Package ‘bayesian’

April 28, 2024
Type Package
Version 1.0.1
Title Bindings for Bayesian TidyModels

Description Fit Bayesian models using 'brms'/'Stan’ with "parsnip'/tidymodels’
via 'bayesian' <doi:10.5281/zenodo.4426836>. 'tidymodels' is a collection of
packages for machine learning; see Kuhn and Wickham (2020) <https:
//www.tidymodels.org>).

The technical details of 'brms' and 'Stan' are described in Biirkner (2017)
<doi:10.18637/jss.v080.101>, Biirkner (2018) <doi:10.32614/RJ-2018-017>,
and Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.

License MIT + file LICENSE

URL https://hsbadr.github.io/bayesian/,
https://github.com/hsbadr/bayesian

BugReports https://github.com/hsbadr/bayesian/issues
Depends brms (>= 2.21.0), parsnip (>= 1.2.1), R (>=4.1.0)
Imports dplyr, purrr, rlang, stats, tibble, utils

Suggests covr, devtools, future, knitr, recipes, rmarkdown, roxygen2,
rstan, spelling, testthat, workflows

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.1

Collate 'bayesian_init.R' 'bayesian_load.R' 'bayesian_make.R'
'bayesian.R’

LazyLoad yes
Language en-US
NeedsCompilation no

Author Hamada S. Badr [aut, cre] (<https://orcid.org/0000-0002-9808-2344>),
Paul-Christian Biirkner [aut]

https://doi.org/10.5281/zenodo.4426836
https://www.tidymodels.org
https://www.tidymodels.org
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.18637/jss.v076.i01
https://hsbadr.github.io/bayesian/
https://github.com/hsbadr/bayesian
https://github.com/hsbadr/bayesian/issues
https://orcid.org/0000-0002-9808-2344

2 bayesian

Maintainer Hamada S. Badr <badr@jhu.edu>
Repository CRAN
Date/Publication 2024-04-28 21:00:03 UTC

R topics documented:

bayesian 2
Index 9
bayesian General Interface for Bayesian TidyModels
Description

bayesian() is a way to generate a specification of a model before fitting and allows the model to
be created using Stan via brms package in R.

Usage
bayesian(
mode = "regression”,
engine = "brms”,

formula.override = NULL,
family = NULL,

prior = NULL,
sample_prior = NULL,
knots = NULL,
stanvars = NULL,
fit = NULL,

init = NULL,
chains = NULL,
iter = NULL,
warmup = NULL,
thin = NULL,
cores = NULL,

threads = NULL,
algorithm = NULL,
backend = NULL,
stan_args = NULL,
control = NULL,
save_pars = NULL,
save_model = NULL,
file = NULL,
file_refit = NULL,
normalize = NULL,
future = NULL,

bayesian

seed = NULL,
silent = NULL
)

S3 method for class 'bayesian'

update(
object,
parameters = NULL,
formula.override = NULL,
family = NULL,
prior = NULL,
sample_prior = NULL,
knots = NULL,
stanvars = NULL,
fit = NULL,
init = NULL,
chains = NULL,
iter = NULL,
warmup = NULL,
thin = NULL,
cores = NULL,
threads = NULL,
algorithm = NULL,
backend = NULL,
stan_args = NULL,
control = NULL,
save_pars = NULL,
save_model = NULL,
file = NULL,
file_refit = NULL,
normalize = NULL,
future = NULL,
seed = NULL,
silent = NULL,
fresh = FALSE,

)

bayesian_fit(formula, data, ...)
bayesian_formula(formula, ...)
bayesian_terms(formula, ...)
bayesian_family(family, ...)

bayesian_predict(object, ...)

bayesian

bayesian_write(object, file)

bayesian_read(file)

Arguments

mode

engine

A single character string for the prediction outcome mode. Possible values for

"non

this model are "unknown", "regression", or "classification".

A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "brms”.

formula.override

family

prior

sample_prior

knots

stanvars

fit

init

Overrides the formula; for details see brmsformula.

A description of the response distribution and link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a 1ink argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details of supported families see brmsfamily. By
default, a linear gaussian model is applied. In multivariate models, family
might also be a list of families.

One or more brmsprior objects created by set_prior or related functions and
combined using the ¢ method or the + operator. See also default_prior for
more help.

Indicate if draws from priors should be drawn additionally to the posterior draws.
Options are "no” (the default), "yes"”, and "only"”. Among others, these draws
can be used to calculate Bayes factors for point hypotheses via hypothesis.
Please note that improper priors are not sampled, including the default improper
priors used by brm. See set_prior on how to set (proper) priors. Please also
note that prior draws for the overall intercept are not obtained by default for
technical reasons. See brmsformula how to obtain prior draws for the intercept.
If sample_priorissetto "only", draws are drawn solely from the priors ignor-
ing the likelihood, which allows among others to generate draws from the prior
predictive distribution. In this case, all parameters must have proper priors.

Optional list containing user specified knot values to be used for basis construc-
tion of smoothing terms. See gamm for more details.

An optional stanvars object generated by function stanvar to define additional
variables for use in Stan’s program blocks.

An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If
fit is of class brmsfit, the compiled model associated with the fitted result is
re-used and all arguments modifying the model code or data are ignored. It is
not recommended to use this argument directly, but to call the update method,
instead.

Initial values for the sampler. If NULL (the default) or "random”, Stan will ran-
domly generate initial values for parameters in a reasonable range. If @, all
parameters are initialized to zero on the unconstrained space. This option is
sometimes useful for certain families, as it happens that default random initial
values cause draws to be essentially constant. Generally, setting init = is

bayesian

chains
iter

warmup

thin

cores

threads

algorithm

backend

stan_args

control

worth a try, if chains do not initialize or behave well. Alternatively, init can
be a list of lists containing the initial values, or a function (or function name)
generating initial values. The latter options are mainly implemented for inter-
nal testing but are available to users if necessary. If specifying initial values
using a list or a function then currently the parameter names must correspond
to the names used in the generated Stan code (not the names used in R). For
more details on specifying initial values you can consult the documentation of
the selected backend.

Number of Markov chains (defaults to 4).
Number of total iterations per chain (including warmup; defaults to 2000).

A positive integer specifying number of warmup (aka burnin) iterations. This
also specifies the number of iterations used for stepsize adaptation, so warmup
draws should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

Thinning rate. Must be a positive integer. Set thin > 1 to save memory and
computation time if iter is large.

Number of cores to use when executing the chains in parallel, which defaults to
1 but we recommend setting the mc. cores option to be as many processors as
the hardware and RAM allow (up to the number of chains). For non-Windows
OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

Number of threads to use in within-chain parallelization. For more control over
the threading process, threads may also be a brmsthreads object created by
threading. Within-chain parallelization is experimental! We recommend its
use only if you are experienced with Stan’s reduce_sum function and have a
slow running model that cannot be sped up by any other means. Can be set glob-
ally for the current R session via the "brms. threads” option (see options).

Character string naming the estimation approach to use. Options are "sampling”
for MCMC (the default), "meanfield” for variational inference with indepen-
dent normal distributions, "fullrank” for variational inference with a multi-
variate normal distribution, or "fixed_param” for sampling from fixed parame-
ter values. Can be set globally for the current R session via the "brms.algorithm”
option (see options).

Character string naming the package to use as the backend for fitting the Stan
model. Options are "rstan” (the default) or "cmdstanr”. Can be set globally
for the current R session via the "brms.backend” option (see options). Details
on the rstan and cmdstanr packages are available at https://mc-stan.org/
rstan/ and https://mc-stan.org/cmdstanr/, respectively. Additionally a
"mock” backend is available to make testing brms and packages that depend on
it easier. The "mock” backend does not actually do any fitting, it only checks
the generated Stan code for correctness and then returns whatever is passed in
an additional mock_fit argument as the result of the fit.

A list of extra arguments to Stan.

A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. The most important control parameters
are discussed in the Details’ section below. For a comprehensive overview see
stan.

https://mc-stan.org/rstan/
https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/

save_pars

save_model

file
file_refit

normalize

future

seed

silent

object

parameters

fresh

formula

data

bayesian

An object generated by save_pars controlling which parameters should be
saved in the model. The argument has no impact on the model fitting itself.

Either NULL or a character string. In the latter case, the model’s Stan code is
saved via cat in a text file named after the string supplied in save_model.

A character string of the file path to brmsfit object saved via saveRDS.

Modifies when the fit stored via the file argument is re-used. Can be set glob-
ally for the current R session via the "brms. file_refit” option (see options).
For "never” (default) the fit is always loaded if it exists and fitting is skipped.
For "always” the model is always refitted. If set to "on_change”, brms will
refit the model if model, data or algorithm as passed to Stan differ from what is
stored in the file. This also covers changes in priors, sample_prior, stanvars,
covariance structure, etc. If you believe there was a false positive, you can use
brmsfit_needs_refit to see why refit is deemed necessary. Refit will not be
triggered for changes in additional parameters of the fit (e.g., initial values, num-
ber of iterations, control arguments, ...). A known limitation is that a refit will
be triggered if within-chain parallelization is switched on/off.

Logical. Indicates whether normalization constants should be included in the
Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >=2.25 to
work. If FALSE, sampling efficiency may be increased but some post processing
functions such as bridge_sampler will not be available. Can be controlled
globally for the current R session via the ‘brms.normalize* option.

Logical; If TRUE, the future package is used for parallel execution of the chains
and argument cores will be ignored. Can be set globally for the current R
session via the "future” option. The execution type is controlled via plan (see
the examples section below).

The seed for random number generation to make results reproducible. If NA (the
default), Stan will set the seed randomly.

Verbosity level between @ and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh =@ to
turn this off as well. If using backend = "rstan” you can also set open_progress
= FALSE to prevent opening additional progress bars.

A Bayesian model specification.

A 1-row tibble or named list with main parameters to update. If the individual
arguments are used, these will supersede the values in parameters. Also, using
engine arguments in this object will result in an error.

A logical for whether the arguments should be modified in-place of or replaced
wholesale.

Other arguments passed to internal functions.

An object of class formula, brmsformula, or mvbrmsformula (or one that can
be coerced to that classes): A symbolic description of the model to be fitted.
The details of model specification are explained in brmsformula.

An object of class data.frame (or one that can be coerced to that class) con-
taining data of all variables used in the model.

bayesian 7

Details

The arguments are converted to their specific names at the time that the model is fit. Other options
and argument can be set using set_engine(). If left to their defaults here (NULL), the values are
taken from the underlying model functions. If parameters need to be modified, update() can be
used in lieu of recreating the object from scratch.

The data given to the function are not saved and are only used to determine the mode of the model.
For bayesian(), the possible modes are "regression" and "classification".

The model can be created by the fit() function using the following engines:

e brms: "brms”

Value

An updated model specification.

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are:

bayesian() |>
set_engine("brms") |>
translate()

Bayesian Model Specification (regression)

#H#

Computational engine: brms

#it

Model fit template:

bayesian::bayesian_fit(formula = missing_arg(), data = missing_arg(),
weights = missing_arg())

See Also

brm, brmsfit, update.brmsfit, predict.brmsfit, posterior_epred.brmsfit, posterior_predict.brmsfit,
brmsformula, brmsformula-helpers, brmsterms, brmsfamily, customfamily, family, formula,
update.formula.

Examples

bayesian()

show_model_info("bayesian")

bayesian(mode = "classification")
bayesian(mode = "regression”)
Not run:

bayesian_mod <-

bayesian

bayesian() |>

set_engine("brms") |>

fit(
rating ~ treat + period + carry + (1 | subject),
data = inhaler

)
summary (bayesian_mod$fit)

End(Not run)

model <- bayesian(init = "random")
model

update(model, init "0")

update(model, init = "@", fresh = TRUE)

Index

bayesian, 2

bayesian_family (bayesian), 2
bayesian_fit (bayesian), 2
bayesian_formula (bayesian), 2
bayesian_predict (bayesian), 2
bayesian_read (bayesian), 2
bayesian_terms (bayesian), 2
bayesian_write (bayesian), 2
bridge_sampler, 6

brm, 7

brmsfamily, 4, 7

brmsfit, 7
brmsfit_needs_refit, 6
brmsformula, 4, 6, 7
brmsterms, 7

cat, 6
customfamily, 7

default_prior, 4

family, 7

formula, 6, 7

future, 6

gamm, 4

hypothesis, 4
mvbrmsformula, 6
options, 5, 6

plan, 6
posterior_epred.brmsfit, 7

posterior_predict.brmsfit, 7
predict.brmsfit, 7

save_pars, 6
saveRDS, 6
set_prior, 4

stan, 5
stanvar, 4

threading, 5

update, 4

update.bayesian (bayesian), 2
update.brmsfit, 7
update.formula, 7

	bayesian
	Index

