLowerCasePipe . 70

Index 72

AbbreviationPipe Class to find and/or replace the abbreviations on the data field of an
Instance

Description

AbbreviationPipe class is responsible for detecting the existing abbreviations in the data field of
each Instance. Identified abbreviations are stored inside the abbreviation field of Instance class.
Moreover if needed, is able to perform inline abbreviations replacement.

Details

AbbreviationPipe class requires the resource files (in json format) containing the correspondence
between abbreviations and meaning. To this end, the language of the text indicated in the property-
LanguageName should be contained in the resource file name (ie. abbrev.xxx.json where xxx is the
value defined in the propertyLanguageName). The location of the resources should be defined in
the "resources.abbreviations.path" field of bdpar.Options variable.

Note

AbbreviationPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> AbbreviationPipe

Methods

Public methods:
• AbbreviationPipe$new()

• AbbreviationPipe$pipe()

• AbbreviationPipe$findAbbreviation()

• AbbreviationPipe$replaceAbbreviation()

• AbbreviationPipe$getPropertyLanguageName()

• AbbreviationPipe$getResourcesAbbreviationsPath()

4 AbbreviationPipe

• AbbreviationPipe$setResourcesAbbreviationsPath()

• AbbreviationPipe$clone()

Method new(): Creates a AbbreviationPipe object.

Usage:
AbbreviationPipe$new(
propertyName = "abbreviation",
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list(),
replaceAbbreviations = TRUE,
resourcesAbbreviationsPath = NULL

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
propertyLanguageName A character value. Name of the language property.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
replaceAbbreviations A logical value. Indicates if the abbreviations are replaced or not.
resourcesAbbreviationsPath A character value. Path of resource files (in json format)

containing the correspondence between abbreviations and meaning.

Method pipe(): Preprocesses the Instance to obtain/replace the abbreviations. The abbrevia-
tions found in the data are added to the list of properties of the Instance.

Usage:
AbbreviationPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findAbbreviation(): Checks if the abbreviation is in the data.

Usage:
AbbreviationPipe$findAbbreviation(data, abbreviation)

Arguments:
data A character value. The text where abbreviation will be searched.
abbreviation A character value. Indicates the abbreviation to find.

Returns: A logical value depending on whether the abbreviation is in the data.

Method replaceAbbreviation(): Replaces the abbreviation in the data for the extendedAb-
breviation.

Usage:
AbbreviationPipe$replaceAbbreviation(abbreviation, extendedAbbreviation, data)

AbbreviationPipe 5

Arguments:

abbreviation A character value. Indicates the abbreviation to replace.

extendedAbbreviation A character value. Indicates the string to replace for the abbrevia-
tions found.

data A character value. The text where abbreviation will be replaced.

Returns: The data with the abbreviations replaced.

Method getPropertyLanguageName(): Gets the name of property language.

Usage:

AbbreviationPipe$getPropertyLanguageName()

Returns: Value of name of property language.

Method getResourcesAbbreviationsPath(): Gets the path of abbreviations resources.

Usage:

AbbreviationPipe$getResourcesAbbreviationsPath()

Returns: Value of path of abbreviations resources.

Method setResourcesAbbreviationsPath(): Sets the path of abbreviations resources.

Usage:

AbbreviationPipe$setResourcesAbbreviationsPath(path)

Arguments:

path A character value. The new value of the path of abbreviations resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:

AbbreviationPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

6 Bdpar

Bdpar Class to manage the preprocess of the files throughout the flow of pipes

Description

Bdpar class provides the static variables required to perform the whole data flow process. To this
end Bdpar is in charge of (i) initialize the objects of handle the connections to APIs (Connections)
and handles json resources (ResourceHandler) and (ii) executing the flow of pipes (inherited from
GenericPipeline class) passed as argument.

Details

In the case that some pipe, defined on the workflow, needs some type of configuration, it can be
defined through bdpar.Options variable which have different methods to support the functionality
of different pipes.

Static variables

connections: (Connections) object that handles the connections with YouTube and Twitter.

resourceHandler: (ResourceHandler) object that handles the json resources files.

Methods

Public methods:
• Bdpar$new()

• Bdpar$execute()

• Bdpar$clone()

Method new(): Creates a Bdpar object. Initializes the static variables: connections and re-
sourceHandler.

Usage:
Bdpar$new()

Method execute(): Preprocess files through the indicated flow of pipes.

Usage:
Bdpar$execute(
path,
extractors = ExtractorFactory$new(),
pipeline = DefaultPipeline$new(),
cache = TRUE,
verbose = FALSE,
summary = FALSE

)

Arguments:

path A character value. The path where the files to be processed are located.

Bdpar 7

extractors A ExtractorFactory value. Class which implements the createInstance method
to choose which type of Instance is created.

pipeline A GenericPipeline value. Subclass of GenericPipeline, which implements the
execute method. By default, it is the DefaultPipeline pipeline.

cache (logical) flag indicating if the status of the instances will be stored after each pipe. This
allows to avoid rejections of previously executed tasks, if the order and configuration of the
pipe and pipeline is the same as what is stored in the cache.

verbose (logical) flag indicating for printing messages, warnings and errors.
summary (logical) flag indicating if a summary of the pipeline execution is provided or not.

Details: In case of wanting to parallelize, it is necessary to indicate the number of cores to be
used through bdpar.Options$set("numCores", numCores)

Returns: The list of Instances that have been preprocessed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Bdpar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

bdpar.Options, Connections, DefaultPipeline, DynamicPipeline, GenericPipeline, Instance,
ExtractorFactory, ResourceHandler, runPipeline

Examples

Not run:

#If it is necessary to indicate any configuration, do it through:
#bdpar.Options$set(key, value)
#If the key is not initialized, do it through:
#bdpar.Options$add(key, value)

#If it is necessary parallelize, do it through:
#bdpar.Options$set("numCores", numCores)

#If it is necessary to change the behavior of the log, do it through:
#bdpar.Options$configureLog(console = TRUE, threshold = "INFO", file = NULL)

#Folder with the files to preprocess
path <- system.file("example",

package = "bdpar")

#Object which decides how creates the instances
extractors <- ExtractorFactory$new()

#Object which indicates the pipes' flow
pipeline <- DefaultPipeline$new()

8 bdpar.log

objectBdpar <- Bdpar$new()

#Starting file preprocessing...
objectBdpar$execute(path = path,

extractors = extractors,
pipeline = pipeline,
cache = FALSE,
verbose = FALSE,
summary = TRUE)

End(Not run)

bdpar.log Write messages to the log at a given priority level using the custom
bdpar log

Description

bdpar.log is responsible for managing the messages to show on the log.

Usage

bdpar.log(message, level = "INFO", className = NULL, methodName = NULL)

Arguments

message A string to be printed to the log with the corresponding priority level.

level The desired priority level (DEBUG,INFO,WARN,ERROR and FATAL). In the
case of the FATAL level will be call to the stop function. Also, if the level is
WARN, the message will be a warning.

className A string to indicated in which class is called to the log. If the value is NULL,
this field is not shown in the log.

methodName A string to indicated in which method is called to the log. If the value is NULL,
this field is not shown in the log.

Details

The format output is as following:

[currentTime][className][methodName][level] message

The type of message changes according to the level indicated:

- The DEBUG,INFO and ERROR levels return a text using the message function.

- The WARN level returns a text using the warning function.

- The FATAL level returns a text using the stop function.

Note

In the case of multithreading, the log will only be by file.

bdpar.Options 9

See Also

bdpar.Options

Examples

Not run:

First step, configure the behavior of log

bdpar.options$configureLog(console = TRUE, threshold = "DEBUG", file = NULL)

message <- "Message example"

className <- "Class name example"

methodName <- "Method name example"

bdpar.log(message = message, level = "DEBUG", className = NULL, methodName = NULL)

bdpar.log(message = message, level = "INFO", className = className, methodName = methodName)

bdpar.log(message = message, level = "WARN", className = className, methodName = NULL)

bdpar.log(message = message, level = "ERROR", className = NULL, methodName = NULL)

bdpar.log(message = message, level = "FATAL", className = NULL, methodName = methodName)

End(Not run)

bdpar.Options Object to handle the keys/attributes/options common to all pipeline
flow

Description

This class provides the necessary methods to manage a list of keys or options used along the pipe
flow, both those provided by the default library and those implemented by the user.

Usage

bdpar.Options

Details

By default, the application initializes the object named bdpar.Options of type BdparOptions
which is in charge of initializing the options used in the defined pipes.

The default fields on bdpar.Options are initialized, if needed, as shown bellow:

10 bdpar.Options

[eml]
- bdpar.Options$set("extractorEML.mpaPartSelected", <<PartSelectedOnMPAlternative>>)

[resources]
- bdpar.Options$set("resources.abbreviations.path", <<abbreviation.path>>)

- bdpar.Options$set("resources.contractions.path", <<contractions.path>>)

- bdpar.Options$set("resources.interjections.path", <<interjections.path>>)

- bdpar.Options$set("resources.slangs.path", <<slangs.path>>)

- bdpar.Options$set("resources.stopwords.path", <<stopwords.path>>)

[teeCSVPipe]
- bdpar.Options$set("teeCSVPipe.output.path", <<outputh.path>>)

[youtube]
- bdpar.Options$set("youtube.app.id", <<app_id>>)

- bdpar.Options$set("youtube.app.password", <<app_password>>)

- bdpar.Options$set("cache.youtube.path", <<cache.path>>)

[cache]
- bdpar.Options$set("cache", <<status_cache>>)

- bdpar.Options$set("cache.folder", <<cache.path>>)

[parallel]
- bdpar.Options$set("numCores", <<num_cores>>)

[verbose]
- bdpar.Options$set("verbose", <<status_verbose>>)

Cache functionality

If the bdpar cache is configured through the "cache" and "cache.folder" options, the status of the
instances will be stored after each pipe. This allows to avoid rejections of previously executed tasks,
if the order and configuration of the pipe and pipeline is the same as what is stored in the cache.

If you want to remove the cache, the cleanCache method does this task.

Parallel functionality

The parallelization of instances is configured through the "numCores" option, which indicates the
number of cores that will be used in the processing.

In the case of parallelisation, only the log by file will work to allow collecting all the information
produced by the cores.

Log configuration

The bdpar log is configured through the configureLog function. This system manages both the
place to display the messages and the priority level of each message showing only the messages
with a higher level than indicated in the threshold variable.

If you want to deactivate the bdpar log, the disableLog method in bdpar.Options does this task.

bdpar.Options 11

Methods

get: obtains a specific option.

Usage: get(key)

Value: the value of the specific option.
Arguments: key: (character) the name of the option to obtain.

add: adds a option to the list of options

Usage: add(key, value)

Arguments: key: (character) the name of the new option.
propertyName: (Object) the value of the new option.

set: modifies the value of the one option.

Usage: set(key, value)

Arguments: key: (character) the name of the new option.
propertyName: (Object) the value of the new option.

remove: removes a specific option.

Usage: remove(key)

Arguments: key: (character) the name of the option to remove.

getAll: gets the list of options.

Usage: getAll()

Value: Value of options.

remove: resets the option list to the initial state.

Usage: reset()

isSpecificOption: checks for the existence of an specific option.

Usage: isSpecificProperty(key)

Value: A boolean results according to the existence of the specific option in the list of options
Arguments: key: (character) the key of the option to check.

cleanCache: Cleans the cache of executed pipelines. Deletes all files and directories that are in the
path defined in "cache.folder" option.

Usage: cleanCache()

configureLog: Configures the bdpar log. In the case of parallelisation, only the log by file will
work.

Usage: configureLog(console = TRUE, threshold = "INFO", file = NULL)

Arguments: console: (boolean) Shows the log on console or not.
threshold: (character) The logging threshold level. Messages with a lower priority level

will be discarded.
file: (character) The file to write messages to. If it is NULL, the log in file will not be

enabled.

disableLog: Deactivates the bdpar log.

Usage: disableLog()

getLogConfiguration: Print the bdpar log configuration.

Usage: getLogConfiguration()

12 Connections

See Also

AbbreviationPipe, bdpar.log, Connections, ContractionPipe, ExtractorEml, ExtractorYtbid,
GuessLanguagePipe, Instance, SlangPipe, StopWordPipe, TeeCSVPipe, %>|%

bdparData Example of the content of the files to be preprocessed.

Description

A manually collected data set containing e-mails and SMS messages from the nutritional and health
domain classified as spam and non-spam (with a ratio of 50%). In addition the dataset contains two
variables: (i) path which indicates the location of the target file and, (ii) source which contains the
raw text comprising each file.

Usage

data(bdparData)

Format

A data frame with 20 rows and 2 variables:

path File path.

source File content.

Connections Class to manage the connections with YouTube

Description

The tasks of the functions that the Connections class has are to establish the connections and
control the number of requests that have been made with the API of YouTube.

Details

The way to indicate the keys of YouTube has to be through fields of bdpar.Options variable:

[youtube]

- bdpar.Options$set("youtube.app.id", <<app_id>>)

- bdpar.Options$set("youtube.app.password", <<app_password>>)

Note

Fields of unused connections will be automatically ignored by the platform.

Connections 13

Methods

Public methods:

• Connections$new()

• Connections$startConnectionWithYoutube()

• Connections$addNumRequestToYoutube()

• Connections$checkRequestToYoutube()

• Connections$getNumRequestMaxToYoutube()

• Connections$clone()

Method new(): Creates a Connections object.

Usage:
Connections$new()

Method startConnectionWithYoutube(): Function able to establish the connection with
YouTube.

Usage:
Connections$startConnectionWithYoutube()

Method addNumRequestToYoutube(): Function that increases in one the number of request to
YouTube.

Usage:
Connections$addNumRequestToYoutube()

Method checkRequestToYoutube(): Handles the connection with YouTube.

Usage:
Connections$checkRequestToYoutube()

Method getNumRequestMaxToYoutube(): Gets the number of maximum requests allowed by
YouTube API.

Usage:
Connections$getNumRequestMaxToYoutube()

Returns: Value of number maximum of request to YouTube.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Connections$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

bdpar.Options, ExtractorYtbid

14 ContractionPipe

ContractionPipe Class to find and/or replace the contractions on the data field of a
Instance

Description

ContractionPipe class is responsible for detecting the existing contractions in the data field of
each Instance. Identified contractions are stored inside the contraction field of Instance class.
Moreover if needed, is able to perform inline contractions replacement.

Details

ContractionPipe class requires the resource files (in json format) containing the correspondence
between contractions and meaning. To this end, the language of the text indicated in the property-
LanguageName should be contained in the resource file name (ie. contr.xxx.json where xxx is the
value defined in the propertyLanguageName). The location of the resources should be defined in
the "resources.contractions.path" field of bdpar.Options variable.

Note

ContractionPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> ContractionPipe

Methods

Public methods:

• ContractionPipe$new()

• ContractionPipe$pipe()

• ContractionPipe$findContraction()

• ContractionPipe$replaceContraction()

• ContractionPipe$getPropertyLanguageName()

• ContractionPipe$getResourcesContractionsPath()

• ContractionPipe$setResourcesContractionsPath()

• ContractionPipe$clone()

Method new(): Creates a ContractionPipe object.

Usage:

ContractionPipe 15

ContractionPipe$new(
propertyName = "contractions",
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list(),
replaceContractions = TRUE,
resourcesContractionsPath = NULL

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
propertyLanguageName A character value. Name of the language property.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
replaceContractions A logical value. Indicates if the contractions are replaced or not.
resourcesContractionsPath A character value. Path of resource files (in json format) con-

taining the correspondence between contractions and meaning.

Method pipe(): Preprocesses the Instance to obtain/replace the contractions. The contractions
found in the data are added to the list of properties of the Instance.

Usage:
ContractionPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findContraction(): Checks if the contraction is in the data.

Usage:
ContractionPipe$findContraction(data, contraction)

Arguments:

data A character value. The text where contraction will be searched.
contraction A character value. Indicates the contraction to find.

Returns: A logical value depending on whether the contraction is in the data.

Method replaceContraction(): Replaces the contraction in the data for the extendedContrac-
tion.

Usage:
ContractionPipe$replaceContraction(contraction, extendedContraction, data)

Arguments:

contraction A character value. Indicates the contraction to replace.
extendedContraction A character value. Indicates the string to replace for the contractions

found.

16 DefaultPipeline

data A character value. The text where contraction will be replaced.

Returns: The data with the contractions replaced.

Method getPropertyLanguageName(): Gets the name of property language.

Usage:
ContractionPipe$getPropertyLanguageName()

Returns: Value of name of property language.

Method getResourcesContractionsPath(): Gets the path of contractions resources.

Usage:
ContractionPipe$getResourcesContractionsPath()

Returns: Value of path of contractions resources.

Method setResourcesContractionsPath(): Sets the path of contractions resources.

Usage:
ContractionPipe$setResourcesContractionsPath(path)

Arguments:

path A character value. The new value of the path of contractions resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContractionPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, bdpar.Options, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

DefaultPipeline Class implementing a default pipelining process.

Description

This DefaultPipeline class inherits from the GenericPipeline class. Includes the execute
method which provides a default pipelining implementation.

DefaultPipeline 17

Details

The default flow is:

instance %>|%

TargetAssigningPipe$new() %>|%

StoreFileExtPipe$new() %>|%

GuessDatePipe$new() %>|%

File2Pipe$new() %>|%

MeasureLengthPipe$new(propertyName = "length_before_cleaning_text") %>|%

FindUserNamePipe$new() %>|%

FindHashtagPipe$new() %>|%

FindUrlPipe$new() %>|%

FindEmoticonPipe$new() %>|%

FindEmojiPipe$new() %>|%

GuessLanguagePipe$new() %>|%

ContractionPipe$new() %>|%

AbbreviationPipe$new() %>|%

SlangPipe$new() %>|%

ToLowerCasePipe$new() %>|%

InterjectionPipe$new() %>|%

StopWordPipe$new() %>|%

MeasureLengthPipe$new(propertyName = "length_after_cleaning_text") %>|%

TeeCSVPipe$new()

Inherit

This class inherits from GenericPipeline and implements the execute abstract function.

18 DefaultPipeline

Super class

bdpar::GenericPipeline -> DefaultPipeline

Methods

Public methods:
• DefaultPipeline$new()

• DefaultPipeline$execute()

• DefaultPipeline$get()

• DefaultPipeline$print()

• DefaultPipeline$toString()

• DefaultPipeline$clone()

Method new(): Creates a DefaultPipeline object.
Usage:
DefaultPipeline$new()

Method execute(): Function where is implemented the flow of the GenericPipes.
Usage:
DefaultPipeline$execute(instance)

Arguments:
instance A Instance value. The Instance that is going to be processed.

Returns: The preprocessed Instance.

Method get(): Gets a list with containing the set of link{GenericPipe}s of the pipeline,
Usage:
DefaultPipeline$get()

Returns: The set of GenericPipes containing the pipeline.

Method print(): Prints pipeline representation. (Override print function)
Usage:
DefaultPipeline$print(...)

Arguments:
... Further arguments passed to or from other methods.

Method toString(): Returns a character representing the pipeline
Usage:
DefaultPipeline$toString()

Returns: DefaultPipeline character representation

Method clone(): The objects of this class are cloneable with this method.
Usage:
DefaultPipeline$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

DynamicPipeline 19

See Also

bdpar.log, Instance, DynamicPipeline, GenericPipeline, GenericPipe, %>|%

DynamicPipeline Class implementing a dynamic pipelining process

Description

This DynamicPipeline class inherits from the GenericPipeline class. Includes the execute
method which provides a dynamic pipelining implementation. ’

Inherit

This class inherits from GenericPipeline and implements the execute abstract function.

Super class

bdpar::GenericPipeline -> DynamicPipeline

Methods

Public methods:
• DynamicPipeline$new()

• DynamicPipeline$add()

• DynamicPipeline$removeByPos()

• DynamicPipeline$removeByPipe()

• DynamicPipeline$removeAll()

• DynamicPipeline$execute()

• DynamicPipeline$get()

• DynamicPipeline$print()

• DynamicPipeline$toString()

• DynamicPipeline$clone()

Method new(): Creates a DynamicPipeline object.

Usage:
DynamicPipeline$new(pipeline = NULL)

Arguments:

pipeline A list of GenericPipe objects. Initializes the flow of GenericPipe.

Method add(): Adds a GenericPipe or a GenericPipe list to the pipeline.

Usage:
DynamicPipeline$add(pipe, pos = NULL)

Arguments:

20 DynamicPipeline

pipe A GenericPipe object or a list of GenericPipe objects.
pos A (numeric) value. The value of the position to add. If it is NULL, GenericPipe is

appended to the pipeline.

Method removeByPos(): Removes GenericPipes by the position on the pipeline.
Usage:
DynamicPipeline$removeByPos(pos)

Arguments:
pos A (numeric) value. The value of the position to remove.

Method removeByPipe(): Removes GenericPipes by its name on the pipeline.
Usage:
DynamicPipeline$removeByPipe(pipe.name)

Arguments:
pipe.name A (character) value. The GenericPipes name to remove.

Method removeAll(): Removes all GenericPipes included on pipeline.
Usage:
DynamicPipeline$removeAll()

Method execute(): Function where is implemented the flow of the GenericPipes.
Usage:
DynamicPipeline$execute(instance)

Arguments:
instance A (Instance) value. The Instance that is going to be processed.

Method get(): Gets a list with containing the set of GenericPipes of the pipeline.
Usage:
DynamicPipeline$get()

Returns: The set of GenericPipes containing the pipeline.

Method print(): Prints pipeline representation. (Override print function)
Usage:
DynamicPipeline$print(...)

Arguments:
... Further arguments passed to or from other methods.

Method toString(): Returns a character representing the pipeline
Usage:
DynamicPipeline$toString()

Returns: DynamicPipeline character representation

Method clone(): The objects of this class are cloneable with this method.
Usage:
DynamicPipeline$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

emojisData 21

See Also

bdpar.log, Instance, DefaultPipeline, GenericPipeline, GenericPipe, %>|%

emojisData Emojis codes and descriptions data.

Description

This data comes from "Unicode.org", <http://unicode.org/emoji/charts/full-emoji-list.html>. The
data are codes and descriptions of Emojis.

Usage

data(emojisData)

Format

A data frame with 2623 rows and 2 variables:

code Emoji code

description Emoji description.

ExtractorEml Class to handle email files with eml extension

Description

This class inherits from the Instance class and implements the functions of extracting the text and
the date from an eml type file.

Details

The way to indicate which part to choose in the email, when is a multipart email, is through the
"extractorEML.mpaPartSelected" field of bdpar.Options variable.

Note

To be able to use this class it is necessary to have Python installed.

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

22 ExtractorEml

Super class

bdpar::Instance -> ExtractorEml

Methods

Public methods:
• ExtractorEml$new()

• ExtractorEml$obtainDate()

• ExtractorEml$obtainSource()

• ExtractorEml$getPartSelectedOnMPAlternative()

• ExtractorEml$setPartSelectedOnMPAlternative()

• ExtractorEml$toString()

• ExtractorEml$clone()

Method new(): Creates a ExtractorEml object.

Usage:
ExtractorEml$new(path, PartSelectedOnMPAlternative = NULL)

Arguments:

path A character value. Path of the eml file.
PartSelectedOnMPAlternative A character value. Configuration to read the eml files. If

it is NULL, checks if is defined in the "extractorEML.mpaPartSelected" field of bd-
par.Options variable.

Method obtainDate(): Obtains the date of the eml file. Calls the function read_emails and
obtains the date of the file indicated in the path and then transforms it into the generic date format,
that is "%a %b %d %H:%M:%S %Z %Y" (Example: "Thu May 02 06:52:36 UTC 2013").

Usage:
ExtractorEml$obtainDate()

Method obtainSource(): Obtains the source of the eml file. Calls the function read_emails
and obtains the source of the file indicated in the path. In addition, it initializes the data with the
initial source.

Usage:
ExtractorEml$obtainSource()

Method getPartSelectedOnMPAlternative(): Gets of PartSelectedOnMPAlternative vari-
able.

Usage:
ExtractorEml$getPartSelectedOnMPAlternative()

Returns: Value of PartSelectedOnMPAlternative variable.

Method setPartSelectedOnMPAlternative(): Gets of PartSelectedOnMPAlternative vari-
able.

Usage:

ExtractorFactory 23

ExtractorEml$setPartSelectedOnMPAlternative(PartSelectedOnMPAlternative)

Arguments:

PartSelectedOnMPAlternative A character value. The new value of PartSelectedOnM-
PAlternative variable.

Method toString(): Returns a character representing the instance

Usage:
ExtractorEml$toString()

Returns: Instance character representation

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExtractorEml$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

bdpar.Options, ExtractorSms, ExtractorYtbid, Instance

ExtractorFactory Class to handle the creation of Instance types

Description

ExtractorFactory class builds the appropriate Instance object according to the file extension.
In the case of not finding the registered extension, the default extractor will be used if it has been
previously configured.

Methods

Public methods:
• ExtractorFactory$new()

• ExtractorFactory$registerExtractor()

• ExtractorFactory$setExtractor()

• ExtractorFactory$setDefaultExtractor()

• ExtractorFactory$removeExtractor()

• ExtractorFactory$getAllExtractors()

• ExtractorFactory$getDefaultExtractor()

• ExtractorFactory$isSpecificExtractor()

• ExtractorFactory$createInstance()

• ExtractorFactory$reset()

• ExtractorFactory$print()

24 ExtractorFactory

• ExtractorFactory$clone()

Method new(): Creates a ExtractorFactory object.

Usage:
ExtractorFactory$new()

Method registerExtractor(): Adds an extractor to the list of extensions. If the extension is an
empty string (""), the indicated extractor will be the default when there is no extractor associated
with an extension.

Usage:
ExtractorFactory$registerExtractor(extensions, extractor)

Arguments:

extensions A character array. The names of the extension option.
extractor A Object value. The extractor of the new extension.

Method setExtractor(): Modifies the extractor of the one extension.

Usage:
ExtractorFactory$setExtractor(extension, extractor)

Arguments:

extension A character value. The name of the extension option.
extractor A Object value. The value of the new extractor.

Method setDefaultExtractor(): Modifies the extractor of the one extension. Assign NULL
value to disable the default extractor.

Usage:
ExtractorFactory$setDefaultExtractor(defaultExtractor)

Arguments:

defaultExtractor A Object value. The value of the default extractor.

Method removeExtractor(): Removes a specific extractor thought the extension.

Usage:
ExtractorFactory$removeExtractor(extension)

Arguments:

extension A character value. The name of the extension to remove.

Method getAllExtractors(): Gets the list of extractors.

Usage:
ExtractorFactory$getAllExtractors()

Returns: Value of extractors.

Method getDefaultExtractor(): Gets the default extractor.

Usage:
ExtractorFactory$getDefaultExtractor()

ExtractorFactory 25

Returns: Value of default extractor.

Method isSpecificExtractor(): Checks if exists an extractor for a specific extension.

Usage:
ExtractorFactory$isSpecificExtractor(extension)

Arguments:

extension A character value. The name of the extension to check

Returns: Value of extractors.

Method createInstance(): Builds the Instance object according to the file extension. In
the case of not finding the registered extension, the default extractor will be used if it has been
previously configured.

Usage:
ExtractorFactory$createInstance(path)

Arguments:

path A character value. Path of the file to create an Instance.

Returns: The Instance corresponding object according to the file extension.

Method reset(): Resets list of extractor to default state.

Usage:
ExtractorFactory$reset()

Method print(): Prints pipeline representation. (Override print function)

Usage:
ExtractorFactory$print(...)

Arguments:

... Further arguments passed to or from other methods.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExtractorFactory$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ExtractorEml, ExtractorSms, Instance

26 ExtractorSms

ExtractorSms Class to handle SMS files with tsms extension

Description

This class that inherits from the Instance class and implements the functions of extracting the text
and the date of an tsms type file.

Details

Due to the fact that the creation date of the message can not be extracted from the text of an SMS,
the date will be initialized to empty.

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Super class

bdpar::Instance -> ExtractorSms

Methods

Public methods:
• ExtractorSms$new()

• ExtractorSms$obtainDate()

• ExtractorSms$obtainSource()

• ExtractorSms$toString()

• ExtractorSms$clone()

Method new(): Creates a ExtractorSms object.

Usage:
ExtractorSms$new(path)

Arguments:

path A character value. Path of the tsms file.

Method obtainDate(): Obtains the date of the SMS file.

Usage:
ExtractorSms$obtainDate()

Method obtainSource(): Obtains the source of the SMS file. Reads the file indicated in the
path. In addition, it initializes the data field with the initial source.

Usage:
ExtractorSms$obtainSource()

ExtractorYtbid 27

Method toString(): Returns a character representing the instance

Usage:

ExtractorSms$toString()

Returns: Instance character representation

Method clone(): The objects of this class are cloneable with this method.

Usage:

ExtractorSms$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ExtractorEml, ExtractorYtbid, Instance

ExtractorYtbid Class to handle comments of YouTube files with ytbid extension

Description

This class inherits from the Instance class and implements the functions of extracting the text and
the date of an ytbid type file.

Details

YouTube connection is handled through the Connections class which loads the YouTube API
credentials from the bdpar.Options object. Additionally, to increase the processing speed, each
Youtube query is stored in a cache to avoid the execution of duplicated queries. To enable this op-
tion, cache location should be in the "cache.youtube.path" field of bdpar.Options variable. This
variable has to be the path to store the comments and it is necessary that it has two folder named:
"_spam_" and "_ham_"

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Super class

bdpar::Instance -> ExtractorYtbid

28 ExtractorYtbid

Methods

Public methods:
• ExtractorYtbid$new()

• ExtractorYtbid$obtainId()

• ExtractorYtbid$getId()

• ExtractorYtbid$obtainDate()

• ExtractorYtbid$obtainSource()

• ExtractorYtbid$toString()

• ExtractorYtbid$clone()

Method new(): Creates a ExtractorYtbid object.

Usage:
ExtractorYtbid$new(path, cachePath = NULL)

Arguments:
path A character value. Path of the ytbid file.
cachePath A character value. Path of the cache location. If it is NULL, checks if is defined

in the "cache.youtube.path" field of bdpar.Options variable.

Method obtainId(): Obtains the ID of the specific Youtube’s comment. Reads the ID of the
file indicated in the variable path.

Usage:
ExtractorYtbid$obtainId()

Method getId(): Gets the ID of an specific Youtube’s comment.

Usage:
ExtractorYtbid$getId()

Returns: Value of Youtube’s comment ID.

Method obtainDate(): Obtains the date from a specific comment ID. If the comment has
been previously cached the comment date is loaded from cache path. Otherwise, the request is
perfomed using YouTube API and the date is then formatted to the established standard.

Usage:
ExtractorYtbid$obtainDate()

Method obtainSource(): Obtains the source from a specific comment ID. If the comment has
previously been cached the source is loaded from cache path. Otherwise, the request is performed
using on YouTube API.

Usage:
ExtractorYtbid$obtainSource()

Method toString(): Returns a character representing the instance

Usage:
ExtractorYtbid$toString()

Returns: Instance character representation

File2Pipe 29

Method clone(): The objects of this class are cloneable with this method.

Usage:
ExtractorYtbid$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

bdpar.Options, Connections, ExtractorEml, ExtractorSms, Instance

File2Pipe Class to obtain the source field of an Instance

Description

Obtains the source using the method which implements the subclass of Instance.

Note

File2Pipe will automatically invalidate the Instance whenever the obtained source is empty or
not in UTF-8 format.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> File2Pipe

Methods

Public methods:
• File2Pipe$new()

• File2Pipe$pipe()

• File2Pipe$clone()

Method new(): Creates a File2Pipe object.

Usage:
File2Pipe$new(
propertyName = "source",
alwaysBeforeDeps = list("TargetAssigningPipe"),
notAfterDeps = list()

)

Arguments:

30 FindEmojiPipe

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).

Method pipe(): Preprocesses the Instance to obtain the source.

Usage:
File2Pipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method clone(): The objects of this class are cloneable with this method.

Usage:
File2Pipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

FindEmojiPipe Class to find and/or replace the emoji on the data field of an Instance

Description

This class is responsible of detecting the existing emojis in the data field of each Instance. Iden-
tified emojis are stored inside the emoji field of Instance class. Moreover if required, is able to
perform inline emoji replacement.

Details

FindEmojiPipe use the emoji list provided by data(emojisData).

Note

FindEmojiPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

FindEmojiPipe 31

Super class

bdpar::GenericPipe -> FindEmojiPipe

Methods

Public methods:
• FindEmojiPipe$new()

• FindEmojiPipe$pipe()

• FindEmojiPipe$findEmoji()

• FindEmojiPipe$replaceEmoji()

• FindEmojiPipe$clone()

Method new(): Creates a FindEmojiPipe object.

Usage:
FindEmojiPipe$new(
propertyName = "Emojis",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
replaceEmojis = TRUE

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
replaceEmojis A logical value. Indicates if the emojis are replaced.
propertyLanguageName A character value. Name of the language property.

Method pipe(): Preprocesses the Instance to obtain/replace the emojis. The emojis found in
the data are added to the list of properties of the Instance.

Usage:
FindEmojiPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findEmoji(): Checks if the emoji is in the data.

Usage:
FindEmojiPipe$findEmoji(data, emoji)

Arguments:

data A character value. The text where emoji will be searched.
emoji A character value. Indicates the emoji to find.

32 FindEmoticonPipe

Returns: A logical value depending on whether the emoji is in the data.

Method replaceEmoji(): Replaces the emoji in the data for the extendedEmoji.

Usage:
FindEmojiPipe$replaceEmoji(emoji, extendedEmoji, data)

Arguments:

emoji A character value. Indicates the emoji to replace.
extendedEmoji A character value. Indicates the string to replace for the emojis found.
data A character value. The text where emoji will be replaced.

Returns: The data with the emojis replaced.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FindEmojiPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmoticonPipe, FindHashtagPipe, FindUrlPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

FindEmoticonPipe Class to find and/or remove the emoticons on the data field of an In-
stance

Description

This class is responsible of detecting the existing emoticons in the data field of each Instance.
Identified emoticons are stored inside the emoticon field of Instance class. Moreover if required,
is able to perform inline emoticon removement.

Details

The regular expression indicated in the emoticonPattern variable is used to identify emoticons.

Note

FindEmoticonPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

FindEmoticonPipe 33

Super class

bdpar::GenericPipe -> FindEmoticonPipe

Public fields

emoticonPattern A character value. The regular expression to detect emoticons.

Methods

Public methods:
• FindEmoticonPipe$new()

• FindEmoticonPipe$pipe()

• FindEmoticonPipe$findEmoticon()

• FindEmoticonPipe$removeEmoticon()

• FindEmoticonPipe$clone()

Method new(): Creates a FindEmoticonPipe object.

Usage:
FindEmoticonPipe$new(
propertyName = "emoticon",
alwaysBeforeDeps = list(),
notAfterDeps = list("FindHashtagPipe"),
removeEmoticons = TRUE

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeEmoticons A logical value. Indicates if the emoticons are removed.
propertyLanguageName A character value. Name of the language property.

Method pipe(): Preprocesses the Instance to obtain/remove the emoticons. The emoticons
found in the data are added to the list of properties of the Instance.

Usage:
FindEmoticonPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findEmoticon(): Finds the emoticons in the data.

Usage:
FindEmoticonPipe$findEmoticon(data)

34 FindHashtagPipe

Arguments:
data A character value. The text to search the emoticons.

Returns: The list with emoticons found.

Method removeEmoticon(): Removes the emoticons in the data.

Usage:
FindEmoticonPipe$removeEmoticon(data)

Arguments:
data A character value. The text where emoticons will be removed.

Returns: The data with the emoticons removed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FindEmoticonPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindHashtagPipe, FindUrlPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

FindHashtagPipe Class to find and/or remove the hashtags on the data field of an In-
stance

Description

This class is responsible of detecting the existing hashtags in the data field of each Instance.
Identified hashtags are stored inside the hashtag field of Instance class. Moreover if required, is
able to perform inline hashtag removement.

Details

The regular expression indicated in the hashtagPattern variable is used to identify hashtags.

Note

FindHashtagPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

FindHashtagPipe 35

Super class

bdpar::GenericPipe -> FindHashtagPipe

Public fields

hashtagPattern A character value. The regular expression to detect hashtags.

Methods

Public methods:
• FindHashtagPipe$new()

• FindHashtagPipe$pipe()

• FindHashtagPipe$findHashtag()

• FindHashtagPipe$removeHashtag()

• FindHashtagPipe$clone()

Method new(): Creates a FindHashtagPipe object.

Usage:
FindHashtagPipe$new(
propertyName = "hashtag",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
removeHashtags = TRUE

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeHashtags A logical value. Indicates if the hashtags are removed.
propertyLanguageName A character value. Name of the language property.

Method pipe(): Preprocesses the Instance to obtain/remove the hashtags. The hashtags found
in the data are added to the list of properties of the Instance.

Usage:
FindHashtagPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findHashtag(): Finds the hashtags in the data.

Usage:
FindHashtagPipe$findHashtag(data)

36 FindUrlPipe

Arguments:

data A character value. The text to search the hashtags.

Returns: The list with hashtags found.

Method removeHashtag(): Removes the hashtags in the data.

Usage:
FindHashtagPipe$removeHashtag(data)

Arguments:

data A character value. The text where hashtags will be removed.

Returns: The data with the hashtags removed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FindHashtagPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindUrlPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

FindUrlPipe Class to find and/or remove the URLs on the data field of an Instance

Description

This class is responsible of detecting the existing URLs in the data field of each Instance. Iden-
tified URLs are stored inside the URLs field of Instance class. Moreover if required, is able to
perform inline URLs removement.

Details

The regular expressions indicated in the URLPatterns variable are used to identify URLs.

Note

FindUrlPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

FindUrlPipe 37

Super class

bdpar::GenericPipe -> FindUrlPipe

Public fields

URLPattern A character value. The regular expression to detect URLs.

EmailPattern A character value. The regular expression to detect emails.

Methods

Public methods:
• FindUrlPipe$new()

• FindUrlPipe$pipe()

• FindUrlPipe$findUrl()

• FindUrlPipe$removeUrl()

• FindUrlPipe$putNamesURLPattern()

• FindUrlPipe$getURLPatterns()

• FindUrlPipe$setURLPatterns()

• FindUrlPipe$getNamesURLPatterns()

• FindUrlPipe$setNamesURLPatterns()

• FindUrlPipe$clone()

Method new(): Creates a FindUrlPipe object.

Usage:
FindUrlPipe$new(
propertyName = "URLs",
alwaysBeforeDeps = list(),
notAfterDeps = list("FindUrlPipe"),
removeUrls = TRUE,
URLPatterns = list(self$URLPattern, self$EmailPattern),
namesURLPatterns = list("UrlPattern", "EmailPattern")

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeUrls A logical value. Indicates if the URLs are removed.
URLPatterns A list value. The regex to find URLs.
namesURLPatterns A list value. The names of regex.
propertyLanguageName A character value. Name of the language property.

Method pipe(): Preprocesses the Instance to obtain/remove the URLs. The URLs found in
the data are added to the list of properties of the Instance.

38 FindUrlPipe

Usage:
FindUrlPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findUrl(): Finds the URLs in the data.

Usage:
FindUrlPipe$findUrl(pattern, data)

Arguments:
pattern A character value. The regex to find URLs.
data A character value. The text to find the URLs.

Returns: The list with URLs found.

Method removeUrl(): Removes the URL in the data.

Usage:
FindUrlPipe$removeUrl(pattern, data)

Arguments:
pattern A character value. The regex to find URLs.
data A character value. The text to remove the URLs.

Returns: The data with URLs removed.

Method putNamesURLPattern(): Sets the names to URL patterns result.

Usage:
FindUrlPipe$putNamesURLPattern(resultOfURLPatterns)

Arguments:
resultOfURLPatterns A list value. The list with URLs found.

Returns: The URLs found with the names of URL pattern.

Method getURLPatterns(): Gets the URL patterns.

Usage:
FindUrlPipe$getURLPatterns()

Returns: Value of URL patterns.

Method setURLPatterns(): Sets the URL patterns.

Usage:
FindUrlPipe$setURLPatterns(URLPatterns)

Arguments:
URLPatterns A list value. The new value of the URL patterns.

Method getNamesURLPatterns(): Gets the names of URLs.

Usage:

FindUserNamePipe 39

FindUrlPipe$getNamesURLPatterns()

Returns: Value of names of URLs.

Method setNamesURLPatterns(): Sets the names of URLs.

Usage:
FindUrlPipe$setNamesURLPatterns(namesURLPatterns)

Arguments:
namesURLPatterns A list value. The new value of the names of URLs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FindUrlPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

FindUserNamePipe Class to find and/or remove the users on the data field of an Instance

Description

This class is responsible of detecting the existing use names in the data field of each Instance.
Identified user names are stored inside the userName field of Instance class. Moreover if required,
is able to perform inline user name removement.

Details

The regular expressions indicated in the userPattern variable are used to identify user names.

Note

FindUserNamePipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> FindUserNamePipe

40 FindUserNamePipe

Public fields

userPattern A character value. The regular expression to detect name users.

Methods

Public methods:
• FindUserNamePipe$new()

• FindUserNamePipe$pipe()

• FindUserNamePipe$findUserName()

• FindUserNamePipe$removeUserName()

• FindUserNamePipe$clone()

Method new(): Creates a FindEmoticonPipe object.

Usage:
FindUserNamePipe$new(
propertyName = "userName",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
removeUser = TRUE

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeUser A logical value. Indicates if the name users are removed.
propertyLanguageName A character value. Name of the language property.

Method pipe(): Preprocesses the Instance to obtain/remove the name users. The emoticons
found in the data are added to the list of properties of the Instance.

Usage:
FindUserNamePipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findUserName(): Finds the name users in the data.

Usage:
FindUserNamePipe$findUserName(data)

Arguments:

data A character value. The text to search the name users.

Returns: The list with name users found.

GenericPipe 41

Method removeUserName(): Removes the name users in the data.

Usage:
FindUserNamePipe$removeUserName(data)

Arguments:
data A character value. The text where name users will be removed.

Returns: The data with the name users removed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FindUserNamePipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

GenericPipe Abstract super class that handles the management of the Pipes

Description

Provides the required methods to successfully handle each GenericPipe class.

Methods

Public methods:
• GenericPipe$new()

• GenericPipe$pipe()

• GenericPipe$getPropertyName()

• GenericPipe$getAlwaysBeforeDeps()

• GenericPipe$getNotAfterDeps()

• GenericPipe$setPropertyName()

• GenericPipe$setAlwaysBeforeDeps()

• GenericPipe$setNotAfterDeps()

• GenericPipe$hash()

• GenericPipe$clone()

Method new(): Creates a GenericPipe object.

Usage:

42 GenericPipe

GenericPipe$new(propertyName, alwaysBeforeDeps, notAfterDeps)

Arguments:
propertyName A character value. Name of the property associated with the Pipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (Pipes that must be exe-

cuted before this one).
notAfterDeps A list value. The dependencies notAfter (Pipes that cannot be executed after

this one).

Method pipe(): Abstract method to preprocess the Instance.

Usage:
GenericPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The preprocessed Instance.

Method getPropertyName(): Gets of name of property.

Usage:
GenericPipe$getPropertyName()

Returns: Value of name of property.

Method getAlwaysBeforeDeps(): Gets of the dependencies always before.

Usage:
GenericPipe$getAlwaysBeforeDeps()

Returns: Value of dependencies always before.

Method getNotAfterDeps(): Gets of the dependencies not after.

Usage:
GenericPipe$getNotAfterDeps()

Returns: Value of dependencies not after.

Method setPropertyName(): Changes the value of property’s name.

Usage:
GenericPipe$setPropertyName(propertyName)

Arguments:
propertyName A character value. The new value of the property’s name.

Method setAlwaysBeforeDeps(): Changes the value of dependencies always before.

Usage:
GenericPipe$setAlwaysBeforeDeps(alwaysBeforeDeps)

Arguments:
alwaysBeforeDeps A list value. The new value of the dependencies always before.

Method setNotAfterDeps(): Changes the value of dependencies not after.

GenericPipeline 43

Usage:
GenericPipe$setNotAfterDeps(notAfterDeps)

Arguments:
notAfterDeps A list value. The new value of the dependencies not after.

Method hash(): Generates an identification of pipe based on its fields.

Usage:
GenericPipe$hash(algo = "md5")

Arguments:
algo Algorithm to be applied. Options: "md5", "sha1", "crc32", "sha256", "sha512", "xxhash32",

"xxhash64", "murmur32", "spookyhash

Method clone(): The objects of this class are cloneable with this method.

Usage:
GenericPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, bdpar.log, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasureLengthPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

GenericPipeline Abstract super class implementing the pipelining process

Description

Abstract super class to establish the flow of Pipes.

Methods

Public methods:
• GenericPipeline$new()

• GenericPipeline$execute()

• GenericPipeline$get()

• GenericPipeline$toString()

• GenericPipeline$clone()

Method new(): Creates a GenericPipeline object.

Usage:
GenericPipeline$new()

44 GuessDatePipe

Method execute(): Function where is implemented the flow of the GenericPipes.

Usage:
GenericPipeline$execute(instance)

Arguments:

instance A Instance value. The Instance that is going to be processed.

Returns: The preprocessed Instance.

Method get(): Gets a list with containing the set of GenericPipes of the pipeline.

Usage:
GenericPipeline$get()

Returns: The set of GenericPipes containing the pipeline.

Method toString(): Returns a character representing the pipeline.

Usage:
GenericPipeline$toString()

Details: This function allows to set a place to define a character representation of the structure
of a pipeline.

Returns: GenericPipeline character representation

Method clone(): The objects of this class are cloneable with this method.

Usage:
GenericPipeline$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

bdpar.log, DefaultPipeline, DynamicPipeline, Instance, GenericPipe, %>|%

GuessDatePipe Class to obtain the date field of an Instance

Description

Obtains the date using the method which implements the subclass of Instance.

Inherit

This class inherit from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> GuessDatePipe

GuessDatePipe 45

Methods

Public methods:

• GuessDatePipe$new()

• GuessDatePipe$pipe()

• GuessDatePipe$clone()

Method new(): Creates a GuessDatePipe object.

Usage:
GuessDatePipe$new(
propertyName = "date",
alwaysBeforeDeps = list("TargetAssigningPipe"),
notAfterDeps = list()

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).

Method pipe(): Preprocesses the Instance to obtain the date.

Usage:
GuessDatePipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GuessDatePipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

46 GuessLanguagePipe

GuessLanguagePipe Class to guess the language of an Instance

Description

This class allows guess the language by using language detector of library cld2. Creates the lan-
guage property which indicates the idiom text.

Note

The Pipe will invalidate the Instance if the language of the data can not be detect.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> GuessLanguagePipe

Methods

Public methods:
• GuessLanguagePipe$new()

• GuessLanguagePipe$pipe()

• GuessLanguagePipe$getLanguage()

• GuessLanguagePipe$clone()

Method new(): Creates a GuessLanguagePipe object.

Usage:
GuessLanguagePipe$new(
propertyName = "language",
alwaysBeforeDeps = list("StoreFileExtPipe", "TargetAssigningPipe"),
notAfterDeps = list()

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).

Method pipe(): Preprocesses the Instance to obtain the language of the data.

Usage:
GuessLanguagePipe$pipe(instance)

Instance 47

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method getLanguage(): Guesses the language of data.

Usage:
GuessLanguagePipe$getLanguage(data)

Arguments:
data A character value. The text to guess the language.

Returns: The language guesser. Format: see ISO 639-3:2007.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GuessLanguagePipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

Instance Abstract super class that handles the management of the Instances

Description

Provides the required methods to successfully handle each Instance class.

Methods

Public methods:
• Instance$new()

• Instance$obtainDate()

• Instance$obtainSource()

• Instance$getDate()

• Instance$getSource()

• Instance$getPath()

• Instance$getData()

• Instance$getProperties()

• Instance$setSource()

48 Instance

• Instance$setData()

• Instance$setDate()

• Instance$setProperties()

• Instance$addProperties()

• Instance$getSpecificProperty()

• Instance$isSpecificProperty()

• Instance$setSpecificProperty()

• Instance$getNamesOfProperties()

• Instance$isInstanceValid()

• Instance$invalidate()

• Instance$getFlowPipes()

• Instance$addFlowPipes()

• Instance$getBanPipes()

• Instance$addBanPipes()

• Instance$checkCompatibility()

• Instance$toString()

• Instance$clone()

Method new(): Creates a Instance object.

Usage:
Instance$new(path)

Arguments:
path A character value. Path of the file.

Method obtainDate(): Abstract function responsible for obtaining the date of the Instance.

Usage:
Instance$obtainDate()

Method obtainSource(): Abstract function responsible for determining the source of the
Instance.

Usage:
Instance$obtainSource()

Method getDate(): Gets the date.

Usage:
Instance$getDate()

Returns: Value of date.

Method getSource(): Gets the source.

Usage:
Instance$getSource()

Returns: Value of source.

Method getPath(): Gets the path.

Instance 49

Usage:
Instance$getPath()

Returns: Value of path.

Method getData(): Gets the data.

Usage:
Instance$getData()

Returns: Value of data.

Method getProperties(): Gets the properties

Usage:
Instance$getProperties()

Returns: Value of properties.

Method setSource(): Modifies the source value.

Usage:
Instance$setSource(source)

Arguments:

source A character value. The new value of source.

Method setData(): Modifies the data value.

Usage:
Instance$setData(data)

Arguments:

data A character value. The new value of data.

Method setDate(): Modifies the date value.

Usage:
Instance$setDate(date)

Arguments:

date A character value. The new value of date.

Method setProperties(): Modifies the properties value.

Usage:
Instance$setProperties(properties)

Arguments:

properties A list value. The new list of properties.

Method addProperties(): Adds a property to the list of the properties.

Usage:
Instance$addProperties(propertyValue, propertyName)

Arguments:

50 Instance

propertyValue A Object value. The value of the new property.
propertyName A character value. The name of the new property.

Method getSpecificProperty(): Obtains a specific property.

Usage:
Instance$getSpecificProperty(propertyName)

Arguments:
propertyName A character value. The name of the property to obtain.

Returns: The value of the specific property.

Method isSpecificProperty(): Checks for the existence of an specific property.

Usage:
Instance$isSpecificProperty(propertyName)

Arguments:
propertyName A character value. The name of the property to check.

Returns: A logical results according to the existence of the specific property in the list of
properties.

Method setSpecificProperty(): Modifies the value of the one property.

Usage:
Instance$setSpecificProperty(propertyName, propertyValue)

Arguments:
propertyName A character value. The name of the property.
propertyValue A Object value. The new value of the property.

Method getNamesOfProperties(): Gets of the names of all properties.

Usage:
Instance$getNamesOfProperties()

Returns: The names of properties.

Method isInstanceValid(): Checks if the Instance is valid.

Usage:
Instance$isInstanceValid()

Returns: Value of isValid flag.

Method invalidate(): Forces the invalidation of an specific Instance.

Usage:
Instance$invalidate()

Method getFlowPipes(): Gets the list of the flow of GenericPipe.

Usage:
Instance$getFlowPipes()

Returns: Names of the GenericPipe used.

Instance 51

Method addFlowPipes(): Gets the list of the flow of GenericPipe.

Usage:
Instance$addFlowPipes(namePipe)

Arguments:

namePipe A character value. Name of the new GenericPipe to be added in the GenericPipeline.

Method getBanPipes(): Gets an array with containing all the ban GenericPipe.

Usage:
Instance$getBanPipes()

Returns: Value of ban GenericPipe array.

Method addBanPipes(): Added the name of the Pipe to the array that keeps the track of
GenericPipes having running after restrictions.

Usage:
Instance$addBanPipes(namePipe)

Arguments:

namePipe A character value. GenericPipe name to be introduced into the ban array.

Method checkCompatibility(): Check compatibility between GenericPipes.

Usage:
Instance$checkCompatibility(namePipe, alwaysBefore)

Arguments:

namePipe A character value. The name of the GenericPipe name to check the compatibility.
alwaysBefore A list value. GenericPipes that the Instance had to go through.

Method toString(): Returns a character representing the instance

Usage:
Instance$toString()

Returns: Instance character representation

Method clone(): The objects of this class are cloneable with this method.

Usage:
Instance$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ExtractorEml, ExtractorSms, ExtractorYtbid

52 InterjectionPipe

InterjectionPipe Class to find and/or remove the interjections on the data field of an
Instance

Description

InterjectionPipe class is responsible for detecting the existing interjections in the data field of
each Instance. Identified interjections are stored inside the interjection field of Instance class.
Moreover if needed, is able to perform inline interjections removement.

Details

InterjectionPipe class requires the resource files (in json format) containing the list of interjec-
tions. To this end, the language of the text indicated in the propertyLanguageName should be con-
tained in the resource file name (ie. interj.xxx.json where xxx is the value defined in the property-
LanguageName). The location of the resources should be defined in the "resources.interjections.path"
field of bdpar.Options variable.

Note

InterjectionPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> InterjectionPipe

Methods

Public methods:

• InterjectionPipe$new()

• InterjectionPipe$pipe()

• InterjectionPipe$findInterjection()

• InterjectionPipe$removeInterjection()

• InterjectionPipe$getPropertyLanguageName()

• InterjectionPipe$getResourcesInterjectionsPath()

• InterjectionPipe$setResourcesInterjectionsPath()

• InterjectionPipe$clone()

Method new(): Creates a InterjectionPipe object.

Usage:

InterjectionPipe 53

InterjectionPipe$new(
propertyName = "interjection",
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list(),
removeInterjections = TRUE,
resourcesInterjectionsPath = NULL

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
propertyLanguageName A character value. Name of the language property.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeInterjections A logical value. Indicates if the interjections are removed or not.
resourcesInterjectionsPath A character value. Path of resource files (in json format)

containing the interjections.

Method pipe(): Preprocesses the Instance to obtain/remove the interjections. The interjec-
tions found in the data are added to the list of properties of the Instance.

Usage:
InterjectionPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findInterjection(): Checks if the interjection is in the data.

Usage:
InterjectionPipe$findInterjection(data, interjection)

Arguments:
data A character value. The text where interjection will be searched.
interjection A character value. Indicates the interjection to find.

Returns: A logical value depending on whether the interjection is in the data.

Method removeInterjection(): Removes the interjection in the data.

Usage:
InterjectionPipe$removeInterjection(interjection, data)

Arguments:
interjection A character value. Indicates the interjection to remove.
data A character value. The text where interjection will be removed.

Returns: The data with the interjections removed.

Method getPropertyLanguageName(): Gets the name of property language.

54 MeasureLengthPipe

Usage:
InterjectionPipe$getPropertyLanguageName()

Returns: Value of name of property language.

Method getResourcesInterjectionsPath(): Gets the path of interjections resources.

Usage:
InterjectionPipe$getResourcesInterjectionsPath()

Returns: Value of path of interjections resources.

Method setResourcesInterjectionsPath(): Sets the path of interjections resources.

Usage:
InterjectionPipe$setResourcesInterjectionsPath(path)

Arguments:

path A character value. The new value of the path of interjections resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:
InterjectionPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

MeasureLengthPipe Class to obtain the length of the data field of an Instance

Description

This class is responsible of obtain the length of thedata field of each Instance. Creates the length
property which indicates the length of the text. The property’s name is customize thought the class
constructor.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> MeasureLengthPipe

MeasureLengthPipe 55

Methods

Public methods:
• MeasureLengthPipe$new()

• MeasureLengthPipe$pipe()

• MeasureLengthPipe$getLength()

• MeasureLengthPipe$clone()

Method new(): Creates a File2Pipe object.

Usage:
MeasureLengthPipe$new(
propertyName = "length",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
nchar_conf = TRUE

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
nchar_conf A logical value. indicates if the pipe uses nchar or object.size.

Method pipe(): Preprocesses the Instance to obtain the length of data.

Usage:
MeasureLengthPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method getLength(): Preprocesses the Instance to obtain the length of data.

Usage:
MeasureLengthPipe$getLength(data, nchar_conf = TRUE)

Arguments:
data A character value. The text to preprocess.
nchar_conf A logical value. Indicates if the pipe uses nchar or object.size.

Returns: The Instance with the modifications that have occurred in the pipe.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureLengthPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

56 operator-pipe

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

operator-pipe bdpar customized forward-pipe operator

Description

Defines a customized forward pipe operator extending the features of classical %>%. Concretely
%>|% is able to stop the pipelining process whenever an Instance has been invalidated. This issue,
avoids executing the whole pipelining process for the invalidated Instance and therefore reduce
the time and resources used to complete the whole process.

Usage

lhs %>|% rhs

Arguments

lhs an Instance object.

rhs a function call using the bdpar semantics.

Value

The Instance modified by the methods it has traversed.

Details

This is the %>% operator of the modified magrittr library to both (i) to stop the flow when the
Instance is invalid and (ii) automatically call the pipe function of the R6 objects passing through
it (iii) to check the dependencies of the Instance and (iv) to manage the pipeline cache.

The usage structure would be as shown below:

instance %>|%

pipeObject$new() %>|%

pipeObject$new(<<argument1>>, <<argument2>, ...) %>|%

pipeObject$new()

Note

Pipelining process is automatically stopped if the Instance is invalid.

ResourceHandler 57

See Also

bdpar.Options, Instance, GenericPipe

ResourceHandler Class that handles different types of resources

Description

Class that handles different types of resources.

Details

It is a class that allows store the resources that are needed in the GenericPipes to avoid having to
repeatedly read from the file. File resources of type json are read and stored in memory.

Methods

Public methods:
• ResourceHandler$new()

• ResourceHandler$isLoadResource()

• ResourceHandler$getResources()

• ResourceHandler$setResources()

• ResourceHandler$getNamesResources()

• ResourceHandler$clone()

Method new(): Creates a ResourceHandler object.

Usage:
ResourceHandler$new()

Method isLoadResource(): From the resource path, it is checked if they have already been
loaded. In this case, the list of the requested resource is returned. Otherwise, the resource variable
is added to the list of resources, and the resource list is returned. In the event that the resource file
does not exist, NULL is returned.

Usage:
ResourceHandler$isLoadResource(pathResource)

Arguments:

pathResource A (character) value. The resource file path.

Returns: The resources list is returned, if they exist.

Method getResources(): Gets of resources variable.

Usage:
ResourceHandler$getResources()

Returns: The value of resources variable.

58 runPipeline

Method setResources(): Sets of resources variable.

Usage:
ResourceHandler$setResources(resources)

Arguments:
resources The new value of resources.

Method getNamesResources(): Gets of names of resources

Usage:
ResourceHandler$getNamesResources()

Returns: Value of names of resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ResourceHandler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

runPipeline Initiates the pipelining process

Description

runPipeline is responsible for easily initialize the pipelining preprocessing process.

Usage

runPipeline(path, extractors = ExtractorFactory$new(),
pipeline = DefaultPipeline$new(), cache = TRUE, verbose = FALSE, summary = FALSE)

Arguments

path (character) path where the files to be preprocessed are located.

extractors (ExtractorFactory) object implementing the method createInstance to choose
which type of Instance is created.

pipeline (GenericPipeline) subclass of GenericPipeline, which implements the whole
pipeling process.

cache (logical) flag indicating if the status of the instances will be stored after each
pipe. This allows to avoid rejections of previously executed tasks, if the order
and configuration of the pipe and pipeline is the same as what is stored in the
cache.

verbose (logical) flag indicating for printing messages, warnings and errors.

summary (logical) flag indicating if a summary of the pipeline execution is provided or
not.

runPipeline 59

Value

List of Instance that have been preprocessed.

Details

In the case that some pipe, defined on the workflow, needs some type of configuration, it can be
defined thought bdpar.Options variable which have different methods to support the functionality
of different pipes.

See Also

Bdpar, bdpar.Options, Connections, DefaultPipeline, DynamicPipeline, GenericPipeline,
Instance, ExtractorFactory, ResourceHandler

Examples

Not run:

#If it is necessary to indicate any existing configuration key, do it through:
#bdpar.Options$set(key, value)
#If the key is not initialized, do it through:
#bdpar.Options$add(key, value)

#If it is neccesary parallelize, do it through:
#bdpar.Options$set("numCores", numCores)

#If it is necessary to change the behavior of the log, do it through:
#bdpar.Options$configureLog(console = TRUE, threshold = "INFO", file = NULL)

#Folder with the files to preprocess
path <- system.file("example",

package = "bdpar")

#Object which decides how creates the instances
extractors <- ExtractorFactory$new()

#Object which indicates the pipes' flow
pipeline <- DefaultPipeline$new()

#Starting file preprocessing...
runPipeline(path = path,

extractors = extractors,
pipeline = pipeline,
cache = FALSE,
verbose = FALSE,
summary = TRUE)

End(Not run)

60 SlangPipe

SlangPipe Class to find and/or replace the slangs on the data field of an Instance

Description

SlangPipe class is responsible for detecting the existing slangs in the data field of each Instance.
Identified slangs are stored inside the slang field of Instance class. Moreover if needed, is able to
perform inline slangs replacement.

Details

SlangPipe class requires the resource files (in json format) containing the correspondence between
slangs and meaning. To this end, the language of the text indicated in the propertyLanguage-
Name should be contained in the resource file name (ie. slang.xxx.json where xxx is the value
defined in the propertyLanguageName). The location of the resources should be defined in the
"resources.slangs.path" field of bdpar.Options variable.

Note

SlangPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> SlangPipe

Methods

Public methods:

• SlangPipe$new()

• SlangPipe$pipe()

• SlangPipe$findSlang()

• SlangPipe$replaceSlang()

• SlangPipe$getPropertyLanguageName()

• SlangPipe$getResourcesSlangsPath()

• SlangPipe$setResourcesSlangsPath()

• SlangPipe$clone()

Method new(): Creates a SlangPipe object.

Usage:

SlangPipe 61

SlangPipe$new(
propertyName = "langpropname",
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list(),
replaceSlangs = TRUE,
resourcesSlangsPath = NULL

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
propertyLanguageName A character value. Name of the language property.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
replaceSlangs A logical value. Indicates if the slangs are replaced or not.
resourcesSlangsPath A character value. Path of resource files (in json format) containing

the correspondence between slangs and meaning.

Method pipe(): Preprocesses the Instance to obtain/replace the slangs. The slangs found in
the data are added to the list of properties of the Instance.

Usage:
SlangPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findSlang(): Checks if the slang is in the data.

Usage:
SlangPipe$findSlang(data, slang)

Arguments:
data A character value. The text where slang will be searched.
slang A character value. Indicates the slang to find.

Returns: A logical value depending on whether the slang is in the data.

Method replaceSlang(): Replaces the slang in the data for the extendedSlang.

Usage:
SlangPipe$replaceSlang(slang, extendedSlang, data)

Arguments:
slang A character value. Indicates the slang to replace.
extendedSlang A character value. Indicates the string to replace for the slangs found.
data A character value. The text where slang will be replaced.

Returns: The data with the slangs replaced.

62 StopWordPipe

Method getPropertyLanguageName(): Gets the name of property language.

Usage:
SlangPipe$getPropertyLanguageName()

Returns: Value of name of property language.

Method getResourcesSlangsPath(): Gets the path of slangs resources.

Usage:
SlangPipe$getResourcesSlangsPath()

Returns: Value of path of slangs resources.

Method setResourcesSlangsPath(): Sets the path of slangs resources.

Usage:
SlangPipe$setResourcesSlangsPath(path)

Arguments:
path A character value. The new value of the path of slangs resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SlangPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasureLengthPipe, GenericPipe, ResourceHandler, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

StopWordPipe Class to find and/or remove the stop words on the data field of an
Instance

Description

StopWordPipe class is responsible for detecting the existing stop words in the data field of each
Instance. Identified stop words are stored inside the contraction field of Instance class. More-
over if needed, is able to perform inline stop words removement.

Details

StopWordPipe class requires the resource files (in json format) containing the list of stop words. To
this end, the language of the text indicated in the propertyLanguageName should be contained in
the resource file name (ie. xxx.json where xxx is the value defined in the propertyLanguageName
). The location of the resources should be defined in the "resources.stopwords.path" field of
bdpar.Options variable.

StopWordPipe 63

Note

StopWordPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> StopWordPipe

Methods

Public methods:
• StopWordPipe$new()

• StopWordPipe$pipe()

• StopWordPipe$findStopWord()

• StopWordPipe$removeStopWord()

• StopWordPipe$getPropertyLanguageName()

• StopWordPipe$getResourcesStopWordsPath()

• StopWordPipe$setResourcesStopWordsPath()

• StopWordPipe$clone()

Method new(): Creates a StopWordPipe object.

Usage:
StopWordPipe$new(
propertyName = "stopWord",
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list("AbbreviationPipe"),
removeStopWords = TRUE,
resourcesStopWordsPath = NULL

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
propertyLanguageName A character value. Name of the language property.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
removeStopWords A logical value. Indicates if the stop words are removed or not.
resourcesStopWordsPath A character value. Path of resource files (in json format) contain-

ing the stop words.

Method pipe(): Preprocesses the Instance to obtain/remove the stop words. The stop words
found in the data are added to the list of properties of the Instance.

64 StopWordPipe

Usage:
StopWordPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method findStopWord(): Checks if the stop word is in the data.

Usage:
StopWordPipe$findStopWord(data, stopWord)

Arguments:
data A character value. The text where stop word will be searched.
stopWord A character value. Indicates the stop word to find.

Returns: A logical value depending on whether the stop word is in the data.

Method removeStopWord(): Removes the stop word in the data.

Usage:
StopWordPipe$removeStopWord(stopWord, data)

Arguments:
stopWord A character value. Indicates the stop word to remove.
data A character value. The text where stop word will be removed.

Returns: The data with the stop words removed.

Method getPropertyLanguageName(): Gets the name of property language.

Usage:
StopWordPipe$getPropertyLanguageName()

Returns: Value of name of property language.

Method getResourcesStopWordsPath(): Gets the path of stop words resources.

Usage:
StopWordPipe$getResourcesStopWordsPath()

Returns: Value of path of stop words resources.

Method setResourcesStopWordsPath(): Sets the path of stop words resources.

Usage:
StopWordPipe$setResourcesStopWordsPath(path)

Arguments:
path A character value. The new value of the path of stop words resources.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StopWordPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

StoreFileExtPipe 65

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

StoreFileExtPipe Class to get the file’s extension field of an Instance

Description

Gets the extension of a file. Creates the extension property which indicates extension of the file.

Note

StoreFileExtPipe will automatically invalidate the Instance if it is not able to find the extension
from the path field.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> StoreFileExtPipe

Methods

Public methods:
• StoreFileExtPipe$new()

• StoreFileExtPipe$pipe()

• StoreFileExtPipe$obtainExtension()

• StoreFileExtPipe$clone()

Method new(): Creates a StoreFileExtPipe object.

Usage:
StoreFileExtPipe$new(
propertyName = "extension",
alwaysBeforeDeps = list(),
notAfterDeps = list()

)

Arguments:

propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).

66 TargetAssigningPipe

notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-
cuted after this one).

Method pipe(): Preprocesses the Instance to obtain the extension of Instance.

Usage:
StoreFileExtPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method obtainExtension(): Gets of extension of the path.

Usage:
StoreFileExtPipe$obtainExtension(path)

Arguments:

path A character value. The path of the file to get the extension.

Returns: Extension of the path.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StoreFileExtPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

TargetAssigningPipe Class to get the target field of the Instance

Description

This class allows searching in the path the target of the Instance.

Details

The targets that are searched can be controlled through the constructor of the class where target-
sName will be the string that is searched within the path and targets has the values that the property
can take.

TargetAssigningPipe 67

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> TargetAssigningPipe

Methods

Public methods:
• TargetAssigningPipe$new()

• TargetAssigningPipe$pipe()

• TargetAssigningPipe$getTarget()

• TargetAssigningPipe$checkTarget()

• TargetAssigningPipe$getTargets()

• TargetAssigningPipe$clone()

Method new(): Creates a TargetAssigningPipe object.

Usage:
TargetAssigningPipe$new(
targets = list("ham", "spam"),
targetsName = list("_ham_", "_spam_"),
propertyName = "target",
alwaysBeforeDeps = list(),
notAfterDeps = list()

)

Arguments:

targets A list value. Name of the targets property.
targetsName A list value. The name of folders.
propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).

Method pipe(): Preprocesses the Instance to obtain the target.

Usage:
TargetAssigningPipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method getTarget(): Gets the target from a path.

Usage:

68 TeeCSVPipe

TargetAssigningPipe$getTarget(path)

Arguments:

path A character value. The path to analyze.

Returns: The target of the path.

Method checkTarget(): Checks if the target is in the path.

Usage:
TargetAssigningPipe$checkTarget(target, path)

Arguments:

target A character value. The target to find in the path.
path A character value. The path to analize.

Returns: if the target is found, returns target, else returns "".

Method getTargets(): Gets of targets.

Usage:
TargetAssigningPipe$getTargets()

Returns: Value of targets.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TargetAssigningPipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TeeCSVPipe, ToLowerCasePipe

TeeCSVPipe Class to handle a CSV with the properties field of the preprocessed
Instance

Description

Complete a CSV with the properties of the preprocessed Instance.

Details

The path to save the properties should be defined in the "teeCSVPipe.output.path" field of bd-
par.Options variable.

TeeCSVPipe 69

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> TeeCSVPipe

Methods

Public methods:
• TeeCSVPipe$new()

• TeeCSVPipe$pipe()

• TeeCSVPipe$clone()

Method new(): Creates a TeeCSVPipe object.
Usage:
TeeCSVPipe$new(
propertyName = "",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
withData = TRUE,
withSource = TRUE,
outputPath = NULL

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).
withData A logical value. Indicates if the data is added to CSV.
withSource A logical value. Indicates if the source is added to CSV.
outputPath A character value. The path of CSV.

Method pipe(): Completes the CSV with the preprocessed Instance.
Usage:
TeeCSVPipe$pipe(instance)

Arguments:
instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method clone(): The objects of this class are cloneable with this method.
Usage:
TeeCSVPipe$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

70 ToLowerCasePipe

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe,
StoreFileExtPipe, TargetAssigningPipe, ToLowerCasePipe

ToLowerCasePipe Class to convert the data field of an Instance to lower case

Description

Class to convert the data field of an Instance to lower case.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Super class

bdpar::GenericPipe -> ToLowerCasePipe

Methods

Public methods:
• ToLowerCasePipe$new()

• ToLowerCasePipe$pipe()

• ToLowerCasePipe$toLowerCase()

• ToLowerCasePipe$clone()

Method new(): Creates a ToLowerCasePipe object.

Usage:
ToLowerCasePipe$new(
propertyName = "",
alwaysBeforeDeps = list(),
notAfterDeps = list()

)

Arguments:
propertyName A character value. Name of the property associated with the GenericPipe.
alwaysBeforeDeps A list value. The dependencies alwaysBefore (GenericPipes that must

be executed before this one).
notAfterDeps A list value. The dependencies notAfter (GenericPipes that cannot be exe-

cuted after this one).

Method pipe(): Preprocesses the Instance to convert the data to lower case.

Usage:

ToLowerCasePipe 71

ToLowerCasePipe$pipe(instance)

Arguments:

instance A Instance value. The Instance to preprocess.

Returns: The Instance with the modifications that have occurred in the pipe.

Method toLowerCase(): Converts the data to lower case

Usage:
ToLowerCasePipe$toLowerCase(data)

Arguments:

data A character value. Text to preprocess.

Returns: The data in lower case.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ToLowerCasePipe$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasureLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe

Index

∗ datasets
bdparData, 12
emojisData, 21

AbbreviationPipe, 3, 3, 4, 12, 16, 30, 32, 34,
36, 39, 41, 43, 45, 47, 54, 56, 62, 65,
66, 68, 70, 71

Bdpar, 6, 6, 59
bdpar.log, 8, 12, 19, 21, 43, 44
bdpar.Options, 3, 5–7, 9, 9, 10, 12–14, 16,

21–23, 27–29, 47, 52, 54, 57, 59, 60,
62, 65, 68, 70

bdpar::GenericPipe, 3, 14, 29, 31, 33, 35,
37, 39, 44, 46, 52, 54, 60, 63, 65, 67,
69, 70

bdpar::GenericPipeline, 18, 19
bdpar::Instance, 22, 26, 27
bdparData, 12

character, 4–6, 15, 16, 18, 20, 22–28, 30–38,
40–42, 44–51, 53–55, 61–71

Connections, 6, 7, 12, 12, 13, 27, 29, 59
ContractionPipe, 5, 12, 14, 14, 30, 32, 34,

36, 39, 41, 43, 45, 47, 54, 56, 62, 65,
66, 68, 70, 71

DefaultPipeline, 7, 16, 16, 18, 21, 44, 59
DynamicPipeline, 7, 19, 19, 20, 44, 59

emojisData, 21
ExtractorEml, 12, 21, 22, 25, 27, 29, 51
ExtractorFactory, 7, 23, 23, 24, 59
ExtractorSms, 23, 25, 26, 26, 29, 51
ExtractorYtbid, 12, 13, 23, 27, 27, 28, 51

File2Pipe, 5, 16, 29, 29, 32, 34, 36, 39, 41,
43, 45, 47, 54–56, 62, 65, 66, 68, 70,
71

FindEmojiPipe, 5, 16, 30, 30, 31, 34, 36, 39,
41, 43, 45, 47, 54, 56, 62, 65, 66, 68,
70, 71

FindEmoticonPipe, 5, 16, 30, 32, 32, 33, 36,
39–41, 43, 45, 47, 54, 56, 62, 65, 66,
68, 70, 71

FindHashtagPipe, 5, 16, 30, 32, 34, 34, 35,
39, 41, 43, 45, 47, 54, 56, 62, 65, 66,
68, 70, 71

FindUrlPipe, 5, 16, 30, 32, 34, 36, 36, 37, 41,
43, 45, 47, 54, 56, 62, 65, 66, 68, 70,
71

FindUserNamePipe, 5, 16, 30, 32, 34, 36, 39,
39, 43, 45, 47, 54, 56, 62, 65, 66, 68,
70, 71

GenericPipe, 3–5, 14–16, 18–21, 29–37,
39–41, 41, 44–47, 50–57, 60–63,
65–71

GenericPipeline, 6, 7, 16, 17, 19, 21, 43, 43,
44, 51, 58, 59

GuessDatePipe, 5, 16, 30, 32, 34, 36, 39, 41,
43, 44, 45, 47, 54, 56, 62, 65, 66, 68,
70, 71

GuessLanguagePipe, 5, 12, 16, 30, 32, 34, 36,
39, 41, 43, 45, 46, 46, 54, 56, 62, 65,
66, 68, 70, 71

Instance, 3–5, 7, 12, 14–16, 18–21, 23,
25–47, 47, 48, 50–71

InterjectionPipe, 5, 16, 30, 32, 34, 36, 39,
41, 43, 45, 47, 52, 52, 56, 62, 65, 66,
68, 70, 71

list, 4, 15, 19, 20, 30, 31, 33–40, 42, 43, 45,
46, 49, 51, 53, 55, 61, 63, 65–67, 69,
70

logical, 4, 15, 31–33, 35, 37, 40, 53, 55, 61,
63, 64, 69

72

INDEX 73

MeasureLengthPipe, 5, 16, 30, 32, 34, 36, 39,
41, 43, 45, 47, 54, 54, 62, 65, 66, 68,
70, 71

message, 8

operator-pipe, 56

ResourceHandler, 5–7, 16, 43, 54, 56, 57, 57,
59, 62, 65, 66, 68, 70, 71

runPipeline, 7, 58

SlangPipe, 5, 12, 16, 30, 32, 34, 36, 39, 41,
43, 45, 47, 54, 56, 60, 60, 65, 66, 68,
70, 71

stop, 8
StopWordPipe, 5, 12, 16, 30, 32, 34, 36, 39,

41, 43, 45, 47, 54, 56, 62, 62, 63, 66,
68, 70, 71

StoreFileExtPipe, 5, 16, 30, 32, 34, 36, 39,
41, 43, 45, 47, 54, 56, 62, 65, 65, 68,
70, 71

TargetAssigningPipe, 5, 16, 30, 32, 34, 36,
39, 41, 43, 45, 47, 54, 56, 62, 65, 66,
66, 67, 70, 71

TeeCSVPipe, 5, 12, 16, 30, 32, 34, 36, 39, 41,
43, 45, 47, 54, 56, 62, 65, 66, 68, 68,
69, 71

ToLowerCasePipe, 5, 16, 30, 32, 34, 36, 39,
41, 43, 45, 47, 54, 56, 62, 65, 66, 68,
70, 70

warning, 8

	AbbreviationPipe
	Bdpar
	bdpar.log
	bdpar.Options
	bdparData
	Connections
	ContractionPipe
	DefaultPipeline
	DynamicPipeline
	emojisData
	ExtractorEml
	ExtractorFactory
	ExtractorSms
	ExtractorYtbid
	File2Pipe
	FindEmojiPipe
	FindEmoticonPipe
	FindHashtagPipe
	FindUrlPipe
	FindUserNamePipe
	GenericPipe
	GenericPipeline
	GuessDatePipe
	GuessLanguagePipe
	Instance
	InterjectionPipe
	MeasureLengthPipe
	operator-pipe
	ResourceHandler
	runPipeline
	SlangPipe
	StopWordPipe
	StoreFileExtPipe
	TargetAssigningPipe
	TeeCSVPipe
	ToLowerCasePipe
	Index

