
autoMrP: Multilevel Models and Post-Stratification

(MrP) Combined with Machine Learning in R

Philipp Broniecki
University of Oslo

Lucas Leemann
University of Zürich

Reto Wüest
University of Bergen

Abstract

This introduction to the R package autoMrP is a version of Broniecki, Leemann,
and Wüest (2021), submitted to the Journal of Statistical Software. A paper on using
Machine Learning to improve Multilevel Regression with Post-Stratification is available
in Broniecki, Leemann, and Wüest (forthcoming).

In the past twenty years we have witnessed a surge in methodological innovations for
small-area estimation. In short, scholars often have nationally representative survey data
and would like to create sub-national, e.g., state-level, estimates based on these data.
Multilevel regression and post-stratification (MrP) has emerged as the gold standard to
achieve this goal (Selb and Munzert 2011). Different improvements to the original MrP
model have been proposed and the latest developments combine insights from statistical
learning and MrP to provide better estimates. This article introduces the R package
autoMrP, which allows users to fit traditional MrP models as well as leverage a number of
prediction algorithms. This allows building optimized models for generating sub-national
estimates from national survey data that outperform those generated by simple MrP
models.

Keywords: Multilevel modeling, machine learning, mixed effects, MrP, MrsP, R, survey re-
search.

1. Introduction: Multilevel Regression and Post-Stratification

A frequent problem that arises in various disciplines is that researchers have population-
representative data and want to draw inferences for sub-populations from these data. This
problem may be encountered by political scientists who wish to estimate sub-national, e.g.,
state-level, support for public policies based on national survey data (Lax and Phillips 2009a)
or epidemiologists estimating state-level prevalence of health outcomes (Downes, Gurrin, En-
glish, Pirkis, Currier, Spittal, and Carlin 2018). Common to all of these applications is that
limited national data are being used to estimate outcomes at a lower level, such as the state
level.

One ‘solution’ that has been proposed to deal with this problem is disaggregation, which
means taking the average value of the outcome for each lower-level unit as the estimate
(see, e.g., Erikson, Wright, and McIver 1993). This approach performs badly for small units
with few data and is generally not efficient when data are sparse. We can achieve better
estimates by modeling the individual-level outcome as a function of individual-level variables
and variables at higher levels in a multilevel model and then post-stratify these predictions
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(Gelman and Little 1997; Warshaw and Rodden 2012; Lax and Phillips 2009b).

Gelman and Little (1997) propose a procedure, multilevel regression and post-stratification
(MrP), that allows researchers to model an individual outcome as a function of individual-level
variables as well as variables at higher levels, e.g., the state or regional level. Based on the
multilevel model researchers can create predictions for all demographic-geographic ideal types
(defined as the combinations of the values of individual-level variables and sub-national units)
and then weigh these predictions by the frequency of the ideal types within the sub-national
units. Since the publication of this article many studies have demonstrated the superiority
of MrP over disaggregation (see, e.g., Warshaw and Rodden 2012; Lax and Phillips 2009b;
Leemann and Wasserfallen 2017; Hanretty, Lauderdale, and Vivyan 2018).

Recently, a number of contributions have shown how common models from the statistical
learning literature can be fruitfully employed to improve MrP (Bisbee 2019; Ornstein 2020b;
Broniecki et al. forthcoming). In this article we present our approach proposed in Broniecki
et al. (forthcoming) and the autoMrP package implementing this approach. The autoMrP

package allows users to harvest the fruits of combining the standard MrP model with statis-
tical learning algorithms to create improved prediction models.

1.1. Standard Multilevel Regression and Post-Stratification (MrP)

MrP relies on national survey data to estimate outcomes, e.g., public opinion about govern-
ment policy, in sub-national units. MrP is carried out in two steps. First, we fit a multilevel
model to the survey data. If we are interested in estimating public support for a specific
policy, Y , at the sub-national level, we can fit a multilevel probit model as follows:

Pr(yi = 1) = Φ
(

β0 + x
T
n[i]β + αeducation

j[i] + αgender

k[i] + αage

m[i] + αunit
n[i]

)

, (1)

αeducation
j ∼ N(0, σ2

education), for j = 1, ...., J,

αgender
k ∼ N(0, σ2

gender), for k = 1, ..., K,

αage
m ∼ N(0, σ2

age), for m = 1, ..., M,

αunit
n ∼ N(0, σ2

unit), for n = 1, ..., N.

The model includes a set of random effects, here shown for J education groups, K gender
groups, M age categories, and N sub-national units. In addition, there is a matrix of predictor
variables X that vary across the sub-national units. Each combination of education, gender,
age category, and sub-national unit provides a unique demographic-geographic ideal type. We
can now think of society as consisting of these different ideal types.

In a second step, we can calculate the predicted support of each ideal type for the policy
based on the estimates in Equation 1. An ideal type’s estimated support is denoted by
π̂jkmn. To produce an estimate of the policy support in state n, we calculate the weighted
average of π̂jkmn, where the weights are determined by how prevalent the ideal types are
in the population of state n. Since the predictions are not linear in the random effects, we
need to know the joint distribution of education, gender, and age in each unit for which we
want to obtain an estimate of the public’s support for the policy. We calculate the weighted
average policy support according to the prevalence of the ideal types in state n as follows
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(demographic ideal types in state n are here indexed by g):

π̂n =

∑G
g=1 π̂gnNgn
∑G

g=1 Ngn

. (2)

Using MrP to generate an estimate for πn has been shown to outperform other alternatives
(e.g., Lax and Phillips 2009b; Warshaw and Rodden 2012; Leemann and Wasserfallen 2020).
MrP has been used successfully in the US (e.g., Lax and Phillips 2012), Germany (e.g., Selb
and Munzert 2011), the UK (e.g., Claassen and Traunmüller 2018; Hanretty et al. 2018), and
Switzerland (e.g., Leemann and Wasserfallen 2016) among other countries.

1.2. Improvements to the Standard MrP Approach

Since the introduction of the standard MrP approach authors have suggested various ways of
improving its prediction performance. Ghitza and Gelman (2013) propose to include inter-
actions of random effects to provide the model with more flexibility, which in turn provides
more precise estimates for different ideal types. Selb and Munzert (2011) show that if there
are many sub-national units, such as in the case of legislative elections in Germany, spatially
correlated random effects can be included to improve the estimates. Many models are under-
specified at the individual level of the response model (see Equation 1) because there is no
joint distribution of demographic variables available, which is needed in the post-stratification
step. Leemann and Wasserfallen (2017) show how variables for which the joint distribution
is unknown can nevertheless be included by creating a synthetic joint distribution.1

Finally, there has been some discussion in recent years about leveraging insights from the
statistical learning literature for small-area estimation.2 Several proposals have been made,
some of them are published while others are currently working papers (Goplerud, Kuriwaki,
Ratkovic, and Tingley 2018; Bisbee 2019; Ornstein 2020b; Broniecki et al. forthcoming). At a
very basic level, all of these papers are similar in that they recognize that MrP is a prediction
task and there is value to a principled selection of features and a more flexible selection of
the functional form.

1.3. Statistical Learning and Small-Area Estimation

In a forthcoming paper, we propose an ensemble modeling approach that helps to provide
better small-area estimates (Broniecki et al. forthcoming). We start by recognizing that
information enters the standard MrP model via context-level variables, X, and individual-level
variables. The latter are set up as random effects, α, which implies that for the coefficients
of the individual-level variables there is a form of regularization, albeit a crude one, built
into the model. The contextual information X, however, is just modeled as fixed effects and
hence all the known problems of feature selection, over-fitting, and choice of functional form
apply to context-level variables. This challenge is compounded by the fact that context-level

1An important contribution, albeit not aiming at improving MrP per se but rather using it in combination
with item-response theory models to scale ideal points, has been put forward by Caughey and Warshaw (2015).
This allows Caughey and Warshaw (2016) to scale US states from 1936 to 2014 and provide new estimates of
states’ liberalism.

2See Montgomery and Olivella (2018) for, to our knowledge, the first application of machine learning
methods to small-area estimation and also other applications of statistical learning in the political science
survey literature (Caughey and Hartman 2017).
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variables have been shown by previous research to do the heavy lifting in MrP (Warshaw and
Rodden 2012). We propose autoMrP as a remedy.

Our approach combines five candidate classifiers—multilevel regression with best subset se-
lection of context-level predictors, multilevel regression with principle components of context-
level predictors (PCA), multilevel regression with L1 regularization (Lasso), gradient tree
boosting, and support vector machine—via ensemble Bayesian model averaging (EBMA,
Montgomery, Hollenbach, and Ward 2012) into one final mega-classifier. In section 3 we
provide more details on this approach.

2. Multilevel Regression and Post-Stratification in R

Thus far, analysts have written their own code to perform MrP since there is no widely
used R package available. Some years ago, an R package implementing MrP was created
but never fully developed and the package was removed from CRAN in 2012 (see https:

//cran.r-project.org/src/contrib/Archive/mrp/).3 Primers and replication files have
been the main source of how insights on implementation were shared. An early example is
the (unpublished) primer by Kastellec, Lax, and Phillips (2019), which was updated in 2019
and gathered 50 citations on Google Scholar (verified on July 29th, 2020). Recently, Leemann
and Wasserfallen (2020) published a handbook chapter containing a step-by-step account as
well as a practical example that readers can replicate (https://github.com/lleemann/MrP_

chapter). Finally, users interested in a Bayesian implementation can also access the primer
by Kennedy and Gabry (2020) on MrP in rstanarm (https://cran.r-project.org/web/

packages/rstanarm/vignettes/mrp.html#mrp-with-rstanarm).

While these primers offer R code chunks there is as yet no package allowing researchers
to freely estimate MrP models.4 The main purpose of autoMrP is to allow users to easily
apply the autoMrP model (Broniecki et al. forthcoming), but it also enables the estimation
of standard MrP models. This distinguishes it from another recent package, BARP (Bisbee
2020), which focuses on a specific model based on MrP and Bayesian additive regression
trees.5

3. Illustration of autoMrP

In the following, we show how to apply autoMrP to a typical survey item and use for our
illustration item “CBb01” from the 2008 National Annenberg Election Studies (NAES). We
first install the most recent version of the package (currently 0.97) from GitHub.

devtools::install_github("retowuest/autoMrP")

The 2008 NAES survey item CBb01 states “I’m going to read you some options about federal
income taxes. Please tell me which one comes closest to your view on what we should be

3Another exception is the R package swissMrP (Leemann 2018), but its usability is very limited as it was
mostly created for teaching purposes and is only applicable to Swiss data.

4See SRP for a new package that allows users to estimate MrP models.
5BARP can also post-stratify other models that are implemented in the SuperLearner package (Polley,

LeDell, Kennedy, Lendle, and van der Laan 2019).

https://cran.r-project.org/src/contrib/Archive/mrp/
https://cran.r-project.org/src/contrib/Archive/mrp/
https://github.com/lleemann/MrP_chapter
https://github.com/lleemann/MrP_chapter
https://cran.r-project.org/web/packages/rstanarm/vignettes/mrp.html#mrp-with-rstanarm
https://cran.r-project.org/web/packages/rstanarm/vignettes/mrp.html#mrp-with-rstanarm
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doing about federal income taxes: (1) Cut taxes; (2) Keep taxes as they are; (3) Raise taxes
if necessary; (4) None of these; (998) Don’t know; (999) No answer. Category (3) was turned
into a ‘raise taxes’ response, and categories (1) and (2) were combined into a ‘do not raise
taxes’ response. The original survey data contain 50,483 responses favoring or opposing a tax
hike. From these data, we include a sample of 1,500 respondents in autoMrP to represent
the size of a typical national survey. Our sample is drawn at random with the condition
that it includes at least five respondents from each state. The name referring to the object
containing the survey data is taxes_survey and the codebook can be obtained via the help
files:

library(autoMrP)

?taxes_survey

The dependent variable YES takes the value 1 if an individual supports raising taxes and
0 otherwise. The individual-level variables L1x1, L1x2, and L1x3 represent age, education,
and gender-race combinations, respectively, and they are stored as factors. The factor vari-
ables state and L2.unit identify the geographical units, i.e., the US states in our survey.
Furthermore, the factor region divides US states into the Northeast, Midwest, South, and
West.

In addition to the survey data, we require census data to carry out post-stratification. The
object name of the census data that accompany the taxation survey data is taxes_census and
the codebook can be obtained via the help files. The census data are structured such that one
row represents a combination of the individual-level variables in a given state. For instance,
the first row in taxes_census represents white males aged 18–29 without a high school
diploma in Alabama. The variable proportion identifies the proportions of the demographic
ideal types in the state populations—hence, in the first row, the proportion of white males
aged 18–29 without a high school degree in the population of Alabama—and it is required to
post-stratify estimates.

3.1. Multilevel Regression and Post-Stratification in autoMrP

The standard multilevel regression and post-stratification model can be conveniently esti-
mated with autoMrP. Here, we illustrate how to do so using the item on raising taxes.

In our MrP model, we make use of all six context-level variables that are included in the
survey data (L2.x1, L2.x2, L2.x3, L2.x4, L2.x5, and L2.x6). These are: (i) share of votes
for the Republican candidate in the previous presidential election, (ii) percentage of Evangelical
Protestant and Mormon respondents, (iii) state percentage of the population living in urban
areas, (iv) state unemployment rate, (v) state share of Hispanics, and (vi) state share of
whites. Note that this model over-fits the data and we demonstrate in subsection 3.2 that we
can outperform it using the machine learning capabilities of autoMrP.

mrp_out <- auto_MrP(

y = "YES",

L1.x = c("L1x1", "L1x2", "L1x3"),

L2.x = c("L2.x1", "L2.x2", "L2.x3", "L2.x4", "L2.x5", "L2.x6"),

L2.unit = "state",
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L2.reg = "region",

bin.proportion = "proportion",

survey = taxes_survey,

census = taxes_census,

ebma.size = 0,

cores = max_cores,

best.subset = FALSE,

lasso = FALSE,

pca = FALSE,

gb = FALSE,

svm = FALSE,

mrp = TRUE

)

In lme4 notation, this function call estimates the following model:

YES ~ (1 | L1x1) + (1 | L1x2) + (1 | L1x3) + (1 | region/state) + L2.x1

+ L2.x2 + L2.x3 + L2.x4 + L2.x5 + L2.x6

Based on this model, autoMrP computes estimates for each ideal type in each state. These
estimates are then post-stratified and create the final state-level estimates. We inspect the
state-level estimates via the summary() function. Note that summary() returns the first 10
rows by default. To view all state estimates, we would call summary(mrp_out, n = 48).

summary(mrp_out)

# estimates of: mrp

state median

------ -------

AL 0.1136

AR 0.1126

AZ 0.2167

CA 0.3106

CO 0.2086

CT 0.2369

DE 0.2259

FL 0.1885

GA 0.1324

IA 0.1905

... with 38 more rows

In order to estimate only the standard MrP model, we deactivated the machine learning
classifiers by setting the classifier arguments best.subset, lasso, pca, gb, and svm to FALSE.
The argument mrp controls whether the standard MrP model should be estimated and we
hence set it to TRUE. Furthermore, the argument ebma.size is the proportion of the sample



Philipp Broniecki, Lucas Leemann, and Reto Wüest 7

that will be used for tuning EBMA. Whenever we use only one classifier, ebma.size should
be set to 0 to use all available information to fit the classifier.

3.2. Improved Predictions with Machine Learning in autoMrP

In the following, we improve prediction accuracy by estimating state-level opinion using the
five machine learning classifiers implemented in autoMrP and combining their predictions into
an overall prediction via EBMA. We strongly recommend the utilization of parallel processing
capabilities to speed up the estimation process. To do so, we first determine how many cores
there are available in the system:

max_cores <- parallel::detectCores()

In the function call to autoMrP, we decide to accept the default settings for the tuning
parameters.

ml_out <- auto_MrP(

y = "YES",

L1.x = c("L1x1", "L1x2", "L1x3"),

L2.x = c("L2.x1", "L2.x2", "L2.x3", "L2.x4", "L2.x5", "L2.x6"),

L2.unit = "state",

L2.reg = "region",

bin.proportion = "proportion",

survey = taxes_survey,

census = taxes_census,

gb.L2.reg = TRUE,

svm.L2.reg = TRUE,

cores = max_cores)

An autoMrP object is a list with three elements that can be accessed via the $ operator. First,
$ebma returns the second-level estimates of the EBMA ensemble. Second, $classifiers

returns the second-level estimates of the individual classifiers. Third, $weights returns the
weighting of the individual classifiers in the EBMA ensemble. To obtain a summary of the
EBMA state-level predictions, we use summary() on our autoMrP object.

summary(ml_out)

# EBMA estimates:

state Median

------ -------

AL 0.1530

AR 0.1387

AZ 0.2097

CA 0.2658

CO 0.1808

CT 0.2120
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DE 0.2120

FL 0.1778

GA 0.1571

IA 0.1792

... with 38 more rows

Using summary() on an autoMrP object returns the estimates of the EBMA ensemble. In
Broniecki et al. (forthcoming), we demonstrate based on US public opinion data compiled by
Buttice and Highton (2013) for 89 survey items that the EBMA estimates outperform those of
any individual classifier. Nonetheless, we may wish to inspect the predictions from individual
classifiers. We can do so by calling summary() on the $classifiers element.

summary(ML_out$classifiers)

# estimates of classifiers: best_subset, lasso, pca, gb, svm

state best_subset lasso pca gb svm

------ ------------ ------- ------- ------- -------

AL 0.1328 0.1173 0.1491 0.1753 0.2042

AR 0.1123 0.1043 0.1189 0.1750 0.2002

AZ 0.2016 0.2343 0.2472 0.1783 0.1746

CA 0.3006 0.3197 0.2956 0.2174 0.1696

CO 0.1768 0.1965 0.1693 0.1819 0.1782

CT 0.2260 0.2341 0.1969 0.2131 0.1843

DE 0.2455 0.2321 0.1764 0.2109 0.1912

FL 0.1790 0.1861 0.1653 0.1784 0.1806

GA 0.1508 0.1310 0.1407 0.1759 0.1985

IA 0.1769 0.1850 0.1651 0.1789 0.1917

... with 38 more rows

In addition, we can obtain information on the classifier weights in EBMA by calling summary()

on the $weights element.

summary(ML_out$weights)

# EBMA classifier weights:

Classifier Weight

------------ -------

lasso 0.2258

pca 0.2116

best_subset 0.2058

gb 0.1809

svm 0.1759

For additional information on the autoMrP summary method, refer to the help files using
?summary.autoMrP.
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How does the autoMrP machine learning approach fare compared to the standard MrP model?
In most real-world applications, researchers do not know the true state (or lower-level unit)
estimates. In our example, however, the survey data is a sample from a super-survey with
50,483 respondents. Using disaggregation on the super-survey, we obtain state estimates that
should be close to the population truth and, therefore, treat them as the state-level “truth”
(see Buttice and Highton 2013; Bisbee 2019; Broniecki et al. forthcoming). We use these
values as the ground truth in the following comparison, where we illustrate that by using
machine learning we obtain more precise estimates than by relying on the standard MrP
model.

Figure 1: Comparison of autoMrP Predictions with and without Machine Learning
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Percent reduction in error: 57%

Note: State-level autoMrP predictions with machine learning (EBMA) and without (MrP). Both

approaches use all context-level information. EBMA reduces the mean squared prediction error by

57%.

The autoMrP package can produce estimates based on any combination of the five imple-
mented machine learning classifiers: (i) the multilevel model with best subset selection of
context-level variables, (ii) the multilevel model with principal components of context-level
variables, (iii) the multilevel model with L1 regularization (lasso), (iv) gradient tree boosting,
and (v) support vector machine.

We now describe how autoMrP obtains the overall state estimates. In our example data
set, context-level variables are not on the same scale. As a first step, autoMrP normalizes
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context-level variables. Second, it adds the principal components of context-level variables
to the survey and census data. Third, it splits the 1,500 observations in the sample into two
parts. The first part is used for classifier training while the second is used for tuning EBMA.

All individual classifiers are tuned using cross-validation based on the first part of the observa-
tions. The survey respondents in our data are nested within states. The folds are constructed
in a way so that all respondents from the same state are assigned to the same fold.6

In the next step autoMrP post-stratifies the state estimates of the winning model specifica-
tions of the individual classifiers using the census data. Finally, overall state-level predictions
are generated by averaging the results of the individual classifiers to an ensemble, using the
Bayesian model averaging implemented in the R package EBMAforecast (Montgomery, Hol-
lenbach, and Ward 2016). In this last step, autoMrP tunes the EBMA model based on the
second part of the observations.

3.3. Uncertainty Estimates in autoMrP

We implement uncertainty estimates via bootstrapping. Bootstrapping is computationally
expensive. On a standard Windows machine with an i5-8400U processor with six cores and
six threads, the following example took twelve hours to complete.

# Detect the number of cores

max_cores <- parallel::detectCores()

# Run autoMrP with ML & uncertainty

boot_out <- auto_MrP(

y = "YES",

L1.x = c("L1x1", "L1x2", "L1x3"),

L2.x = c("L2.x1", "L2.x2", "L2.x3", "L2.x4", "L2.x5", "L2.x6"),

L2.unit = "state",

L2.reg = "region",

bin.proportion = "proportion",

survey = taxes_survey,

census = taxes_census,

gb.L2.reg = TRUE,

svm.L2.reg = TRUE,

cores = max_cores,

uncertainty = TRUE)

In this example, we set the argument uncertainty = TRUE to carry out bootstrapping. In
addition, the user may specify the argument boot.iter to set the number of bootstrap
iterations. The argument defaults to 200 iterations. Running autoMrP with uncertainty
estimates returns an object that contains estimates and weights for each bootstrap iteration.
Calling summary() on this autoMrP object returns EBMA state-level median estimates, the
lower and upper 95% confidence bounds as well as the minimum and maximum estimates

6The user may override this behavior so that observations are assigned to folds at random. However, We
show in the appendix to Broniecki et al. (forthcoming) on pages 5–7 why our approach is superior and provide
empirical evidence.
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by default. The user may specify the confidence level with the ci.lvl argument (default is
ci.lvl = 0.95). Specific classifiers can be inspected by setting the classifiers argument
to one of the following: "best_subset", "lasso", "pca", "gb", "svm", or "mrp" (please refer
to the help files via ?summary.autoMrP for additional information).

summary(boot_out)

# EBMA estimates:

state Min. Lower bound Median Upper bound Max

------ ------- ------------ ------- ------------ -------

AL 0.0593 0.0897 0.1441 0.2118 0.2673

AR 0.0408 0.0488 0.1118 0.1609 0.1965

AZ 0.1298 0.1678 0.2457 0.3618 0.4261

CA 0.1961 0.2312 0.2970 0.3848 0.4091

CO 0.0690 0.0989 0.1618 0.2231 0.2369

CT 0.1113 0.1376 0.2053 0.2769 0.3115

DE 0.1315 0.1419 0.2173 0.3368 0.4088

FL 0.1145 0.1344 0.1835 0.2356 0.2519

GA 0.0529 0.0877 0.1406 0.1877 0.2623

IA 0.0733 0.1076 0.1589 0.2189 0.2543

... with 38 more rows

autoMrP has a plot method. Calling the plot() function on an autoMrP object returns EBMA
state-level estimates as well as uncertainty bars if they were estimated via bootstrapping.
The confidence level can be set with the ci.lvl argument (default is ci.lvl = 0.95) and
estimates for individual classifiers can be plotted by setting the algorithm argument to one
of the follwing: "best_subset", "lasso", "pca", "gb", "svm", or "mrp" (please refer to the
help files via ?plot.autoMrP for additional information).

In Figure 3 we plot our model predictions and the 95% confidence intervals on the x-axis
against the true state-level opinion on the y-axis.7 The confidence intervals for almost all
state-level estimates overlap the diagonal, i.e., the true state-level opinion falls within the
95% confidence intervals for those estimates.

4. Implementation of autoMrP

As illustrated by the above example, the auto_MrP() function provided by the autoMrP

package relies on four steps to produce small-area estimates: data preparation, training and
tuning of individual classifiers, post-stratification of individual classifiers’ predictions, and
aggregation of individual classifiers’ predictions via EBMA. Each step requires the user to
make a number of decisions and pass them to the function via its arguments.

4.1. Data Preparation

The survey and census data sets are passed to the auto_MrP() function as data.frames via

7True state-level opinion is based on disaggregation of the super survey. Please refer to section 5 for more
detail.
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Figure 2: State-Level EBMA Estimates with 95% Confidence Intervals
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the arguments survey and census. The survey data.frame must include the individual-level
outcome variable specified by function argument y, the individual-level covariates specified by
argument L1.x, the context-level covariates specified by argument L2.x, and the context-level
unit specified by argument L2.unit, at which the outcome variable should be aggregated.
Optionally, the survey data.frame can also include a variable, specified by L2.reg, that
captures the hierarchical grouping of the context-level units (e.g., the geographic regions in
which the subnational units are nested), a set of variables, specified by pcs, representing the
principal components of the context-level covariates, and a variable, specified by folds, that
determines the fold to which each observation in the survey data set is to be allocated (this
can be either the EBMA fold or one of the K CV folds).

Setting folds = NULL implies that the user does not wish to provide a variable for the parti-
tioning of the survey data into different folds. In that case, the user must specify the arguments
ebma.size, k.folds, and cv.sampling in order for auto_MrP() to perform the partitioning.
Argument ebma.size is a number in the (closed) unit interval indicating the proportion of
survey respondents to be allocated to the EBMA fold. It defaults to 1/3. Argument k.folds

is an integer indicating the number of folds, K, to be used in the cross-validation of individual
classifiers. Its default value is K = 5. Argument cv.sampling, finally, specifies whether the
K cross-validation folds should be created by sampling context-level units, in which case the
user sets cv.sampling = "L2 units", or by sampling respondents, in which case the argu-
ment is set to cv.sampling = "individuals". The default setting is cv.sampling = "L2
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Figure 3: autoMrP Estimates with Bootstraped Uncertainty
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Note: State-level autoMrP point estimates and 95% confidence intervals.

units".

Like the survey data.frame, the census data.frame must include the variables specified by
L1.x, L2.x, and L2.unit and, optionally, can include the variables specified by L2.reg and
pcs. In addition, the census data.frame must include either the bin.proportion, which is
a variable containing the population proportion of individuals by ideal type and context-level
unit, or the bin.size, which is a variable indicating the population bin size of ideal types by
context-level unit.

Setting pcs = NULL means that there are no user-provided principal components (PCs) of
the context-level variables in the survey and census data sets. In this case, auto_MrP() uses
the prcomp() function from the stats package to obtain the PCs of the context-level variables
in the survey data. The PCs are then added to the survey and census data.frames. See
?stats::prcomp() for more information on the calculation of principal components.

By default, auto_MrP() normalizes all context-level variables to have a mean of zero and a
variance of one. Normalization is performed individually for the survey and census data set.
Whether the context-level variables should be normalized is controlled by the logical argument
L2.x.scale. If the user chooses to set L2.x.scale = FALSE, then the context-level covariates
should be normalized prior to calling auto_MrP().

4.2. Training and Tuning of Individual Classifiers

The autoMrP package allows the user to fit either a single classifier or set of classifiers to the
survey data. The predictions of the fitted classifier or classifiers are then post-stratified based
on the census data and, if there are multiple classifiers, combined via EBMA. The classifiers
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currently supported by autoMrP are (i) multilevel regression with best subset selection of
context-level covariates (Best Subset), (ii) multilevel regression with best subset selection of
principal components of context-level covariates (PCA), (iii) multilevel regression with L1
regularization of context-level covariates (Lasso), (iv) gradient boosting (GB), (v) support
vector machine (SVM), and (vi) standard multilevel regression (MRP). More classifiers may
be added in future versions of the package. The user can choose to rely on any combination
of these classifiers. For each individual classifier there is a logical argument that indicates, if
set to TRUE, that the classifier should be used for prediction of the outcome or, if set to FALSE,
that it should not be used in the prediction task. These arguments are best.subset, pca,
lasso, gb, svm, and mrp. The arguments best.subset, pca, lasso, gb, and svm default to
TRUE, while the argument mrp defaults to FALSE. The user can also control which context-level
covariates should be considered by a classifier to predict the outcome. This can be done via the
arguments best.subset.L2.x, pca.L2.x, lasso.L2.x, gb.L2.x, svm.L2.x, and mrp.L2.x.
If these arguments are set to NULL, which is the default option, the respective classifier relies on
all available context-level variables (i.e., all variables specified by L2.x). For GB and SVM, the
user can additionally specify the logical arguments gb.L2.unit, gb.L2.reg, svm.L2.unit,
and svm.L2.reg. These arguments control whether the classifier should include dummy
variables for the context-level units L2.unit and the groupings of context-level units L2.reg,
respectively.

autoMrP draws on a number of existing packages to implement the above classifiers. The
multilevel models in Best Subset and PCA are fit using the glmer() function from the
lme4 package (Bates, Mächler, Bolker, Walker, Bojesen Christensen, Singmann, Dai, Scheipl,
Grothendieck, Green, and Fox 2019). Lasso uses the glmmLasso() function from the glmm-

Lasso package (Groll 2017). GB relies on the gbm() function from the gbm package (Ridgeway
2007). And SVM, finally, makes use of the svm() function from the e1071 package (Meyer,
Dimitriadou, Hornik, Wingessel, Leisch, Chang, and Lin 2019). Please refer to the respective
package reference manual for more information on these functions.

If included in the prediction task, classifiers Best Subset, PCA, Lasso, GB, and SVM are
trained and tuned using K-fold cross-validation. This means that for each fold k ∈ {1, . . . , K},
the classifiers are trained on all folds but the kth, which is used to evaluate the classifiers’
prediction performance. To evaluate prediction performance, the user must specify the loss
function and the unit for which prediction loss is calculated. The loss function is defined by
the argument loss.fun and the user can choose between the mean squared error, by setting
loss.fun = "MSE", the mean absolute error, by setting loss.fun = "MAE", binary cross-
entropy loss, by setting loss.fun = "cross-entropy", the mean squared false error (Wang,
Liu, Wu, Cao, Meng, and Kennedy 2016), by setting loss.fun = "msfe", the f1 score, by
setting loss.fun = "f1", or any combination of those loss functions. The default setting
is to use multiple loss functions with the setting loss.fun = c("MSE", "cross-entropy",

"msfe", "f1"). The unit for calculating prediction loss can be controlled via the argument
loss.unit. Setting loss.unit = "individuals" means that performance loss is evaluated
at the level of individual survey respondents and unit = "L2 units" means that it is evalu-
ated at the level of context-level units. The default is to evaluate at both levels: loss.unit =

c("individuals", "L2 units"). With evaluation based on multiple loss functions or both
loss units, candidate tuning values are ranked according to their performance in each loss
function or loss unit. The candidate tuning parameters with the lowest rank sum are chosen
in classifier tuning. Ties are broken according to the order of the search grid.
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Classifier tuning requires the user to specify grids of candidate values for the classifiers’
tuning parameters. Best Subset and PCA do not have tuning parameters. For Best Subset,
auto_MrP() simply fits as many models as there are combinations of context-level variables
(i.e., 2k). For PCA, auto_MrP() proceeds in a similar way but replaces the context-level
variables with their principal components and then estimates k + 1 models: the first model
empty while the following models successively add the principal components.

The tuning parameter of Lasso is the penalty parameter λ, which controls the shrinkage of the
coefficients of context-level variables. Its grid of candidate values is specified by the argument
lasso.lambda. The argument lasso.lambda is a numeric vector of non-negative values.

GB comes with five tuning parameters: the interaction depth, which defines the maxi-
mum depth of each tree grown, the learning rate or step-size reduction, the initial tree
number fit by GB, the increase in trees fit, and the maximum fit number. The argument
gb.interaction.depth is a vector of positive integers that are candidate values for the in-
teraction depth. Argument gb.shrinkage is a numeric vector whose (positive) values are
candidates for the learning rate. Note that a smaller learning rate typically requires a larger
number of trees. Argument gb.n.trees.init is an integer-valued scalar specifying the initial
number of trees to fit by GB. Argument gb.n.trees.increase is an integer-valued scalar
that specifies the step increase in the number of trees to fit (until the maximum number of
trees has been reached). Argument gb.n.trees.max is an integer-valued scalar defining the
maximum number of trees to fit by GB.

SVM requires the user to choose a kernel. The choice of the kernel is controlled by the argu-
ment svm.kernel, which can be set to any of the following values: "linear", "polynomial",
"radial", or "sigmoid". Depending on which kernel the user has chosen, SVM has one or two
tuning parameters: the SVM kernel parameter γ (for all kernel types except the linear one)
and a parameter controlling the cost of constraints violation in SVM. Argument svm.gamma

is a numeric vector whose values are candidates for γ. Argument svm.cost is also a numeric
vector and its values are the candidates for the SVM cost parameter.

We recommend that users of the package explicitly set all tuning parameters even when they
accept autoMrP defaults because the default values may change in future package versions.

4.3. Post-Stratification of Individual Classifiers

After training and tuning the classifiers included in the prediction task, auto_MrP() selects
for each classifier the model with the smallest expected out-of-sample prediction error (as
estimated by the cross-validation error). The ideal type-specific predictions of these “winning”
models are then post-stratified based on the census data to obtain predictions for subnational
units for each classifier.

4.4. Aggregation of Individual Classifiers by EBMA

The final step in auto_MrP() is to generate overall predictions for subnational units by av-
eraging the predictions of individual classifiers using EBMA. auto_MrP() performs EBMA
relying on the calibrateEnsemble() function from the EBMAforecast package (Montgomery
et al. 2016). The weights of classifiers in EBMA are determined based on the classifiers’ pre-
diction accuracy and the uniqueness of their predictions (Montgomery et al. 2012). EBMA
can be tuned through the argument ebma.tol. Argument ebma.tol is a numeric vector that



16 MrP with Machine Learning (autoMrP)

contains the candidate values for tolerance in the improvement of the log-likelihood before
the EM algorithm ends optimization. The default candidate values for the tolerance are 1e-2,
5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5. Please refer to Montgomery et al. (2016) for advice on the
specification of candidate values (autoMrP searches a wider grid of candidate values than
recommended by Montgomery et al. 2016). By default, we draw 100 samples from the EBMA
fold, which had not been previously used for classifier training. We use a bootstrapping ap-
proach where we draw the same number of respondents from each state and end up with 100
samples that are of about the same size as the original EBMA fold. The number of EBMA
samples can be controlled via the ebma.n.draws argument. Note that EBMA tuning is time
consuming and reducing the number of samples to be drawn or reducing the search grid will
substantially speed up the prediction task.

5. Comparison of autoMrP with Alternative Approaches

For users interested in using more advanced MrP models that benefit from techniques of the
statistical learning literature, there are currently three options: the SRP package by Ornstein
(2020b), the BARP package by Bisbee (2019), and the autoMrP package by Broniecki et al.
(forthcoming). All three packages are similar in that they rest on improved MrP models,
but they differ in how exactly they improve upon classic MrP. In this section, we provide a
comparison of the performance of the three packages. The comparison is carried out on a
standard benchmark data set (Buttice and Highton 2013) and shows that autoMrP outper-
forms the other two alternatives (SRP and BARP). In the following, we describe the setup
to evaluate prediction performance of the three approaches.

We evaluate the approaches based on real-world public opinion data from five waves of two
large US surveys. The data set was compiled by Buttice and Highton (2013) who used
it to evaluate the performance of MrP and we follow their assessment approach here (see
also Bisbee 2019; Broniecki et al. forthcoming). The data set consists of 89 survey items
from the National Annenberg Election Studies (2000, 2004, and 2008) and the Cooperative
Congressional Election Studies (2006 and 2008).

Each survey item in the data set is binary; coded 1 if the respondent is in favor of the question
asked and 0 otherwise. The three individual-level predictors are age group (four categories),
education level (four categories), and gender-race combination (six categories). In addition,
Buttice and Highton (2013) add two context-level predictors: (i) the state share of votes
for the Republican candidate in the previous presidential election and (ii) the percentage of
Evangelical Protestant and Mormon respondents. In addition, we added another four context-
level variables: (i) the state percentage of the population living in urban areas, (ii) the state
unemployment rate, (iii) the state share of Hispanics, and (iv) the state share of whites
(Broniecki et al. forthcoming).

The survey items address issues such as internet absentee voting, gay marriage, taxes versus
spending, and a fence at the border with Mexico. Each survey item has at least 25,000
individual responses. Following Buttice and Highton (2013), we treat the state average “yes”
response as the population “truth.” We then draw a sample of 1,500 respondents for each
item to represent the size of a typical national survey. Our samples are random draws where
we ensure that we draw at least five respondents from each state.

We use the samples to generate state-level predictions with autoMrP, SRP, and BARP for all
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Figure 4: Comparison of the Prediction Performance
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89 items. All packages make use of the same three individudal-level predictors, the six context-
level variables as well as binary state and region variables.8 In addition, we also compare with
a standard MrP model that uses all six context-level variables. The prediction accuracy is
evaluated as the mean squared prediction error, comparing the state-level predictions of each
package and the MrP model to the state-level “truth.”

The results show that autoMrP provides the largest gain over the baseline (the standard
MrP model) among the three approaches implemented in these packages. There are some
potential explanations for this behavior. Comparing the autoMrP package to the BARP

package, we note that BARP does not tune parameters and only relies on one classifier
(BART). autoMrP and SRP rely on a set of classifiers and then combine the predictions from
these different classifiers with a superlearner.

Comparing autoMrP with SRP, we see that we rely on EBMA while SRP relies on stack-
ing. autoMrP engages more intensely in parameter tuning and does not just use default
values in most classifiers. In addition, autoMrP also relies on a different approach for assign-
ing observations to folds (see p.6 in Broniecki et al. forthcoming). Finally, unlike SRP, we
avoid double-dipping when tuning individual classifiers and aggregating the individual clas-
sifiers’ predictions via the superlearner. Our comparison provides a first evaluation based

8The default behavior of autoMrP is not to use binary state variables in the gradient tree boosting and sup-
port vector machine classifiers because this tended to somewhat reduce prediction accuracy of those classifiers
in our tests. Here, however, we override this behavior to ensure that all packages use all available information.
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on a very common data set and shows that with these data and under these circumstances
autoMrP outperforms alternative packages improving upon standard MrP. While some of
the highlighted differences indicate superior performance of autoMrP, we emphasize that the
empirical evaluation is limited to a data set on US public opinion commonly used for assessing
MrP models.

6. Summary and Discussion

This article provided an introduction to autoMrP, which is a new R package allowing users
to estimate classic MrP models as well as autoMrP models that rely on statistical learning
methods. We first showed how using newer versions of MrP that rely on statistical learning
outperform the classic model. We then moved on to a benchmark test between three pack-
ages that offer advanced MrP models and showed that autoMrP outperforms the two other
approaches in terms of prediction accuracy on an often-used test data set.

Going forward, we want to make it possible to estimate some models in autoMrP via rstanarm

rather than to rely on glmer models. In addition, we want to make it possible for users to
include additional classifiers. The autoMrP procedure is in principle open to the inclusion
of other classification methods and having this option will provide more flexibility and less
dependency on package maintainers.

Computational details

The results in this paper were obtained using R 4.0.2 with the dplyr 1.0.2, foreach 1.5.0, doPar-

allel 1.0.15, doRNG 1.8.2, magittr 1.5, lme4 1.1-23, glmnet 4.0-2, ranger 0.12.1, kknn 1.3.1,
xgboost 1.2.0.1, caret 6.0-86, SRP 0.1.1, BARP 0.0.1.0001 and autoMrP 0.91 packages. R

itself and all packages except SRP, BARP, and autoMrP used are available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/. The SRP package
is available on GitHub at https://github.com/joeornstein/SRP, BARP is available on
GitHub at https://github.com/jbisbee1/BARP, and autoMrP is availalbe on GitHub at
https://github.com/retowuest/autoMrP.
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