Package ‘bark’

October 6, 2024
Type Package

Title Bayesian Additive Regression Kernels
Version 1.0.5
Date 2024-10-05

Description Bayesian Additive Regression Kernels (BARK) provides
an implementation for non-parametric function estimation using Levy
Random Field priors for functions that may be represented as a
sum of additive multivariate kernels. Kernels are located at
every data point as in Support Vector Machines, however, coefficients
may be heavily shrunk to zero under the Cauchy process prior, or even,
set to zero. The number of active features is controlled by priors on
precision parameters within the kernels, permitting feature selection. For
more details see Ouyang, Z (2008) * *Bayesian Additive Regression Kernels",
Duke University. PhD dissertation, Chapter 3 and Wolpert, R. L, Clyde, M.A,
and Tu, C. (2011) "Stochastic Expansions with Continuous Dictionaries Levy
Adaptive Regression Kernels, Annals of Statistics Vol (39) pages 1916-1962
<doi:10.1214/11-AOS889>.

License GPL (>=3)
URL https://www.R-project.org, https://github.com/merliseclyde/bark

BugReports https://github.com/merliseclyde/bark/issues
Depends R (>=3.5.0)

Suggests BART, e1071, fdm2id, rmarkdown, knitr, roxygen2, testthat,
covr

LazyData yes
Repository CRAN
NeedsCompilation yes
ByteCompile yes
Encoding UTF-8
RoxygenNote 7.3.2
Language en-US

https://doi.org/10.1214/11-AOS889
https://www.R-project.org
https://github.com/merliseclyde/bark
https://github.com/merliseclyde/bark/issues

2 bark-package

VignetteBuilder knitr

Author Merlise Clyde [aut, cre, ths] (ORCID=0000-0002-3595-1872),
Zhi Ouyang [aut],
Robert Wolpert [ctb, ths]

Maintainer Merlise Clyde <clyde@duke.edu>
Date/Publication 2024-10-05 22:40:28 UTC

Contents
bark-package L 2
banknotes L e 3
bark . . . e 4
SIM_CITClE o e, 8
sim_Friedmanl 9
sim_Friedman2, 10
sim_Friedman3, 11

Index 13

bark-package bark: Bayesian Additive Regression Trees
Description

Implementation of Bayesian Additive Regression Kernels with Feature Selection for Nonparametric
Regression for Gaussian regression and classification for binary Probit models

_PACKAGE

Details

BARK is a Bayesian sum-of-kernels model or because of the Bayesian priors is a Bayesian Additive
Regression Kernel model.

For numeric response y, we have y = f(z) + ¢, where € ~ N (0, 02).

For a binary response y, P(Y = 1|z) = F(f(x)), where F' denotes the standard normal cdf
(probit link). In both cases, f is the sum of many Gaussian kernel functions. The goal is to have
very flexible inference for the unknown function f. bark uses an approximated Cauchy process as
the prior distribution for the unknown function f. Feature selection can be achieved through the
inference on the scale parameters in the Gaussian kernels. BARK accepts four different types of
prior distributions through setting values for selection (TRUE or FALSE), which allows scale
parameters for some variables to be set to zero, removing the variables from the kernels selection
= TRUE; this enables either soft shrinkage or hard shrinkage for the scale parameters. The input
common_lambdas (TRUE or FALSE) specifies whether a common scale parameter should be used
for all predictors (TRUE) or if FALSE allows the scale parameters to differ across all variables in
the kernel.

banknotes 3

References

Ouyang, Zhi (2008) Bayesian Additive Regression Kernels. Duke University. PhD dissertation,
Chapter 3.

See Also

Other bark functions: bark(), bark-package-deprecated, sim_Friedman1(), sim_Friedman2(),
sim_Friedman3(), sim_circle()

Examples

Simulate regression example
Friedman 2 data set, 200 noisy training, 1000 noise free testing
Out of sample MSE in SVM (default RBF): 6500 (sd. 1600)
Out of sample MSE in BART (default): 5300 (sd. 1000)
traindata <- sim_Friedman2(200, sd=125)
testdata <- sim_Friedman2(1000, sd=0)
fit.bark.d <- bark(y ~ ., data = data.frame(traindata),
testdata = data.frame(testdata),
classification = FALSE,
selection = FALSE,
common_lambdas = TRUE)
boxplot(as.data.frame(fit.bark.d$theta.lambda))
mean((fit.bark.d$yhat.test.mean-testdatas$y)*2)
Simulate classification example
Circle 5 with 2 signals and three noisy dimensions
Out of sample erorr rate in SVM (default RBF): 0.110 (sd. 0.02)
Out of sample error rate in BART (default): 0.065 (sd. 0.02)
traindata <- sim_circle(200, dim=5)
testdata <- sim_circle(1000, dim=5)
fit.bark.se <- bark(y ~ ., data= data.frame(traindata),
testdata= data.frame(testdata),
classification=TRUE,
selection=TRUE,
common_lambdas = FALSE)

boxplot(as.data.frame(fit.bark.se$theta.lambda))
mean((fit.bark.se$yhat.test.mean>0)!=testdatasy)

banknotes Swiss Bank Notes

Description

This data set contains six measurements on 100 genuine and 100 fradulent old Swiss banknotes

4 bark

Usage

data(banknotes)

Format
a dataframe with the following variables:

Status the status of the banknote: genuine or counterfeit
Length Length of bill (mm)

Left Width of left edge (mm)

Right Width of right edge (mm)

Bottom Bottom margin width (mm)

Top Top margin width (mm)

Diagonal Length of diagonal (mm)

Source

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman
& Hall, Tables 1.1 and 1.2, pp. 5-8.

bark Nonparametric Regression using Bayesian Additive Regression Ker-
nels

Description

BARK is a Bayesian sum-of-kernels model.

For numeric response y, we have y = f(z) + ¢, where € ~ N (0, 02).

For a binary response y, P(Y = 1|z) = F(f(x)), where F' denotes the standard normal cdf (probit
link).

In both cases, f is the sum of many Gaussian kernel functions. The goal is to have very flexible
inference for the unknown function f. BARK uses an approximation to a Cauchy process as the
prior distribution for the unknown function f.

Feature selection can be achieved through the inference on the scale parameters in the Gaussian
kernels. BARK accepts four different types of prior distributions, e, d, enabling either soft shrinkage
or se, sd, enabling hard shrinkage for the scale parameters.

Usage

bark(
formula,
data,
subset,
na.action = na.omit,
testdata = NULL,

bark

selection = TRUE,

common_lambd

as = TRUE,

classification = FALSE,

100,

1000,
FALSE,

O,

tune = 1list(lstep = 0.5, frequL = 0.2, dpow =1, upow = @, varphistep = 0.5, phistep =

O

model formula for the model with all predictors, Y ~ X. The X variables will be
centered and scaled as part of model fitting.

a data frame. Factors will be converted to numerical vectors based on the using
‘model.matrix ‘.

an optional vector specifying a subset of observations to be used in the fitting
process.

a function which indicates what should happen when the data contain NAs. The
default is "na.omit".

Dataframe with test data for out of sample prediction.
Should have same structure as data.

keepevery =
nburn = 100,
nkeep = 100,
printevery =
keeptrain =
verbose = FALSE,
fixed = list
1,
theta = list
)
Arguments
formula
data
subset
na.action
testdata
selection

common_lambdas

classification
keepevery
nburn

nkeep

printevery
keeptrain
verbose
fixed

Logical variable indicating whether variable dependent kernel parameters A may
be set to zero in the MCMC; default is TRUE.

Logical variable indicating whether kernel parameters A should be predictor spe-
cific or common across predictors; default is TRUE. Note if common_lambdas
= TRUE and selection = TRUE this applies just to the non-zero lambda;.

TRUE/FALSE logical variable, indicating a classification or regression problem.
Every keepevery draw is kept to be returned to the user
Number of MCMC iterations (nburn*keepevery) to be treated as burn in.

Number of MCMC iterations kept for the posterior inference.
nkeep*keepevery iterations after the burn in.

As the MCMC runs, a message is printed every printevery draws.
Logical, whether to keep results for training samples.
Logical, whether to print out messages

A list of fixed hyperparameters, using the default values if not specified.
alpha = 1: stable index, must be 1 currently.

tune

theta

Details

bark

eps = 0.5: approximation parameter.

gam = 5: intensity parameter.

la = 1: first argument of the gamma prior on kernel scales.

Ib = 2: second argument of the gamma prior on kernel scales.
pbetaa = 1: first argument of the beta prior on plambda.

pbetab = 1: second argument of the beta prior on plambda.

n: number of training samples, automatically generates.

p: number of explanatory variables, automatically generates.
mean]: the expected number of kernels, automatically generates.

A list of tuning parameters, not expected to change.

Istep: the stepsize of the lognormal random walk on lambda.
frequL: the frequency to update L.

dpow: the power on the death step.

upow: the power on the update step.

varphistep: the stepsize of the lognormal random walk on varphi.
phistep: the stepsize of the lognormal random walk on phi.

A list of the starting values for the parameter theta, use defaults if nothing is
given.

BARK is implemented using a Bayesian MCMC method. At each MCMC interaction, we produce
a draw from the joint posterior distribution, i.e. a full configuration of regression coefficients, kernel
locations and kernel parameters.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from
which fits and summaries may be extracted. The output consists of values f*(x) (and o* in the
numeric case) where * denotes a particular draw. The x is either a row from the training data
(x.train)

Value

bark returns an object of class ‘bark* with a list, including:

call
fixed
tune
theta
theta

theta

theta

theta

.last

.nvec

.varphi

.beta

.lambda

the matched call

Fixed hyperparameters

Tuning parameters used

The last set of parameters from the posterior draw

A matrix with nrow(x.train)+1 rows and (nkeep) columns, recording the number
of kernels at each training sample

A matrix with nrow(x.train) +1 rows and (nkeep) columns, recording the preci-
sion in the normal gamma prior distribution for the regression coefficients

A matrix with nrow(x.train)+1 rows and (nkeep) columns, recording the regres-
sion coefficients

A matrix with ncol(x.train) rows and (nkeep) columns, recording the kernel scale
parameters

bark 7

thea.phi The vector of length nkeep, recording the precision in regression Gaussian noise
(1 for the classification case)

yhat.train A matrix with nrow(x.train) rows and (nkeep) columns. Each column corre-
sponds to a draw f* from the posterior of f and each row corresponds to a row
of x.train. The (i, j) value is f*(x) for the j*" kept draw of f and the i*" row of
X.train.
For classification problems, this is the value of the expectation for the underly-
ing normal random variable.
Burn-in is dropped

yhat. test Same as yhat.train but now the x’s are the rows of the test data; NULL if testdata
are not provided

yhat.train.mean
train data fits = row mean of yhat.train

yhat.test.mean test data fits = row mean of yhat.test

References

Ouyang, Zhi (2008) Bayesian Additive Regression Kernels. Duke University. PhD dissertation,
page 58.

See Also

Other bark functions: bark-package, bark-package-deprecated, sim_Friedmani(), sim_Friedman2(),
sim_Friedman3(), sim_circle()

Examples

##Simulated regression example
Friedman 2 data set, 200 noisy training, 1000 noise free testing
Out of sample MSE in SVM (default RBF): 6500 (sd. 1600)
Out of sample MSE in BART (default): 5300 (sd. 1000)
traindata <- data.frame(sim_Friedman2(200, sd=125))
testdata <- data.frame(sim_Friedman2(1000, sd=0))
example with a very small number of iterations to illustrate usage
fit.bark.d <- bark(y ~ ., data=traindata, testdata= testdata,
nburn=10, nkeep=10, keepevery=10,
classification=FALSE,
common_lambdas = FALSE,
selection = FALSE)
boxplot(data.frame(fit.bark.d$theta.lambda))
mean((fit.bark.d$yhat.test.mean-testdatas$y)*2)

##Simulate classification example
Circle 5 with 2 signals and three noisy dimensions
Out of sample erorr rate in SVM (default RBF): 0.110 (sd. 0.02)
Out of sample error rate in BART (default): 0.065 (sd. 0.02)
traindata <- sim_circle(200, dim=5)
testdata <- sim_circle(1000, dim=5)
fit.bark.se <- bark(y ~ .,
data=data.frame(traindata),

8 sim_circle

testdata= data.frame(testdata),

classification=TRUE,

nburn=100, nkeep=200,)
boxplot(as.data.frame(fit.bark.se$theta.lambda))
mean((fit.bark.se$yhat.test.mean>0)!=testdatasy)

sim_circle Simulate Data from Hyper-Sphere for Classification Problems

Description

The classification problem Circle is described in the BARK paper (2008). Inputs are dim indepen-
dent variables uniformly distributed on the interval [—1, 1], only the first 2 out of these dim are
actually signals. Outputs are created according to the formula

y = 1(x1% + 2% < 2/7)

Usage

sim_circle(n, dim = 5)

Arguments

n number of data points to generate

dim number of dimension of the problem, no less than 2
Value

Returns a list with components

X input values (independent variables)
y 0/1 output values (dependent variable)
References

Ouyang, Zhi (2008) Bayesian Additive Regression Kernels. Duke University. PhD dissertation,
Chapter 3.
See Also

Other bark simulation functions: sim_Friedman1(), sim_Friedman2(), sim_Friedman3()

Other bark functions: bark(), bark-package, bark-package-deprecated, sim_Friedmani(),
sim_Friedman2(), sim_Friedman3()

Examples

sim_circle(n=100, dim=5)

sim_Friedman] 9

sim_Friedman1 Simulated Regression Problem Friedman 1

Description

The regression problem Friedman 1 as described in Friedman (1991) and Breiman (1996). Inputs
are 10 independent variables uniformly distributed on the interval [0, 1], only 5 out of these 10 are
actually used. Outputs are created according to the formula

y = 10sin(rz122) + 20(23 — 0.5)% 4+ 1024 + 525 + e
where e is N (0, sd?).

Usage

sim_Friedmani(n, sd = 1)

Arguments

n number of data points to create

sd standard deviation of noise, with default value 1
Value

Returns a list with components

X input values (independent variables)
y output values (dependent variable)
References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19
(1), pages 1-67.

See Also

Other bark simulation functions: sim_Friedman2(), sim_Friedman3(), sim_circle()

Other bark functions: bark(), bark-package, bark-package-deprecated, sim_Friedman2(),
sim_Friedman3(), sim_circle()

Examples

sim_Friedmanl(100, sd=1)

10 sim_Friedman2

sim_Friedman2 Simulated Regression Problem Friedman 2

Description

The regression problem Friedman 2 as described in Friedman (1991) and Breiman (1996). Inputs
are 4 independent variables uniformly distributed over the ranges

0 <21 <100

407 < 22 < 5607
0<z3<1
1<24<11
The outputs are created according to the formula
y = (1% + (2223 — (1/(2224)))*)°° + e
where e is N (0, sd?).

Usage
sim_Friedman2(n, sd = 125)

Arguments
n number of data points to create
sd Standard deviation of noise. The default value of 125 gives a signal to noise
ratio (i.e., the ratio of the standard deviations) of 3:1. Thus, the variance of the
function itself (without noise) accounts for 90% of the total variance.
Value

Returns a list with components

X input values (independent variables)
y output values (dependent variable)
References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19
(1), pages 1-67.

See Also

Other bark simulation functions: sim_Friedman1(), sim_Friedman3(), sim_circle()

Other bark functions: bark(), bark-package, bark-package-deprecated, sim_Friedmani(),
sim_Friedman3(), sim_circle()

sim_Friedman3 11

Examples

sim_Friedman2(100, sd=125)

sim_Friedman3 Simulated Regression Problem Friedman 3

Description

The regression problem Friedman 3 as described in Friedman (1991) and Breiman (1996). Inputs
are 4 independent variables uniformly distributed over the ranges

0<z1<100
407 < 22 < 5607
0<23<1
1<z4<11
The outputs are created according to the formula
atan((x2x3 — (1/(z224)))/z1) + e

where e is N (0, sd?).

Usage

sim_Friedman3(n, sd = 0.1)

Arguments
n number of data points to create
sd Standard deviation of noise. The default value of 125 gives a signal to noise
ratio (i.e., the ratio of the standard deviations) of 3:1. Thus, the variance of the
function itself (without noise) accounts for 90% of the total variance.
Value

Returns a list with components

X input values (independent variables)
y output values (dependent variable)
References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19
(1), pages 1-67.

12 sim_Friedman3

See Also

Other bark simulation functions: sim_Friedman1(), sim_Friedman2(), sim_circle()

Other bark functions: bark(), bark-package, bark-package-deprecated, sim_Friedmani(),
sim_Friedman2(), sim_circle()

Examples

sim_Friedman3(n=100, sd=0.1)

Index

x bark functions
bark, 4
bark-package, 2
sim_circle, 8
sim_Friedmani, 9
sim_Friedman2, 10
sim_Friedman3, 11

+ bark simulation functions
sim_circle, 8
sim_Friedmani, 9
sim_Friedman2, 10
sim_Friedman3, 11

+ datasets
banknotes, 3

banknotes, 3
bark, 3, 4, 810, 12
bark-package, 2

sim_circle, 3,7,8,9, 10, 12

sim_Friedmani, 3,7, 8,9, 10, 12

sim_Friedman2, 3, 7-9, 10, 12
sim_Friedman3, 3, 7—10, 11

13

	bark-package
	banknotes
	bark
	sim_circle
	sim_Friedman1
	sim_Friedman2
	sim_Friedman3
	Index

