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air2ground Compute groundspeed

Description

Computes groundspeed from airspeed and wind.

Usage

air2ground(airSpeed, windSpeed = 0, windDir = 0, climbAngle = 0)

Arguments

airSpeed airspeed
windSpeed windspeed
windDir wind direction relative to (intended) track direction in degrees
climbAngle climb angle in degrees

Value

driftAngle Angle between airspeed and groundspeed
groundSpeed Speed over ground

Author(s)

Marco Klein Heerenbrink
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altitude2density Compute density in International Standard Atmopshere

Description

This function computes the air density at a specified altitude in the Troposphere of the International
Standard Atmosphere.

Usage

altitude2density(altitude = 0)

Arguments

altitude (geopotential) altitude in meters above sealevel.

Details

ρ = ρ0(1+a
h
T0
)−

g0
Ra+1 with ρ0 = 1.225 kg/m3, a = -0.0065 K/m, h geopotential altitude in meters,

g0 = 9.80665 m/s2, and R = 287.1 J/Kg/K.

Value

Numerical value or array for the density in kg/m3

Author(s)

M. Klein Heerenbrink

References

U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

Examples

altitude <- seq(0,3000,100) # meters above sealevel
density <- altitude2density(altitude)

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539_1977009539.pdf
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amplitude Flapping flight optimal amplitude

Description

This function returns the angular peak amplitude of the flapping motion, optimized for minimum
induced power for prescribed reduced frequency (kf), strokeplane angle (phi), and thrust-to-lift ratio
(TL).

Usage

amplitude(kf, phi, TL)

Arguments

Using f for wingbeat frequency, b for wingspan, and U for air speed:

kf reduced frequency (kf = 2πfb
U ); valid range between 1 and 6

phi strokeplane angle in radians; valid range between 0 and 0.87 rad (50 deg)

TL thrust requirement or the trust-to-lift ratio; valid range between 0 and 0.3

Value

Angular peak amplitude of the flapping motion in degrees.

Author(s)

Marco Klein Heerenbrink

References

Klein Heerenbrink, M., Johansson, L. C. and Hedenström, A. 2015 Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471, 2177 doi:10.1098/
rspa.2014.0952

See Also

computeFlappingPower

Examples

## reduced frequency
kf <- 2*pi*4/10 # 4 Hz at 10 m/s for 1m wing span
## strokeplane angle
phi <- 20*pi/180 # 20 degrees
## thrust ratio
TL <- 0.2
## wingbeat amplitude

https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
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theta <- amplitude(kf,phi,TL)
print(theta)
# [1] 49.17679

Bird Bird description

Description

This function creates a bird description object, which is basically just a list with predefined variable
names. It is named a bird object, but could also contain a description of a bat or insect. Minimal
input required to construct a bird are body mass, wing span and wing area (or wing aspect ratio).
Other required variables will then be given default values, or they will be estimated from allometric
relations from literature.

Usage

Bird(massTotal, wingSpan, wingArea, ...)

Arguments

massTotal Total mass that needs to be lifted in flight in kg

wingSpan The maximum distance between the wingtips in meters

wingArea The area of the fully stretched wings including the root area (left wing, right
wing and area in between the wing roots)

... Any other properties of a valid bird object (see details)

Details

This function sets up a list of properties of a bird. This definition of the bird is then used by the
other functions in the package to estimate flight performance. At least three properties need to be
specified: massTotal, wingSpan and wingArea. Either wingSpan or wingArea could be replaced
by aspectRatio; the missing variable will then be computed. If no other properties are speci-
fied, default values will be used. Wingspan and wingarea should be measured from the maximally
stretched out wing as described in Pennycuick (2008) : wingspan as the maximum distance between
the wingtips and wingarea as the area from a trace including the root area (where the body is).

To specify custom properties, these can simply be added as additional arguments to the func-
tion. Note that massTotal needs to be the sum of massLoad, massFat and massEmpty. The
function will recompute the total mass if the specified masses are inconsistent. Allometric re-
lations use the empty weight. Muscle mass is part of the empty mass, and as such it is repre-
sented by muscleMass as a fraction. It is used in the estimation of the mechanical power available
for flight (together with the muscle properties coef.activeStrain and coef.isometricStress).
The variable type is used for selected allometric relationships that are specific to that particular
group. Currently, bodyFrontalArea distinguishes between 'passerine' and anything else and
basalMetabolicRate distinguishes between 'passerine', 'seabird', 'bat' and anything else.

name String Common name
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name.scientific Sring Scientific name
source String Source for information
massLoad Numeric Additional mass the bird is carrying (kg); 0
massFat Numeric Fat mass, i.e. fuel (kg); 0
massEmpty Numeric Empty mass, i.e. total mass - fat mass - load mass (kg)
muscleFraction Numeric Fraction [0,1] of empty mass that makes up flight muscle; 0.17*
type String Type of bird ’other’*, ’passerine’*, ’seabird’, ’bat’
bodyFrontalArea Numeric Reference body frontal area used for body drag (m2)
wingbeatFrequency Numeric Typical wingbeat frequency (Hz)
coef.profileDragLiftFactor Numeric Coefficient for lift dependent profile drag; 0.03 (Klein Heerenbrinkn et al. 2015 )
coef.bodyDragCoefficient Numeric Drag coefficient related to body frontal area; 0.2**
coef.conversionEfficiency Numeric Efficiency Chemical to Mechanical energy; 0.23*
coef.respirationFactor Numeric Multiplyer for metabolic overhead respiration; 1.1*
coef.activeStrain Numeric Muscle duty cycle factor; 0.26*
coef.isometricStress Numeric Maximum force produced per cross section muscle (Pa); 400000 (upper limit from Pennycuick & Rezende 1984 )
basalMetabolicRate Numeric Minimum energy consumption required for sustain life functions (W) *.

* as in Flight 1.25 (Pennycuick 2008 )

** Large body of data supporting higher body drag coefficients (>0.2) than in Flight 1.25 (0.1), e.g.
Pennycuick et al. (1988), Hedenström & Liechti (2001), Henningsson & Hedenström (2011) and
KleinHeerenbrink et al. (2016)

Value

bird object with variables required by the various power estimating functions (e.g. computeFlappingPower).

Author(s)

Marco Klein Heerenbrink

References

Hedenström, A. & Liechti, F. (2001) Field estimates of body drag coefficient on the basis of dives
in passerine birds. J. Exp. Biol. 204, 1167–75.

Henningsson, P. & Hedenström, A. (2011) Aerodynamics of gliding flight in common swifts. J.
Exp. Biol. 214, 382–93. doi:10.1242/jeb.050609

Klein Heerenbrink, M., Johansson, L. C. & Hedenström, A. (2015) Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471. doi:10.1098/
rspa.2014.0952

KleinHeerenbrink, M., Warfvinge, K. & Hedenström, A. (2016) Wake analysis of aerodynamic
components for the glide envelope of a jackdaw (Corvus monedula). J. Exp. Biol. 219, 1572–1581.
doi:10.1242/jeb.132480

Pennycuick, C. J. & Rezende, M. A. (1984) The specific power output of aerobic muscle, related to
the power density of mitochondria. J. Exp. Biol., 108, 377–392.

Pennycuick, C. J., Obrecht III, H. H. & Fuller, M. R. (1988) Empirical estimates of body drag of
large waterfowl and raptors. J. Exp. Biol. 135, 253–264.

Pennycuick, C. J. (2008). Modelling the flying bird. Amsterdam, The Netherlands: Elsevier.

https://doi.org/10.1242/jeb.050609
https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1242/jeb.132480
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See Also

computeAvailablePower, computeChemicalPower, computeFlappingPower, computeBodyFrontalArea,
etc.

Examples

myBird = Bird(
massTotal = 0.215,
wingSpan = 0.67,
wingArea = 0.0652,
name = 'jackdaw',
type = 'passerine'

)
print(myBird)

climbing_birds Climbing birds

Description

Data extracted from Hedenström & Alerstam 1992.

Usage

data("climbing_birds")

Format

A data frame with 15 observations on the following 11 variables.

number a numeric vector

name a character vector

name.scientific a character vector

massEmpty a numeric vector

massFat a numeric vector

wingSpan a numeric vector

wingAspect a numeric vector

wingbeatFrequency a numeric vector

climbRate a numeric vector

climbSpeed a numeric vector

climbAlitude a numeric vector
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Source

Hedenström A., Alerstam, T. (1992) Climbing performance of migrating birds as a basis for es-
timating limits for fuel-carrying capacity and muscle work. J. Exp. Biol 164 19-38 doi:10.1242/
jeb.164.1.19

Examples

data(climbing_birds)
climbingBirds <- Bird(climbing_birds)

computeAvailablePower Compute available power

Description

Estimation of maximum available power available from the muscles.

Usage

computeAvailablePower(bird, maxPowerAero, ...)

Arguments

bird bird description object (see Bird)

maxPowerAero maximum continuous power

... optional arguments (none yet)

Details

Available power is determined as a muscle property. It is assumed that part of the muscles tissue
is chemically active (mitochondria), providing the required ATP energy to the mechanically active
tissue (myofibrils). The fraction of mitochondria determines the maximum sustainable power output
from the muscles. With a higher fraction of myofibrils, the muscles can produce more power, but
only in a short burst, until all ATP runs out.

If only a Bird object is provided, the function will assume that maximum power equals maximum
continuous power (maxPowerAero). Otherwise, it will compute the burst maximum power.

Value

numeric value of mechanical power

https://doi.org/10.1242/jeb.164.1.19
https://doi.org/10.1242/jeb.164.1.19
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Note

Available power is determined as a constant for the muscles. In reality the muscle power output
depends on strainrate and stress, which in vertebrates are directly linked to wingbeat kinematics
and aerodynamic loads.

Flight 1.25, the model of Pennycuick (2008) uses an isometric stress of 560 kN/m2. This is much
higher than any measured value (Pennycuick & Rezende 1984 ). A more reasonable yet still very
optimistic value would be 400 kn/m2, which is the default value assigned by the Bird constructor.

Author(s)

Marco Klein Heerenbrink

References

Pennycuick, C. J. & Rezende, M. A. (1984) The specific power output of aerobic muscle, related to
the power density of mitochondria. J. Exp. Biol., 108, 377–392.

Pennycuick, C. J. (2008). Modelling the flying bird. Amsterdam, The Netherlands: Elsevier.

See Also

Bird

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## for maximum continuous power
power.max <- computeAvailablePower(myBird)
print(power.max)
# [1] 5.233528

## for specified maximum continuous power:
power.max.continuous <- 0.8*power.max
power.max.burst <- computeAvailablePower(myBird,power.max.continuous)
print(power.max.burst)
# [1] 5.466625
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computeBodyFrontalArea

Body frontal area from scaling relation

Description

Body frontal area is a parameter that relates to body drag. This function estimates body frontal area
based on empirical scaling relations with mass.

Usage

computeBodyFrontalArea(massEmpty, type = "other")

Arguments

massEmpty empty body mass (in kg)

type type of bird; available options are: “passerine” and “other”)

Details

Passerine (Hedenström and Rosén 2003 ): Sb = 0.0129m0.614

Other (Pennycuick et al. 1988 ): Sb = 0.00813m0.666

Value

Numeric value for the body frontal area.

Note

Body frontal area is used for the computation of body drag. Only use this value if it matches the
used definition of the body drag coefficient.

Author(s)

Marco Klein Heerenbrink

References

Pennycuick, C. J., Obrecht III, H. H. and Fuller, M. R. (1988) Empirical estimates of body drag of
large waterfowl and raptors. J. Exp. Biol. 135, 253–264.

Hedenström, A. and Rosén, M. (2003) Body frontal area in passerine birds. J. Avian Biol. 34,
159–162.

See Also

Bird
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Examples

massEmpty <- 0.215 # kg
Sb <- computeBodyFrontalArea(massEmpty)
print(Sb)
# [1] 0.002920751 # m2

massEmpty <- 0.215 # kg
birdType <- "passerine" #
Sb <- computeBodyFrontalArea(massEmpty,birdType)
print(Sb)
# [1] 0.005020037 # m2

computeChemicalPower Convert mechanical power to chemical power

Description

Redundant after chemical power is now computed in all functions by default.

Computes the chemical power, i.e. the rate at which chemical energy is consumed, during flight. It
takes into account the basal metabolic rate, and the energy needed by the flight muscles to provide
the mechanical power required for flight.

Usage

## S3 method for class 'power.mechanical'
computeChemicalPower(power.mech, bird, ...)
## S3 method for class 'numeric'
computeChemicalPower(power.mech, bird, ...)

Arguments

power.mech mechanical power (either numeric (W) or as an mechanical power object (class
power.mechanical)

bird object describing the relevant morphological parameters of the bird (or bat); this
object should be created using the Bird constructor.

... optional arguments (none yet)

Details

Chemical power is computed as

Pchem = R(
Pmech

η
+BMR)

as described by Pennycuick (2008). Here R is the respiration factor, η is the muscle conversion
efficiency and BMR the basal metabolic rate, see Bird.
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Value

Chemical power of same type as inpute power.chem.

Author(s)

Marco Klein Heerenbrink

References

Pennycuick, C. J. (2008). Modelling the flying bird. Amsterdam, The Netherlands: Elsevier.

See Also

Bird, computeFlappingPower, mech2chem, chem2mech

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## for maximum continuous power
power.max <- computeAvailablePower(myBird)
print(power.max)
# [1] 5.233528

## convert to chemical power
power.max.chem <- computeChemicalPower(power.max,myBird)
print(power.max.chem)
# [1] 27.28913

computeFlappingPower Calculate aerodynamic power flapping flight

Description

The function calculates the aerodynamic power required for the specified bird (or bat) at the speci-
fied flight speed.

Usage

computeFlappingPower(bird,speed,...,frequency,strokeplane)
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Arguments

bird object describing the relevant morphological parameters of the bird (or bat); this
object should be created using the Bird constructor.

speed a numeric vector of the airspeed.

... optional arguments (see details)

frequency wingbeat frequency as single numeric value, a numeric vector matching the
speed vector, a closure object returning a numeric value as a function of speed,
or the character string ’recompute’. The latter will recompute the default fre-
quency for the current flight condition (density) and the current total mass of
the bird (assuming the frequency in bird is the default wingbeat frequency). If
not provided, the function will look for a default wingbeat frequency in the bird
object.

strokeplane angle of the strokeplane in degrees, as a single numeric value, a numeric vector
matching the speed vector, a closure object describing the strokeplane angle as
a function of speed. Alternatively providing character string "opt" will tell the
function to optimize the strokeplane angle for minimum aerodynamic power.

Details

This function estimates aerodynamic power for a animal in forward flight based on morphology
and wingbeat kinematics (Klein Heerenbrink, 2015 ). The model takes into account span reduction
during the upstroke, which is typical for vertebrate forward flight. . . . The minimal input required for
the function is a description of the animal (as provided by the Bird constructor) and the speed(range)
for which to compute the aerodynamic power. Distinct from other models, this model also requires
wingbeat frequency and strokeplane angle. Higher wingbeat frequency tends to lower the induced
power, but it may increase profile power. If no wingbeat frequency is provided, the function will
use the reference wingbeat frequency from the bird object. Otherwise the user can specify values
(either as vectors or as closure object). The user can provide additional optional arguments:

bodyDragCoefficient single numeric value, a numeric vector matching the speed vector, or a
closure object as a function of speed. If not provided, the function will look for a default value
in the bird object.

addedDrag single numeric value or a numeric vector matching the speed vector. This represents
additional "drag" (in Newtons) that must be overcome (e.g. during climb).

flightcondition object describing the atmospheric conditions (density, viscosity, gravity).

Aerodynamic model: computeFlappingPower first computes the drag components for non-
flapping flight:

Dind =
L2

qπb2

Dpro,0 = CDpro,0qS

Dpro,2 = kp
L2

qS

Dpar = CDb
qSb +Dadded

which combine to the non-flapping thrust requirement T0 =
∑
D<>. Here q = 1

2ρU
2 is the

dynamic pressure depending on density (ρ) and speed (U ). To account for how flapping the
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wings affects the drag on the wings, computeFlappingPower computes factors fDind
, fDpro,0 and

fDpro,2
, which are functions of the strokeplane angle and the (reduced) wingbeat frequency. These

factors relate to the returned drag factors kD.ind, kD.pro0 and kD.pro2 through

kD,<> = 1 + fD,<>
T

L

The actual drag in flapping flight is found by multiplying each non-flapping drag component with
its respective drag factor. This means that the actual thrust requirement (thrust ratio T/L) can be
computed as

T

L
=

T0
L− fDindDind − fDpro,0Dpro,0 − fDpro,2Dpro,2

Finally, computeFlappingPower computes the power factors in a similar way to the drag factors
(i.e. kP,i = 1 + fP,i

T
L , with fP,i functions of strokeplane angle and wingbeat frequency). The

total aerodynamic power is then computed as

P = kP indDindU + kPpro,0Dpro,0U + kPpro,2Dpro,2U +DparU

Wingbeat optimization: The underlying numerical model that is represented by functions
fD,i and fP,i, has optimised the flapping amplitude for minimum induced power. This means
computeFlappingPower implicitly optimizes flapping amplitude, which is the value amplitude
returned in the output.
computeFlappingPower takes strokeplane angle as input. The underlying numerical model has
only explored strokeplane angles over a range of 0 (vertical) to 50 degrees, the latter being de-
fined as having the down-stroke moving forward. In many cases it will be possible to find a
strokeplane angle for which the total aerodynamic power is minimal. At high speeds this opti-
mum will be for a vertical strokeplane while at lower speeds it will be more horizontal. By passing
strokeplane="opt" as an argument to computeFlappingPower, it will try to numerically find
the optimal strokeplane angle, using the function optimize.

Value

A data.frame including elements

speed specified speed for which power is computed.

power total aerodynamic power.

power.chem total chemical power.

strokeplane used strokeplane angle (either specified or optimized).

amplitude wingbeat amplitude (implicitly optimized for minimum induced power).

frequency wingbeat frequency (specified).
flags.redFreqLo

TRUE if reduced frequency too low (<1; outside model range).
flags.redFreqHi

TRUE if reduced frequency too high (>6; outside model range).

flags.thrustHi TRUE if thrust requirement too high (>0.3; outside model range).

flags.speedLo TRUE if speed is too low (invalidating the forward flight assumption).

kD.ind induced drag factor
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kD.pro0 zero lift profile drag factor

kD.pro2 lift dependent profile drag factor

kP.ind induced power factor

kP.pro0 zero lift profile power factor

kP.pro2 lift dependent profile power factor

CDpro0 used zero lift profile drag coefficient (laminar boundary layer friction)

ReynoldsNumber mean chord Reynolds number

Dnf.ind non-flapping induced drag (N)

Dnf.pro0 non-flapping zero lift profile drag (N)

Dnf.pro2 non-flapping lift dependent profile drag (N)

Dnf.par non-flapping parasitic drag (including body drag and apparent drag due to climb-
ing)

L lift (N)

Note

This model aims to predict the optimal flight performance for a bird. Particularly, the induced drag
and induced power assume an ideal load distribution over the wing equivalent to the elliptical lift
distribution for non-flapping wings. This means that induced power will typically be underesti-
mated.

Author(s)

Marco Klein Heerenbrink

References

Klein Heerenbrink, M., Johansson, L. C. and Hedenström, A. (2015) Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471, 2177 doi:10.1098/
rspa.2014.0952

See Also

Bird, amplitude, fD.ind, fD.pro0, fD.pro2, fP.ind, fP.pro0, fP.pro2

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## define a speed range
speedrange <- seq(5,14,length.out=5)

https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
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## compute aerodynamic power for that speed range:
Paero <- computeFlappingPower(myBird,speedrange)
print(Paero[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 5.00 2.789751 5.948083 46.56887
# 2 7.25 2.129466 5.948083 31.89129
# 3 9.50 2.203773 5.948083 22.51896
# 4 11.75 2.740763 5.948083 16.49120
# 5 14.00 3.673714 5.948083 12.09174

## prescribe strokeplane angle:
Paero <- computeFlappingPower(myBird,speedrange,strokeplane=20)
print(Paero[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 5.00 2.950259 5.948083 20
# 2 7.25 2.141581 5.948083 20
# 3 9.50 2.204132 5.948083 20
# 4 11.75 2.741335 5.948083 20
# 5 14.00 3.676224 5.948083 20

## prescribe frequency as a function of speed:
funFrequency = function(U){19.8 - 4.7*U + 0.45*U^2 - 0.0138*U^3}
Paero <- computeFlappingPower(myBird,speedrange,frequency=funFrequency,strokeplane='opt')
print(Paero[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 5.00 2.810431 5.825000 46.16223
# 2 7.25 2.356278 4.119247 25.99702
# 3 9.50 2.390251 3.930725 17.94304
# 4 11.75 2.860463 4.316291 14.52910
# 5 14.00 3.794431 4.332800 11.70058

## examine effect of frequency for a single airspeed:
speedrange <- rep(10,5) # repeated speed
freqrange <- seq(3,10,length.out=5) # frequency range
Paero <- computeFlappingPower(myBird,speedrange,frequency=freqrange,strokeplane='opt')
print(Paero[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 10 2.681028 3.00 13.87797
# 2 10 2.367982 4.75 18.90949
# 3 10 2.263765 6.50 21.52433
# 4 10 2.219739 8.25 21.71519
# 5 10 2.200852 10.00 20.18503

computeFlightPerformance

Compute characteristics of a power curve

Description

This function calculates the basic characteristic flight speeds for bird.
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Usage

computeFlightPerformance(bird, ..., length.out=10)

Arguments

bird description of the bird or bat, constructed using the Bird function

... various optional arguments that are passed on to other functions; see details

length.out length of calculated power curve; set length.out=0 to not compute a power
curve

Details

Optional arguments can be provided through .... These can be arguments of computeFlappingPower,
e.g. strokeplane, frequency, etc., or arguments for findMaximumRangeSpeed, e.g. windSpeed
and windDir. The latter will only affect the outcome of the maximum range speed, and should
perhaps not be analysed through the current function...

Value

birdWSName variable name in work-space of the bird object

bird bird object

table table with characteristic speeds

maxClimb table with climb performance

powercurve power curve from minimum to maximum speed of length lenght.out

Author(s)

Marco Klein Heerenbrink

References

Klein Heerenbrink, M., Johansson, L. C. and Hedenström, A. (2015) Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471, 2177 doi:10.1098/
rspa.2014.0952

See Also

Bird, computeFlappingPower

Examples

## Not run: # computationally intensive

## Define a bird:
myBird = Bird(

name = "Jackdaw",
name.scientific = "Corvus monedula",
massTotal = 0.215, # (kg) total body mass

https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
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wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## simplest performance calculation
performance.myBird <- computeFlightPerformance(myBird)
performance.myBird
# Name: Jackdaw
# Sc. name: Corvus monedula
# Bird definitions: NA
# speed power.aero power.chem strokeplane amplitude
# minimumSpeed 2.706 5.234 27.29 49.9 51.3
# minimumPower 8.031 2.093 12.27 28.1 34.5
# maximumRange 11.025 2.523 14.33 18.2 36.7
# maximumSpeed 16.590 5.235 27.29 6.8 50.2
# Maximum climb performance:
# speed power.aero power.chem strokeplane amplitude climbRate
# maximumClimbRate 8.89 5.234 27.29 24.5 53.9 1.18
# Minimized migration time:
# speed speed.migration power.aero power.chem power.dep strokeplane amplitude
# minimumTimeSpeed 11.75 1.962 2.741 15.37 3.081 16.49 38.04

## optimize strokeplane angle and use speed dependent frequency
funFrequency = function(U){19.8 - 4.7*U + 0.45*U^2 - 0.0138*U^3}
performance.myBird <- computeFlightPerformance(myBird,strokeplane='opt',frequency=funFrequency)
performance.myBird
# Name: Jackdaw
# Sc. name: Corvus monedula
# Bird definitions: NA
# speed power.aero power.chem strokeplane amplitude
# minimumSpeed 2.293 5.229 27.27 49.9 43.8
# minimumPower 8.192 2.319 13.35 21.6 42.8
# maximumRange 11.463 2.775 15.53 14.9 44.3
# maximumSpeed 16.088 5.233 27.29 8.3 64.5
# Maximum climb performance:
# speed power.aero power.chem strokeplane amplitude climbRate
# maximumClimbRate 8.89 5.234 27.29 24.5 53.9 1.18
# Minimized migration time:
# speed speed.migration power.aero power.chem power.dep strokeplane amplitude
# minimumTimeSpeed 12.07 1.905 2.964 16.43 3.081 14.13 45.13

## plot variation of speed, power and flapping kinematics
plot(performance.myBird$powercurve[c('speed','power.aero','strokeplane','frequency','amplitude')])

## plot power factors
plot(performance.myBird$powercurve[c('speed','power.aero')])
plot(performance.myBird$powercurve[c('speed','kP.ind')])
plot(performance.myBird$powercurve[c('speed','kP.pro0')])
plot(performance.myBird$powercurve[c('speed','kP.pro2')])

## End(Not run) # end dontrun
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fDfPfunctions Coefficient for thrust dependency of drag and power factors

Description

Computes the thrust requirement dependency factor for drag and power factors in flapping flight
based on reduced frequency (kf) and strokeplane angle (phi).

Usage

fD.ind(kf, phi)
fD.pro0(kf, phi)
fD.pro2(kf, phi)
fP.ind(kf, phi)
fP.pro0(kf, phi)
fP.pro2(kf, phi)

Arguments

Using f for wingbeat frequency, b for wingspan, and U for air speed:

kf reduced frequency (kf = 2πfb
U ); valid range between 1 and 6

phi strokeplane angle in radians; valid range between 0 and 0.87 rad (50 deg)

Details

Flapping of the wings alters the drag components on the wing. A drag component in flapping flight
can be related to the drag component in non-flapping flight asD = kDD

′. The factor kD depends on
reduced frequency kf , strokeplane angle φ and the thrust-to-lift ratio T/L: kD = 1+ fD(kf , φ)

T
L .

Functions fD.ind,fD.pro0 and fD.pro2 compute fD(kf , φ) for induced drag, zero lift profile drag
and lift dependent profile drag, respectively.

Similarly, the flapping power components can be computed as: P = kPD
′U , again with kP =

1 + fP (kf , φ)
T
L . Functions fP.ind,fP.pro0 and fP.pro2 compute fP (kf , φ) for induced power,

zero lift profile power and lift dependent profile power, respectively.

Value

Numeric value

Note

Thrust requirement is the sum of all drag components in flapping flight divided by the lift. This
means the thrust requirement itself is a function of the values of fD.

Author(s)

Marco Klein Heerenbrink
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References

Klein Heerenbrink, M., Johansson, L. C. and Hedenström, A. 2015 Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471, 2177 doi:10.1098/
rspa.2014.0952

See Also

computeFlappingPower

Examples

## reduced frequency
kf <- 2*pi*4/10 # 4 Hz at 10 m/s

## strokeplane angle
phi <- 20*pi/180 # 20 degrees

## thrust ratio
TL <- 0.2

## induced drag factor:
fDind <- fD.ind(kf,phi)
kDind <- 1 + fDind*TL
print(kDind)
# [1] 1.623659

## zero lift drag factor:
fDpro0 <- fD.pro0(kf,phi)
kDpro0 <- 1 + fDpro0*TL
print(kDpro0)
# [1] 1.014899

## lift dependent profile drag factor:
fDpro2 <- fD.pro2(kf,phi)
kDpro2 <- 1 + fDpro2*TL
print(kDpro2)
# [1] 1.511107

## induced power factor:
fPind <- fP.ind(kf,phi)
kPind <- 1 + fPind*TL
print(kPind)
# [1] 1.996891

## zero lift power factor:
fPpro0 <- fP.pro0(kf,phi)
kPpro0 <- 1 + fPpro0*TL
print(kPpro0)
# [1] 1.076046

## lift dependent profile power factor:
fPpro2 <- fP.pro2(kf,phi)

https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
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kPpro2 <- 1 + fPpro2*TL
print(kPpro2)
# [1] 1.811983

findMaximumClimbRate Find maximum climb rate

Description

Numerically find the maximum attainable climb rate.

Usage

findMaximumClimbRate(bird, maximumPower, speed, ...)

Arguments

bird bird description object (see Bird)

maximumPower numeric value for maximum available mechanical power

speed airspeed for which to compute the maximum climbrate

... optional arguments for computeFlappingPower

Details

The function searches for a climb angle between -90 and 90 degrees that matches the specified
maximum power available. If no speed provided, the function will also find the optimal airspeed
for maximum climbrate.

Value

Data frame of class power.mechanical

speed airspeed either prescribed or optimized for maximum climbrate

power aerodynamic (mechanical) power matching maximum power

... see computeFlappingPower for other variables

climbAngle angle between flightpath and horizontal plane in degrees

climbRate rate of vertical climb

Note

The function uses climb angle, rather than climb rate, in the search algorithm, to ensure that climb
rate is always less than the airspeed (i.e. in a vertical climb the climb rate will simply equal air-
speed). The actual climb rate is maximized by maximizing the product of climb angle and airspeed.
However, in practice, the airspeed for best climb rate will be close to the minimum power airspeed,
where the power margin is largest.
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Author(s)

Marco Klein Heerenbrink

See Also

uniroot

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## maximum power available:
Paero.available <- computeAvailablePower(myBird)

climbSpeed <- 8 # airspeed during climb

## find maximum climbrate:
Paero.climb <- findMaximumClimbRate(myBird,Paero.available,climbSpeed)
print(Paero.climb[c('speed','amplitude','frequency','climbRate')])
# speed amplitude frequency climbRate
# 1 8 54.84965 5.948083 1.162002

findMaximumPowerSpeed Finds speed for which power required equals maximum available
power

Description

Numerically find the airspeed for which required power equals maximumPower.

Usage

findMaximumPowerSpeed(bird, maximumPower, lower, upper, ...)

Arguments

bird bird description object (see Bird)

maximumPower numeric value for maximum available mechanical power

lower lower bound for search range airspeed (m/s)

upper upper bound for search range airspeed (m/s)

... optional arguments to computeFlappingPower
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Details

Prepares arguments for a call to uniroot. The function searches for an airspeed between lower and
upper that matches the specified maximum power available.

Value

Data frame

speed airspeed for which power matches maximum power

power aerodynamic (mechanical) power matching maximum power

power.chem aerodynamic (mechanical) power matching maximum power

strokeplane optimized or prescribed strokeplane angle in degrees (from vertical)

amplitude optimized peak amplitude in degrees (see amplitude)

... see computeFlappingPower for other variables

Note

Typically this function would be used to find the maximum speed, but may in some cases also be
used for the minimum flight speed. However, note that the low speed limit is likely limited by other
constraints as well (e.g. stall speed).

Author(s)

Marco Klein Heerenbrink

See Also

uniroot

Examples

## Define a bird:
myBird <- Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

Paero.available <- computeAvailablePower(myBird)

## find maximum speed:
Vmin <- 5
Vmax <- 30
Paero.maxSpeed <- findMaximumPowerSpeed(myBird,Paero.available,Vmin,Vmax)
print(Paero.maxSpeed[c('speed','power','amplitude','strokeplane','frequency')])
# speed power amplitude strokeplane frequency
# 1 16.58797 5.233459 50.22762 6.812345 5.948083
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findMaximumRangeSpeed Find maximum range speed

Description

This function performs a numerical optimization to find the airspeed for which P
U is minimum. For

this it uses the function optimize.

Usage

findMaximumRangeSpeed(bird,lower=NULL,upper=NULL,windSpeed=0,windDir=0,...)

Arguments

bird bird description object (see Bird)

lower lower speed limit (optional)

upper upper speed limit (optional)

windSpeed wind magnitude (in m/s; optional)

windDir wind direction (in degrees; optional)

... optional arguments: climbAngle (in degrees), and optional arguments for computeFlappingPower.

Details

This function performs a numerical optimization to find the airspeed for which P
U is minimum.

For this it uses the function optimize. This airspeed is searched for between lower and upper (if
not provided, it will make a guess based on bird). Flying in wind changes the ground speed, and
therefore the optimum flight speed for maximum range. This can be taken into account through the
optional arguments for wind magnitude (windSpeed in m/s) and wind direction relative to the track
direction (windDir in degrees; windDir = 0 tail wind); see e.g. Liechti et al. 1994.

Value

Returns data.frame (power.chemical) of flight performance at maximum range speed for bird.

Author(s)

Marco Klein Heerenbrink

References

Liechti, F., Hedenström, A. and Alerstam, T. (1994). Effects of Sidewinds on Optimal Flight Speed
of Birds. J. Theor. Biol. 170, 219–225.

See Also

computeChemicalPower, computeFlappingPower
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Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

maximumRangeSpeed.chem <- findMaximumRangeSpeed(myBird)
maximumRangeSpeed.chem[c('speed','power','strokeplane','amplitude','frequency')]
# speed power strokeplane amplitude frequency
# 1 11.02543 14.32754 18.17729 36.69311 5.948083

maximumRangeSpeed.chem.wind <- findMaximumRangeSpeed(
myBird,
windSpeed = 5,
windDir = 90

)
maximumRangeSpeed.chem.wind[c('speed','power','strokeplane','amplitude','frequency')]
# speed power strokeplane amplitude frequency
# 1 11.81974 15.47758 16.33727 38.17508 5.948083

findMinimumPowerSpeed Find speed for minimum power

Description

.

Usage

findMinimumPowerSpeed(bird, lower, upper, ...)

Arguments

bird bird description object (see Bird)

lower lower speed limit (optional)

upper upper speed limit (optional)

... optional arguments for computeFlappingPower()

Details

This is pretty much just a call to optimize.

Value

powercurve object (funCalcPower evaluated for the minimum speed)
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Author(s)

Marco Klein Heerenbink

See Also

optimize

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

minimumPowerSpeed.aero <- findMinimumPowerSpeed(myBird)
minimumPowerSpeed.aero[c('speed','power','strokeplane','amplitude','frequency')]
# speed power strokeplane amplitude frequency
# 1 8.030022 2.092976 28.14514 34.52719 5.948083

findMinimumTimeSpeed Find speed for migration time minimization

Description

This function performs a numerical optimization to find the airspeed for which P+Pdep

U is minimum..

Usage

findMinimumTimeSpeed(bird,
EnergyDepositionRate=1.5*bird$basalMetabolicRate,
lower=NULL,upper=NULL,
windSpeed=0,windDir=0,...)

Arguments

bird bird description object (see Bird)
EnergyDepositionRate

The rate at which the bird accumulates energy at stopover sites

lower lower speed limit (optional)

upper upper speed limit (optional)

windSpeed wind magnitude (in m/s; optional)

windDir wind direction (in degrees; optional)

... optional arguments: climbAngle (in degrees), and optional arguments for computeFlappingPower.
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Details

This function performs a numerical optimization to find the airspeed that minimizes the combina-
tion of flight time and time required to (re)gain the energy reserves to cover the flight cost. If the bird
would fly faster, it would need to spend more time refueling. If it flew slower, the reduced refueling
time that comes with the lower cost of transport does not offset the longer flight time. Mathemat-
ically this problem works out as minimizing P+Pdep

U Hedenström 1998, which is technically the
same optimization as for the maximum range speed (see details findMaximumRangeSpeed). The
default energy deposition rate, the rate at which a bird accumulates energy during a stopover, is set
to 1.5 times the basal metabolic rate (Lindström 1991 ).

Value

Returns data.frame (power.chemical) of flight performance at maximum range speed for bird.

Author(s)

Marco Klein Heerenbrink

References

Lindström, Å. (1991) Maximum fat deposition rates in migrating birds. Ornis Scand. 22, 12-19
(doi:10.2307/3676616)

Hedenström, A. & Alerstam, T. (1997) Optimum fuel loads in migratory birds: distinguishing be-
tween time and energy minimization. J. Theor. Biol. 189, 227–34. (doi:10.1006/jtbi.1997.0505)

Hedenström, A. & Alerstam, T. (1998) How fast can birds migrate? J. Avian Biol. 29, 424-432.
(doi:10.2307/3677161)

See Also

computeChemicalPower, computeFlappingPower

Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

minimumTimeSpeed <- findMinimumTimeSpeed(myBird,1.5*myBird$basalMetabolicRate)
minimumTimeSpeed[c('speed','speed.migration',

'power','power.chem','power.dep',
'strokeplane','amplitude','frequency')]

# speed speed.migration power power.chem power.dep strokeplane amplitude frequency
# 11.74944 1.962213 2.74058 15.36634 3.080752 16.49244 38.03366 5.948083
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PowerToFroMechChem Convert between mechanical and chemical power

Description

Functions convert between mechanical and chemical power

Usage

mech2chem(power.mech,bird,...)
chem2mech(power.chem,bird,...)

Arguments

power.mech Numerical value for mechanical power

power.chem Numerical value for chemical power

bird object describing the relevant morphological parameters of the bird (or bat); this
object should be created using the Bird constructor.

... optional arguments (none yet)

Details

Chemical power is computed as

Pchem = R(
Pmech

η
+BMR)

as described in Pennycuick 2008. Here R is the respiration factor, η is the muscle conversion
efficiency and BMR the basal metabolic rate, see Bird.

Mechanical power is simply calculated inversely:

Pmech = η(
Pchem

R
− BMR)

Value

Numerical value of either chemical power (mech2chem()) or mechanical power (chem2mech()).

Author(s)

Marco Klein Heerenbrink

References

Pennycuick, C. J. (2008). Modelling the flying bird. Amsterdam, The Netherlands: Elsevier.

See Also

computeChemicalPower
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Examples

## Define a bird:
myBird = Bird(

massTotal = 0.215, # (kg) total body mass
wingSpan = 0.67, # (m) maximum wing span
wingArea = 0.0652, # (m2) maximum wing area
type = "passerine"

)

## define a speed range
speedrange <- seq(5,14,length.out=5)

## compute aerodynamic power for that speed range:
Paero <- computeFlappingPower(myBird,speedrange)
Pchem <- Paero
Pchem$power <- mech2chem(Paero$power,myBird)
print(Pchem[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 5.00 15.60151 5.948083 46.56887
# 2 7.25 12.44362 5.948083 31.89129
# 3 9.50 12.79900 5.948083 22.51896
# 4 11.75 15.36721 5.948083 16.49120
# 5 14.00 19.82915 5.948083 12.09174

Pmech <- Pchem
Pmech$power <- chem2mech(Pchem$power,myBird)
print(Pmech[c("speed","power","frequency","strokeplane")])
# speed power frequency strokeplane
# 1 5.00 2.789751 5.948083 46.56887
# 2 7.25 2.129466 5.948083 31.89129
# 3 9.50 2.203773 5.948083 22.51896
# 4 11.75 2.740763 5.948083 16.49120
# 5 14.00 3.673714 5.948083 12.09174

reducedFrequency Function to compute reduced frequency

Description

This function computes the reduced frequency based on wingSpan (b), wingbeat frequency (f )
and speed (U ): kf = 2πbf

U .

Usage

reducedFrequency(wingSpan, frequency, speed)

Arguments

wingSpan Tip-to-tip distance of the fully spread wing (m)
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frequency Wingbeat frequency (1/s)

speed Airspeed (m/s)

Details

This parameter is the ratio of the wingspan to the wavelength of the convected wake. For very high
reduced frequencies, the wake of one wingbeat is relatively short compared to the wingspan, mean-
ing that previous wingbeats have a large influence on the aerodynamics of the current wingbeat.
When the reduced frequency is low, there is relatively little interaction between the wingbeats.

This wingspan based reduced frequency should not be confused with the chord based (or half chord)
based reduced frequency. That definition serves a similar function, however, it relates to the effect
of unsteadyness on the aerofoil (i.e. it is somewhat like the 2D equivalent).

Another related parameter of unsteadyness, often mentioned in relation to animal flight, is the
Strouhal number, representing the ratio of the amplitude of the wingbeat to the wavelength of the
wake. This term is historically related to vortex shedding.

Value

Numeric value

Author(s)

Marco Klein Heerenbrink

References

Klein Heerenbrink, M., Johansson, L. C. and Hedenström, A. 2015 Power of the wingbeat: mod-
elling the effects of flapping wings in vertebrate flight. Proc. R. Soc. A 471, 2177 doi:10.1098/
rspa.2014.0952

See Also

computeFlappingPower

Examples

kf <- reducedFrequency(
wingSpan = 0.67,
frequency = 4,
speed = 9

)
kf
# [1] 1.870993

https://doi.org/10.1098/rspa.2014.0952
https://doi.org/10.1098/rspa.2014.0952
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