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animalEKF-package Extended Kalman Filters for Animal Movement
Description

Synthetic generation of 1-D and 2-D correlated random walks (CRWs) for animal movement with
behavioral switching, and particle filter estimation of movement parameters from observed trajec-
tories using Extended Kalman Filter (EKF) model. See Ackerman (2018)
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150.

Note

I am indebted to Dr. Mario Espinoza and co-authors for providing the shark observation data that
inspired this work, and for allowing it to be included in this package. I am especially grateful to Dr.
Espinoza for many discussions regarding the nuances of modeling animal movement, particularly
for suggesting the idea of behavioral switching models.

I am grateful to my doctoral thesis advisors, Dr. Marc Sobel, Dr. Richard Heiberger, and Dr. Mike
O’Connor for supervising my research in this topic. I am particularly grateful to Dr. Heiberger for
his many hours in advising me on package design and on the shiny simulations in this package.

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801coll110/1d/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
Learning and Smoothing." Statistical Science, 2010.

Espinoza, Mario, Farrugia, Thomas J., Lowe, Christopher G. "Habitat Use, Movements and Site Fi-
delity of the Gray Smooth-Hound Shark in a Newly Restored Southern California Estuary." Journal
of Experimental Marine Biology and Ecology, 2011.
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bc_longlat_map Image of Bolsa Chica for use with shark_vis_longlat

Description

Image of Bolsa Chica for use with shark_vis_longlat

Usage

data(bc_longlat_map)

Format

The format is: List of 8 $ lat.center: Named num 33.7 ..- attr(*, "names")= chr "lat" $ lon.center:
Named num -118 ..- attr(*, "names")= chr "lon" $ zoom : num 15 $ myTile : num [1:640, 1:640,
1:410.639 0.639 0.639 0.639 0.639 ... $ BBOX :List of 2 ..$ 1I: num [1, 1:2] 33.7 -118.1 .. ..- attr(*,
"dimnames")=Listof 2 .. .. .$: NULL .. .. .$: chr [1:2] "lat" "lon" ..$ ur: num [1, 1:2] 33.7 -118
.. .- attr(*, "dimnames")=List of 2 .. .. .$ : NULL .. .. ..$ : chr [1:2] "lat" "lon" $ url : chr "google"
$ size : num [1:2] 640 640 $ SCALE : num 1 - attr(*, "class")= chr "staticMap"

Source

Google Maps.

bc_longlat_map_img_ras
Raster image of Bolsa Chica for use with shark_vis_longlat

Description

Raster image of Bolsa Chica for use with shark_vis_longlat

Usage

data("bc_longlat_map_img_ras")

Format

The format is: 'raster’ chr [1:640, 1:640] "#A3CCFFFF" "#A3CCFFFF" "#A3CCFFFF" ...

Source

Google Maps.

Examples

data(bc_longlat_map_img_ras)
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cdlm_robot Shiny app for 1D simulation of robot movement with CDLM.

Description

Shiny app for 1D simulation of robot movement with CDLM.

Usage
cdlm_robot ()

Details

This shiny app illustrates a 1-D robot movement model. Here, T ("maximum number of iterations")
steps are simulated for a robot moving along a 1-D line. Each of the T steps represents a length of
time represented by "time step (sec)" seconds; the longer the interval, the more location uncertainty
there is between steps. At each step, the robot moves with velocity (v_t) modeled by a normal dis-
tribution with mean alpha ("unknown true mean of velocity") and variance "known true variance."
For simplicity, we will only attempt to model the mean velocity while sequentially observing only
the locations, since we assume the variance is known. The particle filter learns the movement pa-
rameters through N ("number of particles") particles, or independent simulations. At each point in
time, the filter simulates N draws of the velocity from the prior distribution, a normal distribution
with mean mu ("prior mean on velocity mean") and variance sigma ("prior variance on velocity
mean"). These distributions are shown in color panel 1. Ideally, over time the colored distributions
should converge to the true one (thick black curve).

Panel 1 shows the particles’ distributions of the velocities. Ideally the means of these distributions
should converge to the true value (vertical line). Note: this simulation works best if the distribu-
tion of true velocity is either clearly negative or positive. If the distribution straddles v_t=0 with
significant probability, movement will be more difficult to visualize. In the above case, the location
should be the one more in the direction of the sign of velocity (i.e. if velocity distribution >0, then
the robot should be consistently moving to the right).

Panel 2 shows each particle’s prediction of the location (black dot) and the 95% confidence interval
of this prediction (width of colored rectangle). The true observed location and the previous one
are the two dashed vertical lines. Particles whose dots fall closer to the vertical line have better
prediction.

Panel 3 shows the weights of the particles as calculated by the closeness of their location prediction
to the true one. Closer particles in panel 2 should have higher weights (the colors correspond).

Panel 4 shows the predictions and confidence intervals of particles being resampled by their weights
(with replacement). More of the predictions should be closer to the truth here than in panel 2.

Panel 5 shows convergence over time of the means of the particle distributions of velocity (panel 1)
to the true value (vertical dashed line). Ideally these should converge to the true value.

Panel 6 shows the history of predicted locations over time, by vertical lines representing each par-
ticle’s predictions. Ideally the particle predictions should both converge to the observed locations
and should also be grouped closer together, as the estimated velocity distribution standard deviation
decreases.
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The particle filter models the true value of location and the true velocity. It is reasonable to assume
that these are independent, which is why the covariance matrices given are diagonal.

Note

Video explanation of simulation applet by author: https://youtu.be/iVG_bCUQjCA

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801co0ll10/id/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
learning and smoothing." Statistical Science, 2010.

cdlm_robot_twostate Shiny app for simulation of 1D robot movement with CDLM and two
states.

Description

Shiny app for simulation of 1D robot movement with CDLM and two states.

Usage

cdlm_robot_twostate()

Details

See cdlm_robot for explanation of the basic concepts. This function is similar except there are two
behavioral states (1 and 2, "slow"/"fast") to model, as well as the switching probabilities between
them.

The means of the velocities of the two behaviors are simulated by a normal distribution with two
means alpha ("unknown true mean of velocity", types 1 and 2). The variance in each case is the
same and known, as before. The prior means and variances of the velocities are assigned as before.

The transition probabilities between the behaviors are given by "transition probability between type
1 and 2" and "2 and 1". If box "are transition probabilities known?" is checked, then they are known.
Otherwise, the transition probabilities will be estimated by a Dirichlet prior (vector "Dirichlet prior
values" of form 1->1, 1->2, 2->1, 2->2 of positive numbers, which should roughly correspond to
the true probabilities in ratio). Note that the predictions in this simulation are unlikely to be as good
as in the prior 1-D example since there are more parameters to learn and only a limited number of
timesteps or particles.

Panel 1 shows the particles’ distributions of the velocities for each behavior. This simulation works
best if the distributions are well-separated.
Panel 2 shows the location predictions for each behavior. The black dot indicates the mean predicted

location, and the rectangle width is the width of the 95% confidence interval. The rectangle for
behavior 1 is solid, for behavior 2 it has crosshatches.


https://youtu.be/iVG_bCU0jCA
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
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Panel 3 shows the overall resampling weights for the particles, as well as the behavior-conditional
ones. The higher the behavior-conditional weight bar is, the better the particle’s prediction at that
behavior matches what was observed. The overall weight (top row) is the average of the conditional
weight values, weighted by the transition probability into that behavior.

Panel 4 shows the resampled particles, along with their prediction of location and behavior type.
Ideally, the resampled rectangles should be centered around the observed point. It is not necessarily
true that the resampled (most likely) rectangles will be the narrowest, since the likelihood of the
behavior predicting the observed location is a combination of both the density of that location at the
prediction distribution (closeness to the center), as well as the likelihood (transition probability) of
having that behavior, given the previous one. In panel 4, the particle predictions are shown one at
a time as that particle is resampled; the weight bar in panel 3 should be in bold as that particle is
selected.

Panel 5 shows convergence over time of the means of the particle distributions of velocity (panel 1)
to the true value (vertical dashed line). Ideally these should converge to the true value.

Panel 6 shows the history of predicted locations over time, by vertical lines representing each par-
ticle’s predictions. Ideally the particle predictions should both converge to the observed locations
and should also be grouped closer together, as the estimated velocity distribution standard deviation
decreases.

Panel 7 shows the estimated distributions of the behavior switching probabilities (if they are not
known). The true probabilities are shown by a vertical line, and ideally the mean of the estimated
distribution should be around there.

Panel 8 shows the accuracy of particle predictions of the behavior. The color (1=black, 2=gray) is
the true behavior type, and the height of the bar is the fraction of particles correctly predicting it.
Ideally, all bars should be high.

Note

Video explanation of simulation applet by author: https://youtu.be/4XR8eB89z7E

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801coll10/id/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
learning and smoothing." Statistical Science, 2010.

cdlm_robot_twostate_2D
Shiny app for simulation of 2D robot movement with CDLM and two
states.

Description

Shiny app for simulation of 2D robot movement with CDLM and two states.


https://youtu.be/4XR8eB89z7E
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
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Usage

cdlm_robot_twostate_2D()

Details

See cdlm_robot and cdlm_robot_twostate for explanation of the basic concepts. This function
simulates a 2-D moving robot with two behavioral states (1 and 2, "slow"/"fast") to model, as well
as the switching probabilities between them.

The means of the log-speeds of the two behaviors are simulated by a normal distribution with two
means alpha ("unknown true mean of log-speed”, types 1 and 2). The variance in each case is the
same and known, as before. The prior means and variances of the velocities are assigned as before.

The transition probabilities between the behaviors are given by "transition probability between type
land 2" and "2 and 1". If box "are transition probabilities known?" is checked, then they are known.
Otherwise, the transition probabilities will be estimated by a Dirichlet prior (vector "Dirichlet prior
values" of form 1->1, 1->2, 2->1, 2->2 of positive numbers, which should roughly correspond to
the true probabilities in ratio). Note that the predictions in this simulation are unlikely to be as good
as in the prior 1-D example since there are more parameters to learn and only a limited number of
timesteps or particles.

Panel 1 shows the particles’ distributions of the log-speed for each behavior. This simulation works
best if the distributions are well-separated.

Panel 2 shows the location predictions (center with confidence ellipse, either solid or dashed by
behavior type)

Panel 3 shows the overall resampling weights for the particles, as well as the behavior-conditional
ones. The higher the behavior-conditional weight bar is, the better the particle’s prediction at that
behavior matches what was observed. The overall weight (top row) is the average of the conditional
weight values, weighted by the transition probability into that behavior.

Panel 4 shows the resampled particles, along with their prediction of location and behavior type.
Ideally, the resampled ellipses should be centered around the observed point. It is not necessarily
true that the resampled (most likely) ellipses will be the smallest, since the likelihood of the behavior
predicting the observed location is a combination of both the density of that location at the ellipse,
as well as the likelihood (transition probability) of having that behavior, given the previous one. In
panel 4, the particle predictions are shown one at a time as that particle is resampled; the weight bar
in panel 3 should be in bold as that particle is selected.

Panel 5 shows convergence over time of the means of the particle distributions of log-speed (panel
1) to the true value (vertical dashed line). Ideally these should converge to the true value.

Panel 6 shows the history of predicted locations over time in terms of a spatial density plot (grayscale
shading). Ideally, these should concentrate around the red overlaid trajectory of observed locations.

Panel 7 shows the estimated distributions of the behavior switching probabilities (if they are not
known). The true probabilities are shown by a vertical line, and ideally the mean of the estimated
distribution should be around there.

Panel 8 shows the accuracy of particle predictions of the behavior. The color (1=black, 2=gray) is
the true behavior type, and the height of the bar is the fraction of particles correctly predicting it.
Ideally, all bars should be high.
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Note

Video explanation of simulation applet by author: https://youtu.be/4XR8eB89z7E

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801col110/id/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
learning and smoothing." Statistical Science, 2010.

EKF_1d_interp_joint Extended Kalman Filter (EKF) for 1-D movement with interpolation

Description

Extended Kalman Filter (EKF) for 1-D movement with interpolation

Usage

EKF_1d_interp_joint(d, npart=100, sigma_pars,
alpha0_pars=1ist(mud=c(5, 9), V0=c(0.25, 0.25)),
Errvar@=rep(list(5), 2), Errvar_df=c(20, 20),
Particle_errvar@, Particle_err_df=20, delaysample=1,
dirichlet_init=c(10,3,3,8), maxStep=NULL,
state_favor=c(1,1), nstates=2,
lowvarsample=FALSE, time_radius=60%*30, spat_radius=300,
min_num_neibs=10, interact=TRUE,
interact_pars=1ist(mu@=0, precision@=2,
known_precision=2),
neff_sample=1, time_dep_trans=FALSE,
time_dep_trans_init=dirichlet_init, smoothing=FALSE,
fix_smoothed_behaviors=TRUE, smooth_parameters=TRUE,
reg_dt=120, max_int_wo_obs=NULL,
resamp_full_hist=TRUE, compare_with_known=FALSE,
known_trans_prob=NULL, known_foraging_prob=NULL,
known_regular_step_ds=NULL, update_eachstep=FALSE,
update_params_for_obs_only=FALSE,
output_plot=TRUE, loc_pred_plot_conf=0.5,
output_dir=getwd(), pdf_prefix="EKF_1D", verbose=3)


https://youtu.be/4XR8eB89z7E
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
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Arguments
d Dataset of observations, with required variable columns: tag, X, velocity, date_as_sec,
time_to_next, state.guess2, prev.guess2.
npart Number of particles to be used in simulation.
sigma_pars Vector of inverse-gamma parameters for sigma”2 (logV variance). Two ele-

alphao_pars

Errvaro

Errvar_df

ments for each state. The inverse gamma parameters are specified in pairs.

List of initial values of mean velocity (mu) and degrees of freedom (V), one for
each behavioral state.

List of prior 1x1 covariance matrices for predicting y from x, one for each be-
havioral state.

Vector of degrees of freedom of Errvar@ covariance matrices.

Particle_errvaro

Particle_err_df

dirichlet_init

maxStep

delaysample

state_favor

nstates

lowvarsample

time_radius
spat_radius

min_num_neibs

interact

interact_pars

neff_sample

Prior 1x1 covariance matrix for predicting x_t from x_t-1.

Degree of freedom of Particle_errvaro.

List of 4-element vectors specifying Dirichlet parameters for transition matrices
for each region. Will be replicated to equal number of regions.

Maximum number of regular steps to simulate. Default is NULL, meaning that
the number of regular steps simulated will be the minimum number required to
cover the range of observed data. If not NULL, maxStep will be the minimum
of the submitted value or the the above.

Number of regular steps at which resampling will begin. The default =1 means
resampling will begin immediately.

Vector of weights to favor states when resampling (but not propagating). For
instance c(1,3) will favor state 2 weight 3 times as much as state 1 weights for
particles. By default, they are equally weighted.

Number of behavioral states. For now restricted to a maximum of 2.

Logical. If TRUE, use low-variance sampling when resampling particles to
ensure particles are resampled proportionately to weight. Otherwise there is
some sampling variance when drawing random samples. The setting applies to
smoothing as well.

Time in seconds to consider for spatial neighbors (1-D interval on either side).
Radius (half of interval length) in meters of spatial neighborhood.

Minimum number of time and spatial radius observations that need to exist to
constitute a neighborhood.

Logical. If TRUE, simulate interaction parameters of neighborhood. If nstates=1,

automatically set to FALSE.

List of interaction priors: mu@ and precision@ are prior mu and precision for
normal draws of interaction parameter. known_precision is the known preci-
sion of the lognormal intensity.

Number between 0 and 1. If effective sample size < neff_sample, then resam-
ple. Recommended to always resample if interpolating, so set neff_sample=1 as
default.
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time_dep_trans Logical. If TRUE, state transition matrices are time-dependent meaning that
probability depends on the number of steps a shark has remained in the current
state.

time_dep_trans_init
4-element numeric vector of Dirichlet parameters for time_dep_trans.

smoothing Logical. If TRUE, perform smoothing at the end.

fix_smoothed_behaviors
Logical. If TRUE, when performing smoothing, keep behavior modes fixed for
each particle history from what was originally predicted duruing filtering, be-
fore smoothing. This means the particles will be smoothed backwards with each
particle weight at each time point being conditioned on the behavior predicted in
filtering. Thus, the behavioral agreement with, say, the observed or true behav-
iors is the same for smoothing as for filtering, since behaviors are not allowed to
change. If nstates==1, then automatically fix_smoothed_behaviors=FALSE.

smooth_parameters
Logical. If TRUE, when performing smoothing, resample the parameters theta
as well.

reg_dt Length in seconds of each regular interval.

max_int_wo_obs When simulating, the maximum number of intervals of length reg_dt without
observations for a given shark that we will simulate. If this is exceeded, algo-
rithm will wait until next observation and start from there. Default is NULL,
meaning it will be set to maxStep, and thus the algorithm will continue simulat-
ing without stopping, regardless of when the next observation is.
resamp_full_hist
Logical. If TRUE, resample the full particle history, not just all particle times
since the last observation, each time resampling occurs.
compare_with_known
Logical. If TRUE, provide a known regular-step dataset from which d is a
irregularly-sampled subset, for comparison with particle predictions.
known_trans_prob
If nstates=2, a matrix of row 2 where each column is the behavior transition
probabilities between each opposing behavior, in each region.
known_foraging_prob
If nstates=2, a matrix of the foraging probabilities for each region.
known_regular_step_ds
If compare_with_known=TRUE, the dataset of the original regular-step trajec-
tories. Note: this dataset needs to have column date_as_sec (date in seconds)
and time gap reg_dt be the same as the set of regular-step intervals that the EKF
is trying to estimate movement at. Otherwise, the simulated movement locations
and the true ones will not correspond.
update_eachstep
Logical. If TRUE, for regular steps without observations, update the movement
parameters based on the simulated movements. If FALSE, parameters are only
updated based on the simulated movements when a new observation occurs; this
means the simulated movements are drawn using the parameter values learned
since the last observation.
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update_params_for_obs_only

Logical. If TRUE, the particle movement parameters are updated based on sim-
ulated movement only at intervals with observed locations. If FALSE, particle
movement in intermediate steps that are simulated will be used to update as well.
If TRUE, then update_eachstep=FALSE, meaning that parameter updates will
be done only for (and at) the steps that represent observations. If FALSE, then
update_eachstep can be either TRUE or FALSE, but simulated steps will be
used to update, but update_eachstep controls the timing of the the update; if
TRUE, it happens one step at a time, and if FALSE, a batch update is done at
observations for the set of simulated steps.

output_plot Logical. If TRUE, a set of diagnostic plots will be printed to a file in output_dir.
Otherwise, it will be output to the plotting console.

loc_pred_plot_conf
Numeric. Confidence level of confidence interval for location prediction error
to plot in step-wise diagnostics.

pdf_prefix String prefix for output PDF filename, if output_plot = TRUE. Filename will be
the prefix followed by a timestamp.

output_dir Directory for output PDF of diagnostic plots.

verbose Integer, one of 0,1,2,3. Control of verbosity of printouts during simulation. 3

means show both printouts and plots; 2 means show plots only; 1 means show
printouts only; 0 means show no plots or prinouts. Final plotting will be done

regardless.
Value

d Input dataset as data.frame

N Number of regular steps of length reg_dt needed to cover the observed range
of time.

t_reg Vector of times of regular step reg_dt.

nsharks Number of sharks in output data.

shark_names Names of sharks in output data.

shark_valid_steps
List of regular-step intervals that each shark has simulated particle movement
for.
shark_intervals
List of regular-step intervals that each shark has observations for.
first_intervals
List of regular-step intervals that begin each shark’s segments of simulated par-
ticle movement. If observed gaps are larger than max_int_wo_obs, the shark’s
trajectory will be simulated as two or more separate segments.
included_intervals
Unique list of regular-step intervals with simulated movement for any shark.

mu Array of estimated values of mean log-velocity for normal inverse-gamma con-
jugate distribution
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XY_errvar Estimated matrix and degrees of freedom of estimated location error covariance,
for each behavior.

sigma_pars Posterior inverse gamma distribution parameters for the velocity (or, for 2-D,
log-velocity) variance.

Xpart_history Overall history of estimated movement values.

param_draws Posterior sampled values of mean of velocity (or, for 2-D, log-velocity).
variance_draws Posterior sampled value of variance of velocity (or, for 2-D, log-velocity).
eff_size_hist History of effective sample sizes in simulations.

agree_table Table of observed agreement between particle predictions of behavior and those
observed, overall and by behavior, if nstates > 1.

states Observed vector of behavioral states.

state_counts Array of total number of simulated regular-step intervals in each behavioral
state.

lambda_matrix History of particle predicted values of lambda, the behavior variable.
lambda_matrix_beforesamp
Same as lambda_matrix, except the history before each time has not been re-
sampled according to the particle resampling weights. For lambda_matrix,
Xpart_history, and other estimated outputs, the entire particle history is re-
sampled.
resample_history
Fraction of unique particles that are resampled at each regular step over the
history.
transition_mat Estimated transition probability matrix parameters for Dirichlet distribution. If
nstates==1, is meaningless.
error_beforesamp
For each regular step i with an observation, the quantiles of summed prediction
errors before each round of resampling, across history.
error_beforesamp_quantiles
Quantiles of error_beforesamp_allpart across history.
error_final_allpart
For each regular step i with an observation, the sum of prediction errors for any
observations in that interval (final after resampling).
error_final_quantiles
Quantiles of error_final_allpart across history.
error_true_allpart
If compare_with_known == TRUE, for each regular step i, the sum of prediction
errors for any true locations in that interval.
error_true_quantiles

If compare_with_known == TRUE, quantiles of error_final_true_allpart across

history.

The following inputted parameters are returned :

npart
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nstates

state_favor
known_regular_step_ds

known_foraging_prob

neff_sample
resamp_full_hist

time_dep_trans
interact
spat_radius
time_radius

lowvarsample
update_eachstep

update_params_for_obs_only

The following are returned if nstates > 1:

trans_counts Array of total number of simulated regular-step intervals with transitions be-
tween each possible pair of behaviors.
trans_mean Posterior estimates of mean behavior switching probabilities from region_trans_draws.
region_foraging_draws
Posterior estimate of probability of foraging (lambda=0) from behavior switch-
ing probabilities.
region_trans_draws
Posterior draws of behavior switching probabilities from transition_mat. For
2-D, this is separately by region, if there are multiple regions.

In addition, the following are returned if compare_with_known = TRUE:

error_final_true_allpart

Errors from estimating true locations from particle locations (at the same times).
error_final_true_quantiles

Quantiles of error_final_true_allpart across history.
euclidean_estimate_true_from_obs

Estimates of true locations by Euclidean interpolation from observations
error_euclidean_estimate_true_from_obs

Euclidean error from euclidean_estimate_true_from_obs compared to true

locations from known_regular_step_ds.

In addition, the following are returned if interact = TRUE:

spatial_interact_pars
Estimated parameters for sharks’ tendency to be influenced by other neighboring
sharks in determining behavior.
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interact_mu_draws

Posterior sampled values of interaction mu parameter.
interact_intensity_draw

Posterior sampled values of interaction tendency multiplier, at different propor-

tions of neighboring sharks with second behavior type.
spatial_interact_mu_history

History of simulated values of interaction mu.
spatial_interact_intensity_history

History of simulated values of interaction tendency multiplier.

The following are returned if smoothing = TRUE:

Xpart_history_smoothed
Resampled values of Xpart_history by reverse smoothing resampling (see
Carvalho et al).

error_smoothed_allpart
For each regular step i, the sum of prediction errors for smoothed particles for
any observations in that interval.

error_smoothed_quantiles
Quantiles of error_smoothed_allpart across history.

In addition, if smooth_parameters = TRUE:

param_draws_smoothed
Posterior sampled values of mean of velocity (or, for 2-D, log-velocity) after
resampling by smoothing.

variance_draws_smoothed
Posterior sampled values of variance of velocity (or, for 2-D, log-velocity) after
resampling by smoothing.

transition_mat_smoothed
Estimated transition probability matrix parameters for Dirichlet distribution af-
ter resampling by smoothing.

In addition, if smooth_parameters = TRUE and interact = TRUE:

spatial_interact_pars_smoothed
Estimated parameters for sharks’ tendency to be influenced by other neighboring
sharks in determining behavior, after resampling by smoothing.
interact_mu_draws_smoothed
Posterior sampled values of interaction mu parameter, after resampling by smooth-
ing.
interact_intensity_draw_smoothed
Posterior sampled values of interaction tendency multiplier, at different pro-
portions of neighboring sharks with second behavior type, after resampling by
smoothing.

In addition to smoothing, if compare_with_known = TRUE:

error_smoothed_true_allpart
For each regular step i, the sum of prediction errors for smoothed particles for
any observations in that interval.
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error_smoothed_true_quantiles
Quantiles of error_smoothed_true_allpart across history.

In addition to smoothing, if smoothing = TRUE but fix_smoothed_behaviors = FALSE (smoothed
behaviors allowed to change from filtering):

mu_smoothed Corresponding version of mu after resampling by smoothing.
sigma_pars_smoothed

Corresponding version of sigma_pars after resampling by smoothing.
agree_table_smoothed

Corresponding version of agree_table for smoothed states Llambda_matrix_smoothed.
Note
See sim_trajectory_joint for a full example of usage. Video explanation of EKF state-space
model by author: https://youtu.be/SgyhRVUn77k
Author(s)

Samuel Ackerman

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801co0l110/id/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
learning and smoothing." Statistical Science, 2010.

EKF_interp_joint Extended Kalman Filter (EKF) for joint shark movement with interpo-
lation

Description

Extended Kalman Filter (EKF) for joint shark movement with interpolation

Usage

EKF_interp_joint(area_map=NULL, d, npart=100, sigma_pars, tau_pars,
mu@_pars=list(alpha=c(-4.5 ,-2), beta=c(0,0)),
VO_pars=list(alpha=c(0.25, 0.25), beta=c(0.25, 0.25)),
Errvar@=rep(list(diag(2)), 2),

Errvar_df=c(20, 20), Particle_errvar@, Particle_err_df=20,
dirichlet_init=c(9,2,2,7), logvelocity_truncate=c(-10, 15),
maxStep=NULL, delaysample=1, state_favor=c(1,1),
nstates=2,centroids=matrix(c(0,0), ncol=2),
truncate_to_map=TRUE, enforce_full_line_in_map=TRUE,


https://youtu.be/SgyhRVUn77k
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
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Arguments

area_map

npart

sigma_pars

tau_pars

mu@_pars

VO_pars

Errvaro

Errvar_df

EKF _interp_joint

do_trunc_adjust=TRUE, lowvarsample=TRUE,
time_radius=60%30, spat_radius=300, min_num_neibs=10,
interact=TRUE, interact_pars=1list(mu@=0, precision@=2,
known_precision=2), neff_sample=1, time_dep_trans=FALSE,
time_dep_trans_init=dirichlet_init, smoothing=FALSE,
fix_smoothed_behaviors=TRUE, smooth_parameters=TRUE,
reg_dt=120, max_int_wo_obs=NULL, resamp_full_hist=TRUE,
compare_with_known=FALSE, known_trans_prob=NULL,
known_foraging_prob=NULL, known_regular_step_ds=NULL,
update_eachstep=FALSE, update_params_for_obs_only=FALSE,
output_plot=TRUE, loc_pred_plot_conf=0.5,
output_dir=getwd(), pdf_prefix="EKF_2D", verbose=3)

Shapefile within which the observations are located (optional). Should be the
output of applying sf: : st_geometry on an object of class sf. If input is NULL,
a default rectangular one is created that contains the observed X-Y points in d.

Dataset of observations, with required variable columns: tag, X, Y, logvelocity,
speed, turn.angle.rad, region (optional), date_as_sec, time_to_next, state.guess2,
prev.guess2.

Number of particles to be used in simulation.

Vector of inverse-gamma parameters for sigma’2 (logV variance). Two ele-
ments for each state. The inverse gamma parameters are specified in pairs.

Vector of inverse-gamma parameters for tau2 (turn angle variance).

List of initial values of mean logV (alpha) and turn (beta) for one or two behav-
ioral states.

List of initial values of degrees of freedom of inverse-gamma sigma and tau
(variances of alpha and beta) for one or two behavioral state.

List of prior 2x2 covariance matrices for predicting y from x, one for each be-
havioral state.

Vector of degrees of freedom of Errvar@ covariance matrices.

Particle_errvaro

Particle_err_df

Prior 2x2 covariance matrix for predicting x_t from x_t-1.

Degree of freedom of Particle_errvare.

dirichlet_init List of 4-element vectors specifying Dirichlet parameters for transition matrices

for each region. Will be replicated to equal number of regions.

logvelocity_truncate

When simulating log-velocity, a vector of the allowable range (values outside
will be truncated to fall in this range). Log-velocity is simulated by a normal
distribution (which is symmetric but can be positive or negative), so that speed
(=exp(log_velocity)) will be positive. However, the transformation has asym-
metric impact in that, say, a fixed error in underestimating log-velocity results
in a smaller displacement (when translated to speed and thus distance) than the
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same error over-estimated. The variance of log-velocity takes into account low
and high values equally. This restriction prevents the variance from growing too
large from low (e.g. very negative) values of log-velocity, which will then cause
large over-estimates of speed and distance traveled. The difference between,
say, log-velocity of -2 and -50 is very small in practical terms of distance, but
the effect on the variance will be much larger for the -50.

maxStep Maximum number of regular steps to simulate. Default is NULL, meaning that
the number of regular steps simulated will be the minimum number required to
cover the range of observed data. If not NULL, maxStep will be the minimum
of the submitted value or the the above.

delaysample Number of regular steps at which resampling will begin. The default =1 means
resampling will begin immediately.

state_favor Vector of weights to favor states when resampling (but not propagating). For
instance c(1,3) will favor state 2 weight 3 times as much as state 1 weights for
particles. By default, they are equally weighted.

nstates Number of behavioral states. For now restricted to a maximum of 2.

centroids Matrix with two columns specifying the centroids of regions.
truncate_to_map

Logical. If TRUE, make sure that coordinate predictions are inside the boundary
area_map by truncated sampling.

enforce_full_line_in_map
Logical. If TRUE, when conducting truncated sampling (truncate_to_map==TRUE),
count the prediction of the next location as being inside the boundary if the full
line segment connecting it to the current location is inside the map. Otherwise,
only the predicted point (and not the line connecting them) must be inside the
map. The idea is that the truncation allows only ’feasible’ straight-line moves to
be made, and so the full line segment must be inside the map. However, there
may be situations in which this restriction prevents the algorithm from mak-
ing good predictions, such as if the time gap reg_dt is too long, or if the map
contains ’narrow’ areas where requiring the line to be inside would prevent a
prediction and the algorithm would get "stuck’.

do_trunc_adjust
Logical. If TRUE, adjust particle posterior weights by the fraction of their pre-
dictions that are within the truncation boundary.

lowvarsample  Logical. If TRUE, use low-variance sampling when resampling particles to
ensure particles are resampled proportionately to weight. Otherwise there is
some sampling variance when drawing random samples. The setting applies to
smoothing as well.

time_radius Time in seconds to consider for spatial neighbors.
spat_radius Radius in meters of (circular) spatial neighborhood.

min_num_neibs Minimum number of time and spatial radius observations that need to exist to
constitute a neighborhood.

interact Logical. If TRUE, simulate interaction parameters of neighborhood. If nstates=1,
or if only one shark, automatically set to FALSE.
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interact_pars List of interaction priors: mud and precision@ are prior mu and precision for
normal draws of interaction parameter. known_precision is the known preci-
sion of the lognormal intensity.

neff_sample Number between 0 and 1. If effective sample size < neff_sample, then resam-
ple. Recommended to always resample if interpolating, so set neff_sample=1 as
default.

time_dep_trans Logical. If TRUE, state transition matrices are time-dependent meaning that
probability depends on the number of steps a shark has remained in the current
state.

time_dep_trans_init
4-element numeric vector of Dirichlet parameters for time_dep_trans.

smoothing Logical. If TRUE, perform smoothing at the end.

fix_smoothed_behaviors
Logical. If TRUE, when performing smoothing, keep behavior modes fixed for
each particle history from what was originally predicted during filtering, before
smoothing. This means the particles will be smoothed backwards with each par-
ticle weight at each time point being conditioned on the behavior predicted in
filtering. Thus, the behavioral agreement with, say, the observed or true behav-
iors is the same for smoothing as for filtering, since behaviors are not allowed to
change. If nstates==1, then automatically fix_smoothed_behaviors=FALSE.

smooth_parameters
Logical. If TRUE, when performing smoothing, resample the parameters theta
as well.

reg_dt Length in seconds of each regular interval.

max_int_wo_obs When simulating, the maximum number of intervals of length reg_dt without
observations for a given shark that we will simulate. If this is exceeded, algo-
rithm will wait until next observation and start from there. Default is NULL,
meaning it will be set to maxStep, and thus the algorithm will continue simulat-
ing without stopping, regardless of when the next observation is.
resamp_full_hist
Logical. If TRUE, resample the full particle history, not just all particle times
since the last observation, each time resampling occurs.
compare_with_known
Logical. If TRUE, provide a known regular-step dataset from which d is a
irregularly-sampled subset, for comparison with particle predictions.
known_trans_prob
If nstates = 2, a matrix of row 2 where each column is the behavior transition
probabilities between each opposing behavior, in each region.
known_foraging_prob
If nstates = 2, a matrix of the foraging probabilities for each region.
known_regular_step_ds
If compare_with_known = TRUE, the dataset of the original regular-step trajec-
tories. Note: this dataset needs to have column date_as_sec (date in seconds)
and time gap reg_dt be the same as the set of regular-step intervals that the EKF
is trying to estimate movement at. Otherwise, the simulated movement locations
and the true ones will not correspond.
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update_eachstep
Logical. If TRUE, for regular steps without observations, update the movement
parameters based on the simulated movements. If FALSE, parameters are only
updated based on the simulated movements when a new observation occurs; this
means the simulated movements are drawn using the parameter values learned
since the last observation.

update_params_for_obs_only
Logical. If TRUE, the particle movement parameters are updated based on sim-
ulated movement only at intervals with observed locations. If FALSE, particle
movement in intermediate steps that are simulated will be used to update as well.
If TRUE, then update_eachstep = FALSE, meaning that parameter updates will
be done only for (and at) the steps that represent observations. If FALSE, then
update_eachstep can be either TRUE or FALSE, but simulated steps will be
used to update, but update_eachstep controls the timing of the the update; if
TRUE, it happens one step at a time, and if FALSE, a batch update is done at
observations for the set of simulated steps.

output_plot Logical. If TRUE, a set of diagnostic plots will be printed to a file in output_dir.
Otherwise, it will be output to the plotting console.
loc_pred_plot_conf

Numeric. Confidence level of ellipse for location prediction error to plot in step-
wise diagnostics.

pdf_prefix String prefix for output PDF filename, if output_plot = TRUE. Filename will be
the prefix followed by a timestamp.

output_dir Directory for output PDF of diagnostic plots.

verbose Integer, one of 0,1,2,3. Control of verbosity of printouts during simulation. 3

means show both printouts and plots; 2 means show plots only; 1 means show
printouts only; 0 means show no plots or prinouts. Final plotting will be done
regardless.

Value

Many of the returned values are the same as in EKF_1d_interp_joint. The ones that differ are
listed below.

centroids Input centroids of spatial regions.
nregions Number of unique regions, as determined by centroids
tau_pars Posterior inverse gamma distribution parameters for the turn angle variance.

cov_err_hist Overall history of location estimate error draws.
param_draws Posterior sampled valued of mean of log-velocity and turn.

variance_draws Posterior sampled valued of variance of log-velocity and turn.
trans_mean_byregion
Posterior estimates of mean behavior switching probabilities from region_trans_draws.
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region_counts Array of total number of simulated regular-step intervals that shark begin move-
ment in each spatial region. A proxy for the total amount of time spent in each
region.

euclidean_estimate_true_from_obs
Estimates of true locations by Euclidean and Bezier cubic spline interpolation
from observations

error_euclidean_estimate_true_from_obs
Euclidean error from euclidean_estimate_true_from_obs compared to true
locations from known_regular_step_ds.

The following inputted parameters are returned:

area_map

Note

See sim_trajectory_joint for a full example of usage. Video explanation of EKF state-space
model by author: https://youtu.be/SgyhRVUn77k

Author(s)

Samuel Ackerman

References

Ackerman, Samuel. "A Probabilistic Characterization of Shark Movement Using Location Track-
ing Data." Temple University doctoral thesis, 2018. https://digital.library.temple.edu/
digital/collection/p245801c0l110/id/499150

Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F., and Nicholas G. Polson. "Particle
learning and smoothing." Statistical Science, 2010.

low_var_sample Sample particles using low-variance sampling.

Description

Sample particles using low-variance sampling.

Usage

low_var_sample(wts, M=length(wts))

Arguments
wts Vector of weights.
M The number of items to sample. When resampling, should be number of parti-

cles npart.


https://youtu.be/SgyhRVUn77k
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
https://digital.library.temple.edu/digital/collection/p245801coll10/id/499150
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Details

Low-variance sampling guarantees items will be sampled in proportion to their weights. With ran-
dom sampling with replacement (sample function), there is some variability in the final proportions
of items.

Value

A numeric vector of length M.

Author(s)

Samuel Ackerman

References

James Edward Baker. Reducing bias and inefficiency in the selection algorithm. Proceedings of the
Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Appli-
cation, 1987.

Examples

n <- 20
w <- runif(n)

#can use M != to length(wts)
low_var_sample(wts=w, M=15)

lv <- low_var_sample(wts=w, M=n)

#usual resampling with weights
a <- sample(x=1:n, size=n, prob=w, replace=TRUE)

#the first should be more in proportion to weights
table(lv)/n

table(a)/n

#proportions

w/sum(w)

make_segments Plot path connecting points on ggplot.

Description

Convert x-y coordinates to a data. frame for geom_path plotting on ggplot.

Usage

make_segments(xy, N=nrow(xy))
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Arguments
Xy Matrix or data. frame of x-y points to plot as a path. If there are any rows that
are NA-valued, the resulting path will consist of disconnected segments in those
locations.
N Number of rows of xy to plot as a path. By default, the number of rows, so all
of xy.
Author(s)

Samuel Ackerman

Examples

#generate toy dataset
library(ggplot2)
d <- as.data.frame(cbind(X=runif(50), Y=runif(50)))

#create segments with some missing lines so will be some gaps)
dseg <- d
dseg[ sample(20),] <- NA

g <- ggplot(d, aes(x=.data$X, y=.datas$Y)) + theme_bw()

g <- g + stat_density2d(aes(fill=after_stat(!!str2lang("density”))), geom="tile", contour=FALSE)
g <- g + scale_fill_gradient(low="white", high="black") + theme(legend.position="bottom")

g <- g + geom_path(data=make_segments(xy=dseg), aes(x=.data$x, y=.data$yY), colour="red"”, lwd=1.5)
g

normalize_angle Wrap angle measurements to the interval (-pi, pi).

Description

Wrap angle measurements to the interval (-pi, pi).

Usage

normalize_angle(theta)

Arguments

theta Numeric vector.

Author(s)

Samuel Ackerman
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Examples

X <= rnorm(n=1000, mean=1, sd=2)
xn <- normalize_angle(x)

plot(density(x), xlab="x", main="Unwrapped and wrapped normal density”, las=1)
abline(v=1)

#this density is only estimated from -pi to pi
dens_wrapped <- density(xn, from=-pi, to=pi)
lines(dens_wrapped, col="red")

segments(x0=c(-pi, pi), x1=c(-pi, pi), y0=c(0,0),
y1=dens_wrapped$y[c(1, length(dens_wrapped$y))],

col="red")

legend("topleft”, col=c(1,2), legend=c("unwrapped”,"wrapped”), lty=1)

rug_multicolor Multicolor rug of tick marks.

Description

Adapt rug function to allow tick marks to be of different colors.

Usage

rug_multicolor(x, plot_side=3, ticksize=-0.04, col_vec=rep(1, length(x)))

Arguments
X Numeric vector of axis tick mark locations.
plot_side Which side to plot on. 1=bottom, 2=left, 3=top, and 4=right.
ticksize Size of tick marks. Negative values mean ticks are on outside of plot. This feeds
into the tck parameter of the axis function.
col_vec Vector of color definitions, corresponding to each value of x.
Author(s)

Samuel Ackerman
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Examples

d <- data.frame(X=runif(20), Y=runif(20))
plot(d, xlim=c(0,1), ylim=c(0,1))

# draw rug of ticks on each axis where the coordinates are
rug_multicolor(x=d$X, col_vec=colorspace::rainbow_hcl(n=20), ticksize=-0.05)
rug_multicolor(x=d$Y, plot_side=4, col_vec=colorspace::rainbow_hcl(n=20), ticksize=-0.05)

shark_data_longlat Raw shark data spline-interpolated to 90-second intervals

Description

Raw shark data spline-interpolated to 90-second intervals (matrix)

Usage

data(shark_data_longlat)

Format

The format is: int [1:226400, 1:7] 1217951746 1217951836 1217951926 1217952016 1217952106
1217952196 1217952286 1217952376 1217952466 1217952556 ... - attr(*, "dimnames")=List of
2 ..$: NULL ..$: chr [1:7] "date_as_sec" "lat" "lon" "t_intervals" ...

Source

Espinoza, Mario, Farrugia, Thomas J., and Christopher G. Lowe. Habitat use, movements and site
fidelity of the gray smooth-hound shark in a newly restored Southern California estuary. Journal of
Experimental Marine Biology and Ecology, 2011.

shark_data_raw Original shark data

Description

Original shark data observations, unequally spaced in time

Usage

data(shark_data_raw)
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Format

A data frame with 68528 observations on the following 12 variables.

tag a factor with levels GSHO1 GSHO2 GSHO3 GSHO4 GSHO5 GSHO6 GSHO7 GSHO8 GSHO9 GSH10 GSH11
GSH12 GSH13 GSH14 GSH15 GSH16 GSH17 GSH18 GSH19 GSH20 GSH21 GSH22

X a numeric vector

Y anumeric vector

logvelocity anumeric vector

bearing.to.east.tonext.rad anumeric vector

turn.angle.rad anumeric vector

state.guess2 anumeric vector

prev.guess2 anumeric vector

time_to_next anumeric vector

dx_to_next anumeric vector

dy_to_next anumeric vector

date_as_sec a numeric vector

Source

Espinoza, Mario, Farrugia, Thomas J., and Christopher G. Lowe. Habitat use, movements and site
fidelity of the gray smooth-hound shark in a newly restored Southern California estuary. Journal of
Experimental Marine Biology and Ecology, 2011.

Examples

#i#stored as separate integer and numeric variables for storage purposes

data(shark_data_raw, package="animalEKF")
shark_data <- do.call(cbhind, shark_data_raw)
head(shark_data)

shark_vis_longlat Shiny app for visualizing observed shark movement.

Description

Shiny app for visualizing observed shark movement.

Usage

shark_vis_longlat ()
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Details

This shiny app visually illustrates movement of sharks in the dataset referenced in the paper below.
The observations to be visualized are selected in "Range of observed steps". They are then linearly
interpolated with step size "seconds to interpolate”. In our paper, we model the impact of other
sharks’ behaviors in a spatial-temporal neighborhood. If desired, a spatial neighborhood of desired
size "spatial radius" will appear around each shark in the presence of other sharks. It will flash red
if another shark enters in that radius (i.e., they are neighbors).

Source

Espinoza, Mario, Farrugia, Thomas J., and Christopher G. Lowe. Habitat use, movements and site
fidelity of the gray smooth-hound shark in a newly restored Southern California estuary. Journal of
Experimental Marine Biology and Ecology, 2011.

sim_trajectory_joint  Simulation and interpolation of trajectories.

Description

sim_trajectory_joint simulates regular-step trajectories under correlated random walk (CRW).
interp_trajectory_joint interpolates regular steps to irregular ones drawn from a log-normal
distribution.

Usage

sim_trajectory_joint(area_map=NULL, centroids=matrix(c(@,0), ncol=2),
transition_matrices=list(matrix(c(19,3,2,9),
ncol=2, byrow=TRUE)),
mu@_pars=list(alpha=c(-4 ,-1.6), beta=c(0,0)),
var@_pars=list(alpha=c(1.6,0.16), beta=c(2,0.5)),
N=100, nstates=2, reg_dt=120, gen_irreg=TRUE,
one_d=FALSE, dt_lnorm_mu=log(120), dt_lnorm_sd=1,
dt_vals=NULL, starting_polygon=area_map,
nsharks=1, interact=FALSE,
interact_pars=list(interacting_sharks=c(1:nsharks),
time_radius=60%30, spat_radius=200, min_num_neibs=10,
eta_mu=c(2,1), rho_sd=c(@.75, 0.75)),
time_dep_trans=FALSE, trans_alpha=c(1, 1.5))

interp_trajectory_joint(d, nstates, one_d, dt_lnorm_mu=5, dt_lnorm_sd=1,
dt_vals=NULL, centroids=matrix(c(@,0), ncol=2))
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Arguments
area_map Shapefile within which the observations are located (optional). Should be the
output of applying sf: : st_geometry on an object of class sf. If inputis NULL,
a default rectangular shapefile is created.
centroids Matrix with two columns specifying the centroids of regions. The number of

rows specifies the number of regions.

transition_matrices
A list of 2x2 matrices specifying the Dirichlet parameters for behavior transition
probabilities. The list is replicated so it’s the length of the number of regions. If
nstates=1 then these are not used since there is only one behavior.

mu@_pars List of mean values of alpha (=log-speed if 2-D, and velocity if 1-D) and beta
(turn angle, ignored for 1-D) for one or two behavioral states.

varo_pars List of variances of alpha and beta distributions (see mu@_pars).

N Number of regular steps to simulate.

nstates Number of behavioral states. For now restricted to a maximum of 2.

reg_dt Length in seconds of each regular interval.

gen_irreg Logical. If TRUE, then use interp_trajectory_joint to make irregular steps.

one_d Logical. If TRUE, then simulation occurs on 1-D line, if FALSE (the default) it
is 2-D.

dt_lnorm_mu Mean parameter mu of the log-normal distribution to draw time step lengths.

dt_lnorm_sd Standard deviation parameter sigma of the log-normal distribution to draw time
step lengths.

starting_polygon
Polygon to draw starting coordinates in. This helps if you want the trajectories
to start around the same area.

nsharks Number of sharks to simulate trajectories for. If nsharks>1, then joint effects
may take place.

interact Logical. If TRUE, simulate interaction parameters of neighborhood (either 1-D
or 2-D). If nstates=1, automatically set to FALSE.

interact_pars List of interaction priors: 1) interacting_sharks means which of the sharks
1...nsharks are to use interaction parameters; 2) time_radius is the time in
seconds, and 3) spat_radius is the spatial radius is meters to consider for spa-
tial neighbors; 4) min_num_neibs is the minimum number of time and spatial
radius observations that need to exist to constitute a neighborhood; 5) eta_mu is
the vector of mean value for the interaction parameter eta; rho_sd is the vector
of standard deviations of the interaction multiplier rho.

time_dep_trans Logical. If TRUE, state transition matrices are time-dependent meaning that
probability depends on the number of steps a shark has remained in the current
state.

trans_alpha If time_dep_trans=TRUE, the transition alpha parameters for the Dirichlet dis-
tribution for drawing behaviors.

d Input for interp_trajectory_joint. An array, usually output by sim_trajectory_joint,
of regular-step trajectories.
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dt_vals An optional vector of time difference values. By default is NULL, meaning
time gaps will be generated by dt_1norm_mu and dt_lnorm_sd, but supplying
a vector to dt_vals lets the user specify the time gaps rather than having them
be randomly generated.

Value

d Array of regular-step trajectory locations.

d_ds Object d in format data. frame.

di If gen_irreg==TRUE, is the non-constant step length locations.
Author(s)

Samuel Ackerman

Examples

# read shapefile and convert into a Polygon
bolsachica <- sf::st_read(system.file("shapes/FTB_lines.shp”, package="animalEKF")[1])
bolsachica <- sf::st_polygonize(bolsachica)

island <- sf::st_read(system.file("shapes/FTB_island.shp”, package="animalEKF")[1])
# the actual available room for movement is the area in the water, subtracting the island inside
bolsachica <- sf::st_difference(sf::st_geometry(bolsachica), sf::st_geometry(island))

# sample 5 points approximately equally spaced within the shapefile, as region centroids
regions <- sf::st_sample(x=sf::st_geometry(bolsachica), size=5, type="regular"”, exact=TRUE)
# extract the coordinates

regions <- as.data.frame(sf::st_coordinates(regions)[, c("X","Y")1)

#define Voronoi tessellation tile in which to start shark paths

vortess <- deldir::deldir(x=regions[,"X"], y=regions[,"”Y"], wlines="tess",
plotit=FALSE, suppressMsge=TRUE)

# convert these to a set of Polygons, and choose one of them as the starting polygon

vtiles <- sf::st_as_sf(tess2spat(vortess))

sf::st_crs(vtiles) <- sf::st_crs(bolsachica)

# extract only the 3rd tile

# note, want to have the simulation paths spread out, so a given draw may result in

# cramped and thus hard to estimate paths

starting_polygon <- sf::st_sfc(vtiles[[1]J]1[[3]], crs=sf::st_crs(vtiles))
starting_polygon <- sf::st_intersection(sf::st_geometry(bolsachica),
sf::st_geometry(starting_polygon))

#define list of transition matrices between behaviors

tmat_list <- list(matrix(c(8, 2, 2, 4), ncol=2, byrow=TRUE),
matrix(c(1.5%5, 1.5%1, 3, 3), ncol=2, byrow=TRUE),
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matrix(c(7, 1, 1, 7), ncol=2, byrow=TRUE))

#generate 4-shark simulated trajectory with 100 regular steps of length 120 seconds.
#Sharks 3 and 4 will be interacting with the others, but 1 and 2 will not.

nsharks <- 4

#simulate trajectory

#setting gen_irreg=TRUE generates an irregular trajectory from the regular-step one

#with the log-normal specified in dt_lnorm_mu and dt_lnorm_sd

#sim_4sharks$di would contain the irregular dataset

#otherwise, say you wanted to try different interpolations, you can use the same regular
#step from sim_trajectory_joint and then interpolate separately with interp_trajectory_joint.

#make simulated trajectories all start in the same area so they will be close enough to be
#interacting, for the purposes of this exercise

#note that the simulation may time out trying to draw points in this starting polygon that end
#up in the shapefile boundary

nsteps_sim <- 100
reg_dt <- 120

sim_4sharks <- sim_trajectory_joint(area_map=sf::st_geometry(bolsachica), centroids=regions,
transition_matrices=tmat_list, nsharks=nsharks,
mu@_pars=list(alpha=c(-4 ,-1.6), beta=c(0,0)),
var@_pars=list(alpha=c(1,0.25), beta=c(1,.25)),
N=nsteps_sim, nstates=2, reg_dt=reg_dt,
gen_irreg=FALSE, one_d=FALSE,
starting_polygon=starting_polygon, interact=TRUE,
interact_pars=list(interacting_sharks=c(3:4),
time_radius=60%*30, spat_radius=150,
min_num_neibs=10,
eta_mu=c(2,1), rho_sd=c(0.75, 0.75)),
time_dep_trans=FALSE,
dt_lnorm_mu=log(120), dt_lnorm_sd=0.4)

#plot trajectories

shark_names <- dimnames(sim_4sharks$d)[[ 3 1]
shark_colors <- 2:5
names(shark_colors) <- shark_names

sp::plot(bolsachica, main="Full trajectories”)
deldir::plot.deldir(vortess, wlines="tess"”, add=TRUE)

for (ss in shark_names) {
lines(sim_4sharks$d[,c("X","Y"), ss], col=shark_colors[ss])
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#now interpolate to uneven steps with lognormal mean log(120) (so they are on
#average the same as the regular steps and sd=0.4
#d is the regular step, di is irregular

#if want to interpolate separately. Otherwise just set gen_irreg=TRUE above
#this is so you can interpolate a dataset not generated by sim_trajectory_joint
#if gen_irreg=TRUE in sim_trajectory_joint,

#interp_ds will be returned as the 'di' object

interp_ds <- interp_trajectory_joint(d=sim_4sharks$d, nstates=2,
one_d=FALSE,
dt_lnorm_mu=log(reg_dt),
dt_lnorm_sd=0.4,
centroids=regions)

#now plot observed ones, may differ
sp::plot(bolsachica, main="Observed trajectories”)
deldir::plot.deldir(vortess, wlines="tess", add=TRUE)

for (ss in shark_names) {
lines(interp_ds[ interp_ds$tag == ss ,c("X","Y")], col=shark_colors[ss])

#try to recover EKF with steps at the original 120 seconds
#use the original simulated transition and foraging probabilities for comparison

#intial values for some parameters
tau_pars_init <- c(8, 14, 10,1) #2
sigma_pars_init <- c(5, 8, 8, 3)

#measurement error

bmat <- matrix(c(1, -0.3, -0.3, 1), ncol=2)
Errvar_init1 <-5%20*bmat
Errvar_init2 <- 15%20xbmat

#particle error
Particle_err_init <- 0.5*20*bmat

# only estimate movement on first 5 steps

# for better results, npart should be set higher, like 150 or more
nsteps_estimate <- 5

npart <- 15
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#again, if you use gen_irreg=TRUE in sim_trajectory_joint,
#the input 'd' argument should be sim_4sharks$di or interp_ds

#NOTE: user should set output_plot=TRUE to see PDF,
#for purposes of package testing we set it to FALSE
# if FALSE, plots will still appear in the console

ekf_interp_mod <- EKF_interp_joint(d=interp_ds, npart=npart,

area_map=bolsachica,

state_favor=c(1,2),

centroids=regions,

sigma_pars=sigma_pars_init,
tau_pars=tau_pars_init,
Errvar@=list(Errvar_init1, Errvar_init2),
Particle_errvar@=Particle_err_init,
mu@_pars=list(alpha=c(-4 ,-1.3), beta=c(0,0)),
truncate=TRUE,

neff_sample=0.75, dirichlet_init=c(8,2,2,4),
smoothing=TRUE, fix_smoothed_behaviors=FALSE,
time_dep_trans=FALSE, resamp_full_hist=FALSE,
nstates=2, reg_dt=reg_dt, interact=TRUE,
maxStep=nsteps_estimate, update_eachstep=TRUE,
compare_with_known=TRUE,

known_trans_prob=sim_4sharks$true_transition_prob,
known_foraging_prob=sim_4sharks$true_foraging_prob,

known_regular_step_ds=sim_4sharks$d_ds,
output_plot=FALSE)

#simulate one-dimensional movement for 1 robot (shark)

#here we use gen_irreg=TRUE instead of generating a separate interpolation object

one_d <- sim_trajectory_joint(centroids=NULL, N=nsteps_sim,

#measurement error
bmat <- matrix(1)
Errvar_init1 <-1%bmat
Errvar_init2 <-3*bmat

#particle error
Particle_err_init <- 0.1*bmat

mu@_pars=list(alpha=c(4, 9)),
var@_pars=list(alpha=c(1, 1)),
transition_matrices=tmat_list[[ 1 ]], nstates=2,
reg_dt=reg_dt, gen_irreg=TRUE, one_d=TRUE,
dt_lnorm_mu=log(120), dt_lnorm_sd=0.55)
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ekf_1d <- EKF_1d_interp_joint(d=one_d$di, npart=npart, maxStep=nsteps_estimate,
state_favor=c(1,1), nstates=2, lowvarsample=TRUE,
neff_sample=1, time_dep_trans=FALSE, reg_dt=reg_dt,
max_int_wo_obs=15, resamp_full_hist=FALSE,
alpha0_pars=list(mu@=c(4, 9), V0=c(0.25, 0.25)),
sigma_pars=sigma_pars_init,
Errvar@=list(Errvar_initl1, Errvar_init2),
Particle_errvar@=Particle_err_init,
compare_with_known=TRUE,
known_trans_prob=one_d$true_transition_prob,
known_foraging_prob=one_d$true_foraging_prob,
known_regular_step_ds=one_d$d_ds, update_eachstep=TRUE,
smoothing=TRUE, output_plot=FALSE)

spline_interp Bezier spline interpolation of observations.

Description

Calculate a Bezier spline interpolation of irregular observations to regular-length time intervals.

Usage

spline_interp(di, area_map=NULL, t_reg=NULL, reg_dt=120,
max_dt_wo_obs=60%30, maxStep=NULL,
centroids=matrix(c(@,0), ncol=2),
nstates=2, spline_deg=3, split_logv=-3)

Arguments

di Object of class data.frame containing irregular-spaced observations. Dataset
must contain the following fields: 1) "X"” and "Y": X and Y location coordi-
nates, 2) "date_as_sec": time/date of observation as seconds since an epoch.
"time_to_next"” should also be included, but will be calculated if not. Also
"tag" (animal identifier) should be included as well. If not, all observations are
assumed to be of the same animal. This can be generated from sim_trajectory_joint
with gen_irreg=TRUE.

area_map Shapefile that all interpolated points should be inside of.

t_reg Desired time steps (must have a constant difference) to interpolate to. If is given,
the default value of reg_dt is overridden. Will be truncated to the set of values
within the range of observed values of di$date_as_sec.

reg_dt Length in seconds of each regular interval.
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max_dt_wo_obs  When interpolating, the maximum time length without observations for a given
shark that we will interpolate. If this is exceeded, algorithm will wait until next
observation and start from there.

maxStep Maximum number of regular steps to interpolate.

centroids Matrix with two columns specifying the centroids of regions. If NULL, only one
region will be used.

nstates Number of behavioral states. For now restricted to a maximum of 2.

spline_deg Degree of spline. The default is 3, or a cubic. Every spline_deg+1 observations

will be used to construct one spline segment.

split_logv If nstates=2, state 1 from the interpolated values will be designated by the
logvelocity being < split_logv.

Value

d Array of regular step locations.

di Original irregular-step dataset.

shark_names Vector of the names of sharks in the dataset.

d_ds Output regular-step dataset d in form data. frame.
Author(s)

Samuel Ackerman

References

Bezier R package. Aaron Olsen.

Examples

#can also be 'di' output of sim_trajectory_joint (set gen_irreg=TRUE)

di <- data.frame(X=runif(n=9), Y=runif(n=9),
time_to_next=c(2,4,15,8,5,18,3,5,NA))

di$date_as_sec <- c(@, cumsum(di$time_to_next[-9]))

region_centroids <- cbind(X=runif(2), Y=runif(2))

#one log observation with dt =18 > 16 will be omitted
spl <- spline_interp(di=di, area_map=NULL, reg_dt=3, max_dt_wo_obs=16, maxStep=NULL,
centroids=region_centroids, nstates=2, spline_deg=3, split_logv=-3)

plot(dil,c("X","Y")]1, xlim=c(0,1), ylim=c(0,1), type="b", las=1,
"Observations interpolated by regular interval spline”)

lines(spl$d_ds[,c("X","Y")]1, type="1", col="red")

legend("topleft”, col=1:2, legend=c("observations"”,"spline"), lty=1)
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tess2spat Convert Voronoi tessellation tiles to a shapefile.

Description

Convert Voronoi tessellation tiles to a shapefile.

Usage
tess2spat(obj, idvec=NULL)

Arguments
obj Voronoi tessellation object created through function deldir.
idvec Optional vector of ids for output shapefile polygons.

Value

Object of class SpatialPolygons.

Author(s)

Samuel Ackerman

Examples

library(deldir)
library(sp)

vortess <- deldir(x=runif(8), y=runif(8), plotit=FALSE, suppressMsge=TRUE)
old_pars <- par(mfcol=par()$mfcol)

par(mfcol=c(1,2))

deldir::plot.deldir(vortess, wlines="tess", xlim=c(@,1), ylim=c(0,1))
vortess_shape <- tess2spat(obj=vortess)

plot(vortess_shape)

par(old_pars)
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