Package ‘adverbial’

May 13, 2025
Type Package
Title Enhanced Adverbial Functions
Version 0.2.0

Description Provides new_partialised() and new_composed(), which extend
partial() and compose() functions of 'purrr' to make it easier to extract
and replace arguments and functions. It also has additional adverbial
functions.

License MIT + file LICENSE
Encoding UTF-8

Imports cli, pillar, purrr, rlang, vetrs
RoxygenNote 7.3.2

URL https://github.com/UchidaMizuki/adverbial

BugReports https://github.com/UchidaMizuki/adverbial/issues
Suggests lifecycle, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Mizuki Uchida [aut, cre]

Maintainer Mizuki Uchida <uchidamizuki@vivaldi.net>

Repository CRAN

Date/Publication 2025-05-13 08:30:06 UTC

Contents

AS_SLEP e e e e e e e
end_Step L e e e
new_composed e e
new_partialised
SEP_DY_StED e e e e e e

Index

https://github.com/UchidaMizuki/adverbial
https://github.com/UchidaMizuki/adverbial/issues

2 end_step

as_step Wrap a function to be used as a step

Description

[Experimental]

Usage
as_step(f, name = NULL)

Arguments
f A function to be wrapped.
name The name of the step. If NULL, the step does not proceed but the function is
applied.
Details

as_step() wraps a function to be used as a step in a step-by-step process.

Value

A function that takes a step-by-step object and additional arguments, and returns the updated step-
by-step object.

end_step End a step-by-step process

Description

[Experimental]

Usage

end_step(object)

Arguments

object The object to end the step-by-step process for.

Details

end_step() ends the step-by-step process and removes the step-by-step attributes from the object.

Value

The object with the step-by-step attributes removed.

new_composed 3

new_composed Create composed functions

Description

Create composed functions

Usage
new_composed(fns, dir = NULL, ..., class = character())
Arguments
fns A list of functions to compose.
dir Direction of composition, either "forward” or "backward”. By default, the
functions are composed in the forward direction. Passed to purrr: : compose().
Additional arguments for attributes.
class Name of subclass.
Value

A composed function that inherits from adverbial_function_compose.

See Also

purrr: :compose()

Examples

square <- function(x) x * 2
cdist <- new_composed(list(square = square, sum = sum, sqrt = sqrt))
cdist(1:10)

cdist$sum <- new_partialised(sum, list(na.rm = TRUE))
cdist(c(1:10, NA))

step_by_step

new_partialised Create partialised functions

Description

Create partialised functions

Usage

new_partialised(f, args, ..., class = character())
Arguments

f A function.

args A list of default arguments.

Additional arguments for attributes.

class Name of subclass.

Value

A adverbial_function_partial function.

See Also

purrr::partial()

Examples

dist <- function(x, y) {
sgrt(x * 2 +y * 2)

}
pdist <- new_partialised(dist, list(x = 3))
pdist(y = 4)
step_by_step Create a step-by-step object
Description
[Experimental]
Usage

step_by_step(steps)

step_by_step 5

Arguments
steps A named vector of steps to be completed. The names of the vector are the names
of the steps, and the values are the descriptions of the steps.
Details

step_by_step() creates a step-by-step object that can be used to track the progress of a process.
It is useful for long-running processes where you want to keep track of the steps that have been
completed and the steps that are still to be done.

Value

A function that takes an object and returns a step-by-step object.

Index

as_step, 2
end_step, 2

new_composed, 3
new_partialised, 4

purrr: :compose(), 3
purrr::partial(), 4

step_by_step, 4

	as_step
	end_step
	new_composed
	new_partialised
	step_by_step
	Index

