
Package ‘adoptr’
October 2, 2024

Type Package

Title Adaptive Optimal Two-Stage Designs

Version 1.1.1

Description Optimize one or two-arm, two-stage designs for clinical trials with
respect to several implemented objective criteria or custom objectives.
Optimization under uncertainty and conditional (given stage-one outcome)
constraints are supported.
See Pilz et al. (2019) <doi:10.1002/sim.8291> and
Kunzmann et al. (2021) <doi:10.18637/jss.v098.i09> for details.

License MIT + file LICENSE

Encoding UTF-8

Suggests knitr, rmarkdown, testthat, covr, rpact, vdiffr, pwr, dplyr,
ggplot2, tidyr, gridExtra, bookdown

Imports nloptr, methods, glue

VignetteBuilder knitr

Collate 'DataDistribution.R' 'BinomialDistribution.R'
'ChiSquaredDistribution.R' 'Prior.R' 'TwoStageDesign.R'
'OneStageDesign.R' 'util.R' 'Scores.R' 'CompositeScore.R'
'ConditionalPower.R' 'ConditionalSampleSize.R'
'ContinuousPrior.R' 'FDistribution.R' 'GroupSequentialDesign.R'
'MaximumSampleSize.R' 'NormalDistribution.R' 'PointMassPrior.R'
'StudentDistribution.R' 'Survival.R' 'adoptr.R' 'constraints.R'
'minimize.R' 'regularization.R'

RoxygenNote 7.3.2

BugReports https://github.com/optad/adoptr/issues

URL https://github.com/optad/adoptr, https://optad.github.io/adoptr/

NeedsCompilation no

Author Kevin Kunzmann [aut, cph] (<https://orcid.org/0000-0002-1140-7143>),
Maximilian Pilz [aut, cre] (<https://orcid.org/0000-0002-9685-1613>),
Jan Meis [aut] (<https://orcid.org/0000-0001-5407-7220>),
Nico Bruder [aut] (<https://orcid.org/0009-0004-9522-2075>)

1

https://doi.org/10.1002/sim.8291
https://doi.org/10.18637/jss.v098.i09
https://github.com/optad/adoptr/issues
https://github.com/optad/adoptr
https://optad.github.io/adoptr/
https://orcid.org/0000-0002-1140-7143
https://orcid.org/0000-0002-9685-1613
https://orcid.org/0000-0001-5407-7220
https://orcid.org/0009-0004-9522-2075

2 Contents

Maintainer Maximilian Pilz <maximilian.pilz@itwm.fraunhofer.de>

Repository CRAN

Date/Publication 2024-10-02 19:50:02 UTC

Contents
adoptr . 3
ANOVA-class . 4
AverageN2-class . 5
Binomial-class . 6
bounds . 7
c2 . 8
ChiSquared-class . 9
composite . 10
condition . 11
ConditionalPower-class . 12
ConditionalSampleSize-class . 13
Constraints . 14
ContinuousPrior-class . 16
cumulative_distribution_function . 17
DataDistribution-class . 18
expectation . 19
get_initial_design . 20
get_lower_boundary_design . 22
GroupSequentialDesign-class . 24
GroupSequentialDesignSurvival-class . 25
make_tunable . 25
MaximumSampleSize-class . 26
minimize . 27
n1 . 29
N1-class . 30
NestedModels-class . 31
Normal-class . 32
OneStageDesign-class . 33
OneStageDesignSurvival-class . 35
Pearson2xK-class . 35
plot,TwoStageDesign-method . 36
PointMassPrior-class . 37
posterior . 38
predictive_cdf . 39
predictive_pdf . 40
print.adoptrOptimizationResult . 41
Prior-class . 41
probability_density_function . 42
Scores . 43
simulate,TwoStageDesign,numeric-method . 45
Student-class . 46

adoptr 3

subject_to . 47
Survival-class . 48
SurvivalDesign . 49
tunable_parameters . 50
TwoStageDesign-class . 51
TwoStageDesignSurvival-class . 53
ZSquared-class . 54

Index 55

adoptr Adaptive Optimal Two-Stage Designs

Description

The adoptr package provides functionality to explore custom optimal two-stage designs for one- or
two-arm superiority tests. For more details on the theoretical background see doi:10.1002/sim.
8291 and doi:10.18637/jss.v098.i09. adoptr makes heavy use of the S4 class system. A good
place to start learning about it can be found here.

Quickstart

For a sample workflow and a quick demo of the capabilities, see here.

A more detailed description of the background and the usage of adoptr can be found here or here
doi:10.18637/jss.v098.i09 .

A variety of examples is presented in the validation report hosted here.

Designs

adoptr currently supports TwoStageDesign, GroupSequentialDesign, and OneStageDesign.

Data distributions

The implemented data distributions are Normal, Binomial, Student, Survival, ChiSquared (in-
cluding Pearson2xK and ZSquared) and ANOVA.

Priors

Both ContinuousPrior and PointMassPrior are supported for the single parameter of a DataDistribution.

Scores

See Scores for information on the basic system of representing scores. Available scores are
ConditionalPower, ConditionalSampleSize, Power, and ExpectedSampleSize.

doi:10.1002/sim.8291
doi:10.1002/sim.8291
doi:10.18637/jss.v098.i09
http://adv-r.had.co.nz/OO-essentials.html
https://optad.github.io/adoptr/articles/adoptr.html
https://optad.github.io/adoptr/articles/adoptr_jss.html
doi:10.18637/jss.v098.i09
https://optad.github.io/adoptr-validation-report/

4 ANOVA-class

Author(s)

Maintainer: Maximilian Pilz <maximilian.pilz@itwm.fraunhofer.de> (ORCID)

Authors:

• Kevin Kunzmann <kevin.kunzmann@boehringer-ingelheim.com> (ORCID) [copyright holder]

• Jan Meis <meis@imbi.uni-heidelberg.de> (ORCID)

• Nico Bruder <bruder@imbi.uni-heidelberg.de> (ORCID)

See Also

Useful links:

• https://github.com/optad/adoptr

• https://optad.github.io/adoptr/

• Report bugs at https://github.com/optad/adoptr/issues

ANOVA-class Analysis of Variance

Description

ANOVA is used to test whether there is a significant difference between the means of groups. The
sample size which adoptr returns is the group wise sample size. The function get_tau_ANOVA is
used to obtain a parameter τ , which is used in the same way as θ to describe the difference of means
between the groups.

Usage

ANOVA(n_groups)

get_tau_ANOVA(means, common_sd = 1)

Arguments

n_groups number of groups to be compared

means vector denoting the mean per group

common_sd standard deviation of the groups

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively. Use NestedModels to get insights in the implementation of ANOVA.

https://orcid.org/0000-0002-9685-1613
https://orcid.org/0000-0002-1140-7143
https://orcid.org/0000-0001-5407-7220
https://orcid.org/0009-0004-9522-2075
https://github.com/optad/adoptr
https://optad.github.io/adoptr/
https://github.com/optad/adoptr/issues

AverageN2-class 5

Examples

model <- ANOVA(3L)

H1 <- PointMassPrior(get_tau_ANOVA(c(0.4, 0.8, 0.5)), 1)

AverageN2-class Regularization via L1 norm

Description

Implements the L1-norm of the design’s stage-two sample size function. The average of the stage-
two sample size without weighting with the data distribution is computed. This can be interpreted
as integration over a unifrom prior on the continuation region.

Usage

AverageN2(label = NA_character_)

S4 method for signature 'AverageN2,TwoStageDesign'
evaluate(s, design, optimization = FALSE, subdivisions = 10000L, ...)

Arguments

label object label (string)

s Score object

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

subdivisions number of subdivisions to use for adaptive integration (only affects non-optimization
code)

... further optional arguments

Value

an object of class AverageN2

See Also

N1 for penalizing n1 values

6 Binomial-class

Examples

avn2 <- AverageN2()

evaluate(
AverageN2(),
TwoStageDesign(100, 0.5, 1.5, 60.0, 1.96, order = 5L)

) # 60

Binomial-class Binomial data distribution

Description

Implements the normal approximation for a test on rates. The reponse rate in the control group,
rC , has to be specified by rate_control. The null hypothesis is: rE <= rC , where rE denotes
the response rate in the invervention group. It is tested against the alternative rE > rC . The test
statistic is given as X1 =

√
n(rE − rC)/

√
2r0(1− r0), where r0 denotes the mean between rE

and rC in the two-armed case, and rE in the one-armed case.#’ All priors have to be defined for the
rate difference rE − rC .

Usage

Binomial(rate_control, two_armed = TRUE)

S4 method for signature 'Binomial'
quantile(x, probs, n, theta, ...)

S4 method for signature 'Binomial,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

Arguments

rate_control assumed response rate in control group

two_armed logical indicating if a two-armed trial is regarded

x outcome

probs vector of probabilities

n sample size

theta distribution parameter

... further optional arguments

object object of class Binomial

nsim number of simulation runs

seed random seed

bounds 7

Details

Note that simulate for class Binomial simulates the normal approximation of the test statistic.

Slots

rate_control cf. parameter ’rate_control’

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively.

Examples

datadist <- Binomial(rate_control = 0.2, two_armed = FALSE)

bounds Get support of a prior or data distribution

Description

bounds() returns the range of the support of a prior or data distribution.

Usage

bounds(dist, ...)

S4 method for signature 'ContinuousPrior'
bounds(dist, ...)

S4 method for signature 'PointMassPrior'
bounds(dist, ...)

Arguments

dist a univariate distribution object

... further optional arguments

Value

numeric of length two, c(lower, upper)

8 c2

Examples

bounds(ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4)))
> 0.2 0.4

bounds(PointMassPrior(c(0, .5), c(.3, .7)))
> 0.3 0.7

c2 Query critical values of a design

Description

Methods to access the stage-two critical values of a TwoStageDesign. c2 returns the stage-two
critical value conditional on the stage-one test statistic.

Usage

c2(d, x1, ...)

S4 method for signature 'TwoStageDesign,numeric'
c2(d, x1, ...)

S4 method for signature 'OneStageDesign,numeric'
c2(d, x1, ...)

Arguments

d design

x1 stage-one test statistic

... further optional arguments

Value

the critical value function c2 of design d at position x1

See Also

TwoStageDesign, see n for accessing the sample size of a design

Examples

design <- TwoStageDesign(
n1 = 25,
c1f = 0,
c1e = 2.5,
n2 = 50,
c2 = 1.96,

ChiSquared-class 9

order = 7L
)

c2(design, 2.2) # 1.96
c2(design, 3.0) # -Inf
c2(design, -1.0) # Inf

design <- TwoStageDesign(
n1 = 25,
c1f = 0,
c1e = 2.5,
n2 = 50,
c2 = 1.96,
order = 7L

)

c2(design, 2.2) # 1.96
c2(design, 3.0) # -Inf
c2(design, -1.0) # Inf

ChiSquared-class Chi-Squared data distribution

Description

Implements a chi-squared distribution. The classes Pearson2xk and ZSquared are subclasses, used
in two different situations. Pearson2xK is used when testing k groups for homogeneity in response
rates. The null hypothesis is r1 = ... = rk, and the alternative is that there exists a pair of groups
with differing rates. ZSquared implements the square of a normally distributed random variable
with mean µ and standard deviation σ2.

Usage

ChiSquared(df)

S4 method for signature 'ChiSquared'
quantile(x, probs, n, theta, ...)

S4 method for signature 'ChiSquared,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

Arguments

df number of degrees of freedom

x outcome

probs vector of probabilities

n sample size

10 composite

theta distribution parameter

... further optional arguments

object object of class ChiSquared

nsim number of simulation runs

seed random seed

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively.

Examples

datadist <- ChiSquared(df=4)

composite Score Composition

Description

composite defines new composite scores by point-wise evaluation of scores in any valid numerical
expression.

Usage

composite(expr, label = NA_character_)

S4 method for signature 'CompositeScore,TwoStageDesign'
evaluate(s, design, ...)

Arguments

expr Expression (in curly brackets); must contain at least one score variable; if mul-
tiple scores are used, they must either all be conditional or unconditional. Cur-
rently, no non-score variables are supported

label object label (string)

s object of class CompositeScore

design object

... further optional arguments

Value

an object of class CompositeConditionalScore or CompositeUnconditionalScore depending
on the class of the scores used in expr

condition 11

See Also

Scores

Examples

ess <- ExpectedSampleSize(Normal(), PointMassPrior(.4, 1))
power <- Power(Normal(), PointMassPrior(.4, 1))

linear combination:
composite({ess - 50*power})

control flow (e.g. for and while loops)
composite({

res <- 0
for (i in 1:3) {

res <- res + ess
}
res

})

functional composition
composite({log(ess)})
cp <- ConditionalPower(Normal(), PointMassPrior(.4, 1))
composite({3*cp})

condition Condition a prior on an interval

Description

Restrict an object of class Prior to a sub-interval and re-normalize the PDF.

Usage

condition(dist, interval, ...)

S4 method for signature 'ContinuousPrior,numeric'
condition(dist, interval, ...)

S4 method for signature 'PointMassPrior,numeric'
condition(dist, interval, ...)

Arguments

dist a univariate distribution object

interval length-two numeric vector giving the parameter interval to condition on

... further optional arguments

12 ConditionalPower-class

Value

conditional Prior on given interval

Examples

tmp <- condition(
ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4)),
c(.3, .5)

)
bounds(tmp) # c(.3, .4)

tmp <- condition(PointMassPrior(c(0, .5), c(.3, .7)), c(-1, .25))
expectation(tmp, identity) # 0

ConditionalPower-class

(Conditional) Power of a Design

Description

This score evaluates P [X2 > c2(design,X1)|X1 = x1]. Note that the distribution of X2 is the
posterior predictive after observing X1 = x1.

Usage

ConditionalPower(dist, prior, label = "Pr[x2>=c2(x1)|x1]")

Power(dist, prior, label = "Pr[x2>=c2(x1)]")

S4 method for signature 'ConditionalPower,TwoStageDesign'
evaluate(s, design, x1, optimization = FALSE, ...)

Arguments

dist a univariate distribution object

prior a Prior object

label object label (string)

s Score object

design object

x1 stage-one test statistic

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

... further optional arguments

ConditionalSampleSize-class 13

See Also

Scores

Examples

prior <- PointMassPrior(.4, 1)
cp <- ConditionalPower(Normal(), prior)
evaluate(

cp,
TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L),
x1 = 1

)
these two are equivalent:
expected(cp, Normal(), prior)
Power(Normal(), prior)

ConditionalSampleSize-class

(Conditional) Sample Size of a Design

Description

This score simply evaluates n(d, x1) for a design d and the first-stage outcome x1. The data
distribution and prior are only relevant when it is integrated.

Usage

ConditionalSampleSize(label = "n(x1)")

ExpectedSampleSize(dist, prior, label = "E[n(x1)]")

ExpectedNumberOfEvents(dist, prior, label = "E[n(x1)]")

S4 method for signature 'ConditionalSampleSize,TwoStageDesign'
evaluate(s, design, x1, optimization = FALSE, ...)

Arguments

label object label (string)
dist a univariate distribution object
prior a Prior object
s Score object
design object
x1 stage-one test statistic
optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;

used for smooth optimization.
... further optional arguments

14 Constraints

See Also

Scores

Examples

design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
prior <- PointMassPrior(.4, 1)

css <- ConditionalSampleSize()
evaluate(css, design, c(0, .5, 3))

ess <- ExpectedSampleSize(Normal(), prior)
ene <- ExpectedNumberOfEvents(Survival(0.7), PointMassPrior(1.7, 1))

those two are equivalent
evaluate(ess, design)
evaluate(expected(css, Normal(), prior), design)

Constraints Formulating Constraints

Description

Conceptually, constraints work very similar to scores (any score can be put in a constraint). Cur-
rently, constraints of the form ’score <=/>= x’, ’x <=/>= score’ and ’score <=/>= score’ are admis-
sible.

Usage

S4 method for signature 'Constraint,TwoStageDesign'
evaluate(s, design, optimization = FALSE, ...)

S4 method for signature 'ConditionalScore,numeric'
e1 <= e2

S4 method for signature 'ConditionalScore,numeric'
e1 >= e2

S4 method for signature 'numeric,ConditionalScore'
e1 <= e2

S4 method for signature 'numeric,ConditionalScore'
e1 >= e2

S4 method for signature 'ConditionalScore,ConditionalScore'
e1 <= e2

Constraints 15

S4 method for signature 'ConditionalScore,ConditionalScore'
e1 >= e2

S4 method for signature 'UnconditionalScore,numeric'
e1 <= e2

S4 method for signature 'UnconditionalScore,numeric'
e1 >= e2

S4 method for signature 'numeric,UnconditionalScore'
e1 <= e2

S4 method for signature 'numeric,UnconditionalScore'
e1 >= e2

S4 method for signature 'UnconditionalScore,UnconditionalScore'
e1 <= e2

S4 method for signature 'UnconditionalScore,UnconditionalScore'
e1 >= e2

Arguments

s Score object

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

... further optional arguments

e1 left hand side (score or numeric)

e2 right hand side (score or numeric)

Value

an object of class Constraint

See Also

minimize

Examples

design <- OneStageDesign(50, 1.96)

cp <- ConditionalPower(Normal(), PointMassPrior(0.4, 1))
pow <- Power(Normal(), PointMassPrior(0.4, 1))

unconditional power constraint
constraint1 <- pow >= 0.8
evaluate(constraint1, design)

16 ContinuousPrior-class

conditional power constraint
constraint2 <- cp >= 0.7
evaluate(constraint2, design, .5)
constraint3 <- 0.7 <= cp # same as constraint2
evaluate(constraint3, design, .5)

ContinuousPrior-class Continuous univariate prior distributions

Description

ContinuousPrior is a sub-class of Prior implementing a generic representation of continuous
prior distributions over a compact interval on the real line.

Usage

ContinuousPrior(
pdf,
support,
order = 10,
label = NA_character_,
tighten_support = FALSE,
check_normalization = TRUE

)

Arguments

pdf vectorized univariate PDF function

support numeric vector of length two with the bounds of the compact interval on which
the pdf is positive.

order integer, integration order of the employed Gaussian quadrature integration rule
to evaluate scores. Automatically set to length(n2_pivots) if
length(n2_pivots) == length(c2_pivots) > 1, otherwise c2 and n2 are taken
to be constant in stage-two and replicated to match the number of pivots speci-
fied by order

label object label (string)

tighten_support

logical indicating if the support should be tightened

check_normalization

logical indicating if it should be checked that pdf defines a density.

cumulative_distribution_function 17

Slots

pdf cf. parameter ’pdf’

support cf. parameter ’support’

pivots normalized pivots for integration rule (in [-1, 1]) the actual pivots are scaled to the support
of the prior

weights weights of of integration rule at pivots for approximating integrals over delta

See Also

Discrete priors are supported via PointMassPrior

Examples

ContinuousPrior(function(x) 2*x, c(0, 1))

cumulative_distribution_function

Cumulative distribution function

Description

cumulative_distribution_function evaluates the cumulative distribution function of a specific
distribution dist at a point x.

Usage

cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'Binomial,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'ChiSquared,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'NestedModels,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'Normal,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'Student,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

S4 method for signature 'Survival,numeric,numeric,numeric'
cumulative_distribution_function(dist, x, n, theta, ...)

18 DataDistribution-class

Arguments

dist a univariate distribution object

x outcome

n sample size

theta distribution parameter

... further optional arguments

Details

If the distribution is Binomial, theta denotes the rate difference between intervention and control
group. Then, the mean is assumed to be

√
ntheta.

If the distribution is Normal, then the mean is assumed to be
√
ntheta.

Value

value of the cumulative distribution function at point x.

Examples

cumulative_distribution_function(Binomial(.1, TRUE), 1, 50, .3)

cumulative_distribution_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3,0.4,0.7,0.2)))
cumulative_distribution_function(ZSquared(TRUE), 1, 35, get_tau_ZSquared(0.4, 1))

cumulative_distribution_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))

cumulative_distribution_function(Normal(), 1, 50, .3)

cumulative_distribution_function(Student(two_armed = FALSE), .75, 50, .9)

cumulative_distribution_function(Survival(0.6,TRUE),0.75,50,0.9)

DataDistribution-class

Data distributions

Description

DataDistribution is an abstract class used to represent the distribution of a sufficient statistic x
given a sample size n and a single parameter value theta.

expectation 19

Arguments

x outcome
n sample size
theta distribution parameter
... further optional arguments

Details

This abstraction layer allows the representation of t-distributions (unknown variance), normal dis-
tribution (known variance), and normal approximation of a binary endpoint. Currently, the two
implemented versions are Normal-class and Binomial-class.

The logical option two_armed allows to decide whether a one-arm or a two-arm (the default) design
should be computed. In the case of a two-arm design all sample sizes are per group.

Slots

two_armed Logical that indicates if a two-arm design is assumed.

Examples

normaldist <- Normal(two_armed = FALSE)
binomialdist <- Binomial(rate_control = .25, two_armed = TRUE)

expectation Expected value of a function

Description

Computes the expected value of a vectorized, univariate function f with respect to a distribution
dist. I.e., E

[
f(X)

]
.

Usage

expectation(dist, f, ...)

S4 method for signature 'ContinuousPrior,function'
expectation(dist, f, ...)

S4 method for signature 'PointMassPrior,function'
expectation(dist, f, ...)

Arguments

dist a univariate distribution object
f a univariate function, must be vectorized
... further optional arguments

20 get_initial_design

Value

numeric, expected value of f with respect to dist

Examples

expectation(
ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4)),
identity

)
> 0.3

expectation(PointMassPrior(c(0, .5), c(.3, .7)), identity)
> .35

get_initial_design Initial design

Description

The optimization method minimize requires an initial design for optimization. This function pro-
vides a variety of possibilities to hand-craft designs that fulfill type I error and type II error con-
straints which may be used as initial designs.

Usage

get_initial_design(
theta,
alpha,
beta,
type_design = c("two-stage", "group-sequential", "one-stage"),
type_c2 = c("linear_decreasing", "constant"),
type_n2 = c("optimal", "constant", "linear_decreasing", "linear_increasing"),
dist = Normal(),
cf,
ce,
info_ratio = 0.5,
slope,
weight = sqrt(info_ratio),
order = 7L,
...

)

Arguments

theta the alternative effect size in the normal case, the rate difference under the alter-
native in the binomial case

get_initial_design 21

alpha maximal type I error rate

beta maximal type II error rate

type_design type of design

type_c2 either linear-decreasing c2-function according to inverse normal combination
test or constant c2

type_n2 design of n2-function

dist distribution of the test statistic

cf first-stage futility boundary

ce first-stage efficacy boundary. Note that specifying this boundary implies that the
type I error constraint might not be fulfilled anymore

info_ratio the ratio between first and second stage sample size

slope slope of n2 function

weight weight of first stage test statistics in inverse normal combination test

order desired integration order

... further optional arguments

Details

The distribution of the test statistic is specified by dist. The default assumes a two-armed z-test.
The first stage efficacy boundary and the c2 boundary are chosen as Pocock-boundaries, so either
ce = c2 if c2 is constant or ce = c, where the null hypothesis is rejected if w1Z1 + w2Z2 > c. By
specifying ce, it’s clear that the boundaries are not Pocock-boundaries anymore, so the type I error
constraint may not be fulfilled. IMPORTANT: When using the t-distribution or ANOVA, the design
does probably not keep the type I and type II error, only approximate designs are returned.

Value

An object of class TwoStageDesign.

Examples

init <- get_initial_design(
theta = 0.3,
alpha = 0.025,
beta = 0.2,
type_design="two-stage",
type_c2="linear_decreasing",
type_n2="linear_increasing",
dist=Normal(),
cf=0.7,
info_ratio=0.5,
slope=23,
weight = 1/sqrt(3)

)

22 get_lower_boundary_design

get_lower_boundary_design

Boundary designs

Description

The optimization method minimize is based on the package nloptr. This requires upper and
lower boundaries for optimization. Such boundaries can be computed via lower_boundary_design
respectively upper_boundary_design. They are implemented by default in minimize. Note that
minimize allows the user to define its own boundary designs, too.

Usage

get_lower_boundary_design(initial_design, ...)

get_upper_boundary_design(initial_design, ...)

S4 method for signature 'OneStageDesign'
get_lower_boundary_design(initial_design, n1 = 1, c1_buffer = 2, ...)

S4 method for signature 'GroupSequentialDesign'
get_lower_boundary_design(
initial_design,
n1 = 1,
n2_pivots = 1,
c1_buffer = 2,
c2_buffer = 2,
...

)

S4 method for signature 'TwoStageDesign'
get_lower_boundary_design(
initial_design,
n1 = 1,
n2_pivots = 1,
c1_buffer = 2,
c2_buffer = 2,
...

)

S4 method for signature 'OneStageDesign'
get_upper_boundary_design(
initial_design,
n1 = 5 * initial_design@n1,
c1_buffer = 2,
...

)

get_lower_boundary_design 23

S4 method for signature 'GroupSequentialDesign'
get_upper_boundary_design(
initial_design,
n1 = 5 * initial_design@n1,
n2_pivots = 5 * initial_design@n2_pivots,
c1_buffer = 2,
c2_buffer = 2,
...

)

S4 method for signature 'TwoStageDesign'
get_upper_boundary_design(
initial_design,
n1 = 5 * initial_design@n1,
n2_pivots = 5 * initial_design@n2_pivots,
c1_buffer = 2,
c2_buffer = 2,
...

)

Arguments

initial_design The initial design

... optional arguments
The values c1f and c1e from the initial design are shifted to c1f - c1_buffer
and c1e - c1_buffer in get_lower_boundary_design, respectively, to
c1f + c1_buffer and c1e + c1_buffer in get_upper_boundary_design. This
is handled analogously with c2_pivots and c2_buffer.

n1 bound for the first-stage sample size n1

c1_buffer shift of the early-stopping boundaries from the initial ones

n2_pivots bound for the second-stage sample size n2

c2_buffer shift of the final decision boundary from the initial one

Value

An object of class TwoStageDesign.

Examples

initial_design <- TwoStageDesign(
n1 = 25,
c1f = 0,
c1e = 2.5,
n2 = 50,
c2 = 1.96,
order = 7L
)

24 GroupSequentialDesign-class

get_lower_boundary_design(initial_design)

GroupSequentialDesign-class

Group-sequential two-stage designs

Description

Group-sequential designs are a sub-class of the TwoStageDesign class with constant stage-two
sample size. See TwoStageDesign for slot details. Any group-sequential design can be converted
to a fully flexible TwoStageDesign (see examples section).

Usage

GroupSequentialDesign(n1, ...)

S4 method for signature 'numeric'
GroupSequentialDesign(
n1,
c1f,
c1e,
n2_pivots,
c2_pivots,
order = NULL,
event_rate,
...

)

S4 method for signature 'GroupSequentialDesign'
TwoStageDesign(n1, event_rate, ...)

S4 method for signature 'GroupSequentialDesignSurvival'
TwoStageDesign(n1, ...)

Arguments

n1 stage one sample size or GroupSequentialDesign object to convert (overloaded
from TwoStageDesign)

... further optional arguments

c1f early futility stopping boundary

c1e early efficacy stopping boundary

n2_pivots numeric of length one, stage-two sample size

c2_pivots numeric vector, stage-two critical values on the integration pivot points

order of the Gaussian quadrature rule to use for integration, set to length(c2_pivots) if
NULL, otherwise first value of c2_pivots is repeated ’order’-times.

GroupSequentialDesignSurvival-class 25

event_rate probability that a subject in either group will eventually have an event, only
needs to be specified for time-to-event endpoints.

See Also

TwoStageDesign for superclass and inherited methods

Examples

design <- GroupSequentialDesign(25, 0, 2, 25, c(1, 1.5, 2.5))
summary(design)

design_survival <- GroupSequentialDesign(25, 0, 2, 25, c(1, 1.5, 2.5), event_rate = 0.7)

TwoStageDesign(design)

TwoStageDesign(design_survival)

GroupSequentialDesignSurvival-class

Group-sequential two-stage designs for time-to-event-endpoints

Description

Group-sequential designs for time-to-event-endpoints are a subclass of both TwoStageDesignSurvival
and GroupSequentialDesign.

See Also

TwoStageDesignSurvival-class and GroupSequentialDesign-class for superclasses and in-
herited methods.

make_tunable Fix parameters during optimization

Description

The methods make_fixed and make_tunable can be used to modify the ’tunability’ status of pa-
rameters in a TwoStageDesign object. Tunable parameters are optimized over, non-tunable (’fixed’)
parameters are considered given and not altered during optimization.

26 MaximumSampleSize-class

Usage

make_tunable(x, ...)

S4 method for signature 'TwoStageDesign'
make_tunable(x, ...)

make_fixed(x, ...)

S4 method for signature 'TwoStageDesign'
make_fixed(x, ...)

Arguments

x TwoStageDesign object

... unquoted names of slots for which the tunability status should be changed.

Value

an updated object of class TwoStageDesign

See Also

TwoStageDesign, tunable_parameters for converting tunable parameters of a design object to a
numeric vector (and back), and minimize for the actual minimzation procedure

Examples

design <- TwoStageDesign(25, 0, 2, 25, 2, order = 5)
default: all parameters are tunable (except integration pivots,
weights and tunability status itself)
design@tunable

make n1 and the pivots of n2 fixed (not changed during optimization)
design <- make_fixed(design, n1, n2_pivots)
design@tunable

make them tunable again
design <- make_tunable(design, n1, n2_pivots)
design@tunable

MaximumSampleSize-class

Maximum Sample Size of a Design

Description

This score evaluates max(n(d)) for a design d.

minimize 27

Usage

MaximumSampleSize(label = "max(n(x1))")

S4 method for signature 'MaximumSampleSize,TwoStageDesign'
evaluate(s, design, optimization = FALSE, ...)

Arguments

label object label (string)

s Score object

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

... further optional arguments

See Also

Scores for general scores and ConditionalSampleSize for evaluating the sample size point-wise.

Examples

design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
mss <- MaximumSampleSize()
evaluate(mss, design)

minimize Find optimal two-stage design by constraint minimization

Description

minimize takes an unconditional score and a constraint set (or no constraint) and solves the corre-
sponding minimization problem using nloptr (using COBYLA by default). An initial design has
to be defined. It is also possible to define lower- and upper-boundary designs. If this is not done,
the boundaries are determined automatically heuristically.

Usage

minimize(
objective,
subject_to,
initial_design,
lower_boundary_design = get_lower_boundary_design(initial_design),
upper_boundary_design = get_upper_boundary_design(initial_design),
c2_decreasing = FALSE,
check_constraints = TRUE,

https://cran.r-project.org/package=nloptr

28 minimize

opts = list(algorithm = "NLOPT_LN_COBYLA", xtol_rel = 1e-05, maxeval = 10000),
...

)

Arguments

objective objective function

subject_to constraint collection

initial_design initial guess (x0 for nloptr)
lower_boundary_design

design specifying the lower boundary.
upper_boundary_design

design specifying the upper boundary

c2_decreasing if TRUE, the c2_pivots are forced to be monotonically decreasing
check_constraints

if TRUE, it is checked if constrains are fulfilled

opts options list passed to nloptr

... further optional arguments passed to nloptr

Value

a list with elements:

design The resulting optimal design

nloptr_return Output of the corresponding nloptr call

call_args The arguments given to the optimization call

Examples

Define Type one error rate
toer <- Power(Normal(), PointMassPrior(0.0, 1))

Define Power at delta = 0.4
pow <- Power(Normal(), PointMassPrior(0.4, 1))

Define expected sample size at delta = 0.4
ess <- ExpectedSampleSize(Normal(), PointMassPrior(0.4, 1))

Compute design minimizing ess subject to power and toer constraints

minimize(

ess,

subject_to(
toer <= 0.025,
pow >= 0.9

),

n1 29

initial_design = TwoStageDesign(50, .0, 2.0, 60.0, 2.0, 5L)

)

n1 Query sample size of a design

Description

Methods to access the stage-one, stage-two, or overall sample size of a TwoStageDesign. n1 returns
the first-stage sample size of a design, n2 the stage-two sample size conditional on the stage-one
test statistic and n the overall sample size n1 + n2. Internally, objects of the class TwoStageDesign
allow non-natural, real sample sizes to allow smooth optimization (cf. minimize for details). The
optional argument round allows to switch between the internal real representation and a rounded
version (rounding to the next positive integer).

Usage

n1(d, ...)

S4 method for signature 'TwoStageDesign'
n1(d, round = TRUE, ...)

n2(d, x1, ...)

S4 method for signature 'TwoStageDesign,numeric'
n2(d, x1, round = TRUE, ...)

n(d, x1, ...)

S4 method for signature 'TwoStageDesign,numeric'
n(d, x1, round = TRUE, ...)

S4 method for signature 'OneStageDesign,numeric'
n2(d, x1, ...)

S4 method for signature 'GroupSequentialDesign,numeric'
n2(d, x1, round = TRUE, ...)

Arguments

d design
... further optional arguments
round logical should sample sizes be rounded to next integer?
x1 stage-one test statistic

30 N1-class

Value

sample size value of design d at point x1

See Also

TwoStageDesign, see c2 for accessing the critical values

Examples

design <- TwoStageDesign(
n1 = 25,
c1f = 0,
c1e = 2.5,
n2 = 50,
c2 = 1.96,
order = 7L

)

n1(design) # 25
design@n1 # 25

n(design, x1 = 2.2) # 75

N1-class Regularize n1

Description

N1 is a class that computes the n1 value of a design. This can be used as a score in minimize.

Usage

N1(label = NA_character_)

S4 method for signature 'N1,TwoStageDesign'
evaluate(s, design, optimization = FALSE, ...)

Arguments

label object label (string)

s Score object

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

... further optional arguments

NestedModels-class 31

Value

an object of class N1

See Also

See AverageN2 for a regularization of the second-stage sample size.

Examples

n1_score <- N1()

evaluate(
N1(),
TwoStageDesign(70, 0, 2, rep(60, 6), rep(1.7, 6))

) # 70

NestedModels-class F-Distribution

Description

Implements the F-distribution used for an ANOVA or for the comparison of the fit of two nested
regression models. In both cases, the test statistic follows a F-distribution. NestedModel is used to
compare the fit of two regression models, where one model contains the independent variables of
the smaller model as a subset. Then, one can use ANOVA to determine whether more variance can
be explained by adding more independent variables. In the class ANOVA, the number of independent
variables of the smaller model is set to 1 in order to match the degrees of freedom and we obtain a
one-way ANOVA.

Usage

NestedModels(p_inner, p_outer)

S4 method for signature 'NestedModels'
quantile(x, probs, n, theta, ...)

S4 method for signature 'NestedModels,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

Arguments

p_inner number of independent variables in smaller model

p_outer number of independent variables in bigger model

x outcome

probs vector of probabilities

n sample size

32 Normal-class

theta distribution parameter

... further optional arguments

object object of class NestedModels

nsim number of simulation runs

seed random seed

Slots

p_inner number of parameters in smaller model

p_outer number of parameters in bigger model

See Also

See probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively. Use ANOVA for detailed information of ANOVA.

Examples

model <- NestedModels(2, 4)

Normal-class Normal data distribution

Description

Implements a normal data distribution for z-values given an observed z-value and stage size. Stan-
dard deviation is 1 and mean θ

√
n where θ is the standardized effect size. The option two_armed

can be set to decide whether a one-arm or a two-arm design should be computed.

Usage

Normal(two_armed = TRUE)

S4 method for signature 'Normal'
quantile(x, probs, n, theta, ...)

S4 method for signature 'Normal,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

OneStageDesign-class 33

Arguments

two_armed logical indicating if a two-armed trial is regarded

x outcome

probs vector of probabilities

n sample size

theta distribution parameter

... further optional arguments

object object of class Normal

nsim number of simulation runs

seed random seed

Details

See DataDistribution-class for more details.

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively.

Examples

datadist <- Normal(two_armed = TRUE)

OneStageDesign-class One-stage designs

Description

OneStageDesign implements a one-stage design as special case of a two-stage design, i.e. as sub-
class of TwoStageDesign. This is possible by defining n2 = 0, c = cf1 = ce1, c2(x1) = ifelse(x1 <
c, Inf,−Inf). No integration pivots etc are required (set to NaN).

Usage

OneStageDesign(n, ...)

S4 method for signature 'numeric'
OneStageDesign(n, c, event_rate)

S4 method for signature 'OneStageDesign'
TwoStageDesign(n1, event_rate, order = 5L, eps = 0.01, ...)

S4 method for signature 'OneStageDesignSurvival'

34 OneStageDesign-class

TwoStageDesign(n1, order = 5L, eps = 0.01, ...)

S4 method for signature 'OneStageDesign'
plot(x, y, ...)

Arguments

n sample size (stage-one sample size)

... further optional arguments

c rejection boundary (c = cf1 = ce1)

event_rate probability that a subject in either group will eventually have an event, only
needs to be specified for time-to-event endpoints.

n1 OneStageDesign object to convert, overloaded from TwoStageDesign

order integer >= 2, default is 5; order of Gaussian quadrature integration rule to use
for new TwoStageDesign.

eps numeric > 0, default = .01; the single critical value c must be split in a continu-
ation interval [c1f, c1e]; this is given by c +/- eps.

x design to plot

y not used

Details

Note that the default plot,TwoStageDesign-method method is not supported for OneStageDesign
objects.

See Also

TwoStageDesign, GroupSequentialDesign-class

Examples

design <- OneStageDesign(30, 1.96)
summary(design)
design_twostage <- TwoStageDesign(design)
summary(design_twostage)
design_survival <- OneStageDesign(30, 1.96, 0.7)

TwoStageDesign(design_survival)

OneStageDesignSurvival-class 35

OneStageDesignSurvival-class

One-stage designs for time-to-event endpoints

Description

OneStageDesignSurvival is a subclass of both OneStageDesign and TwoStageDesignSurvival.

See Also

TwoStageDesignSurvival-class and OneStageDesign-class for superclasses and inherited meth-
ods.

Pearson2xK-class Pearson’s chi-squared test for contingency tables

Description

When we test for homogeneity of rates in a k-armed trial with binary endpoints, the test statis-
tic is chi-squared distributed with k − 1 degrees of freedom under the null. Under the alter-
native, the statistic is chi-squared distributed with a non-centrality parameter λ. The function
get_tau_Pearson2xk then computes τ , such that λ is given as n · τ , where n is the number of
subjects per group. In adoptr, τ is used in the same way as θ in the case of the normally distributed
test statistic.

Usage

Pearson2xK(n_groups)

get_tau_Pearson2xK(p_vector)

Arguments

n_groups number of groups considered for testing procedure

p_vector vector denoting the event rates per group

Examples

pearson <- Pearson2xK(3)

H1 <- PointMassPrior(get_tau_Pearson2xK(c(.3, .25, .4)), 1)

36 plot,TwoStageDesign-method

plot,TwoStageDesign-method

Plot TwoStageDesign with optional set of conditional scores

Description

This method allows to plot the stage-two sample size and decision boundary functions of a chosen
design.

Usage

S4 method for signature 'TwoStageDesign'
plot(x, y = NULL, ..., rounded = TRUE, k = 100)

Arguments

x design to plot

y not used

... further named ConditinonalScores to plot for the design and/or further graphic
parameters

rounded should n-values be rounded?

k number of points to use for plotting

Details

TwoStageDesign and user-defined elements of the class ConditionalScore.

Value

a plot of the two-stage design

See Also

TwoStageDesign

Examples

design <- TwoStageDesign(50, 0, 2, 50, 2, 5)
cp <- ConditionalPower(dist = Normal(), prior = PointMassPrior(.4, 1))
plot(design, "Conditional Power" = cp, cex.axis = 2)

PointMassPrior-class 37

PointMassPrior-class Univariate discrete point mass priors

Description

PointMassPrior is a sub-class of Prior representing a univariate prior over a discrete set of points
with positive probability mass.

Usage

PointMassPrior(theta, mass, label = NA_character_)

Arguments

theta numeric vector of pivot points with positive prior mass

mass numeric vector of probability masses at the pivot points (must sum to 1)

label object label (string)

Value

an object of class PointMassPrior, theta is automatically sorted in ascending order

Slots

theta cf. parameter ’theta’

mass cf. parameter ’mass’

See Also

To represent continuous prior distributions use ContinuousPrior.

Examples

PointMassPrior(c(0, .5), c(.3, .7))

38 posterior

posterior Compute posterior distribution

Description

Return posterior distribution given observing stage-one outcome.

Usage

posterior(dist, prior, x1, n1, ...)

S4 method for signature 'DataDistribution,ContinuousPrior,numeric'
posterior(dist, prior, x1, n1, ...)

S4 method for signature 'DataDistribution,PointMassPrior,numeric'
posterior(dist, prior, x1, n1, ...)

Arguments

dist a univariate distribution object

prior a Prior object

x1 stage-one test statistic

n1 stage-one sample size

... further optional arguments

Value

Object of class Prior

Examples

tmp <- ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4))
posterior(Normal(), tmp, 2, 20)

posterior(Normal(), PointMassPrior(0, 1), 2, 20)

predictive_cdf 39

predictive_cdf Predictive CDF

Description

predictive_cdf() evaluates the predictive CDF of the model specified by a DataDistribution
dist and Prior at the given stage-one outcome.

Usage

predictive_cdf(dist, prior, x1, n1, ...)

S4 method for signature 'DataDistribution,ContinuousPrior,numeric'
predictive_cdf(
dist,
prior,
x1,
n1,
k = 10 * (prior@support[2] - prior@support[1]) + 1,
...

)

S4 method for signature 'DataDistribution,PointMassPrior,numeric'
predictive_cdf(dist, prior, x1, n1, ...)

Arguments

dist a univariate distribution object

prior a Prior object

x1 stage-one test statistic

n1 stage-one sample size

... further optional arguments

k number of pivots for crude integral approximation

Value

numeric, value of the predictive CDF

Examples

tmp <- ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4))
predictive_cdf(Normal(), tmp, 2, 20)

predictive_cdf(Normal(), PointMassPrior(.0, 1), 0, 20) # .5

40 predictive_pdf

predictive_pdf Predictive PDF

Description

predictive_pdf() evaluates the predictive PDF of the model specified by a DataDistribution
dist and Prior at the given stage-one outcome.

Usage

predictive_pdf(dist, prior, x1, n1, ...)

S4 method for signature 'DataDistribution,ContinuousPrior,numeric'
predictive_pdf(
dist,
prior,
x1,
n1,
k = 10 * (prior@support[2] - prior@support[1]) + 1,
...

)

S4 method for signature 'DataDistribution,PointMassPrior,numeric'
predictive_pdf(dist, prior, x1, n1, ...)

Arguments

dist a univariate distribution object

prior a Prior object

x1 stage-one test statistic

n1 stage-one sample size

... further optional arguments

k number of pivots for crude integral approximation

Value

numeric, value of the predictive PDF

Examples

tmp <- ContinuousPrior(function(x) dunif(x, .2, .4), c(.2, .4))
predictive_pdf(Normal(), tmp, 2, 20)

predictive_pdf(Normal(), PointMassPrior(.3, 1), 1.5, 20) # ~.343

print.adoptrOptimizationResult 41

print.adoptrOptimizationResult

Printing an optimization result

Description

Printing an optimization result

Usage

print(x, ...)

Arguments

x object to print

... further arguments passed form other methods

Prior-class Univariate prior on model parameter

Description

A Prior object represents a prior distribution on the single model parameter of a DataDistribution
class object. Together a prior and data-distribution specify the class of the joint distribution of the
test statisic, X, and its parameter, theta. Currently, adoptr only allows simple models with a single
parameter. Implementations for PointMassPrior and ContinuousPrior are available.

Details

For an example on working with priors, see here.

See Also

For the available methods, see bounds, expectation, condition, predictive_pdf, predictive_cdf,
posterior

Examples

disc_prior <- PointMassPrior(c(0.1, 0.25), c(0.4, 0.6))

cont_prior <- ContinuousPrior(
pdf = function(x) dnorm(x, mean = 0.3, sd = 0.2),
support = c(-2, 3)

)

https://optad.github.io/adoptr/articles/working-with-priors.html

42 probability_density_function

probability_density_function

Probability density function

Description

probability_density_function evaluates the probability density function of a specific distribu-
tion dist at a point x.

Usage

probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'Binomial,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'ChiSquared,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'NestedModels,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'Normal,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'Student,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

S4 method for signature 'Survival,numeric,numeric,numeric'
probability_density_function(dist, x, n, theta, ...)

Arguments

dist a univariate distribution object

x outcome

n sample size

theta distribution parameter

... further optional arguments

Details

If the distribution is Binomial, theta denotes the rate difference between intervention and control
group. Then, the mean is assumed to be

√
ntheta.

If the distribution is Normal, then the mean is assumed to be
√
ntheta.

Scores 43

Value

value of the probability density function at point x.

Examples

probability_density_function(Binomial(.2, FALSE), 1, 50, .3)

probability_density_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3, 0.4, 0.7, 0.2)))
probability_density_function(ZSquared(TRUE), 1, 35, get_tau_ZSquared(0.4, 1))

probability_density_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))

probability_density_function(Normal(), 1, 50, .3)

probability_density_function(Student(TRUE), 1, 40, 1.1)

probability_density_function(Survival(0.6,TRUE),0.75,50,0.9)

Scores Scores

Description

In adoptr scores are used to assess the performance of a design. This can be done either condition-
ally on the observed stage-one outcome or unconditionally. Consequently, score objects are either
of class ConditionalScore or UnconditionalScore.

Usage

expected(s, data_distribution, prior, ...)

S4 method for signature 'ConditionalScore'
expected(s, data_distribution, prior, label = NA_character_, ...)

evaluate(s, design, ...)

S4 method for signature 'IntegralScore,TwoStageDesign'
evaluate(s, design, optimization = FALSE, subdivisions = 10000L, ...)

Arguments

s Score object
data_distribution

DataDistribution object

prior a Prior object

44 Scores

... further optional arguments

label object label (string)

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

subdivisions maximal number of subdivisions when evaluating an integral score using adap-
tive quadrature (optimization = FALSE)

Details

All scores can be evaluated on a design using the evaluate method. Note that evaluate requires
a third argument x1 for conditional scores (observed stage-one outcome). Any ConditionalScore
can be converted to a UnconditionalScore by forming its expected value using expected. The
returned unconditional score is of class IntegralScore.

Value

No return value. Generic description of class Score.

See Also

ConditionalPower, ConditionalSampleSize, composite

Examples

design <- TwoStageDesign(
n1 = 25,
c1f = 0,
c1e = 2.5,
n2 = 50,
c2 = 1.96,
order = 7L

)
prior <- PointMassPrior(.3, 1)

conditional
cp <- ConditionalPower(Normal(), prior)
expected(cp, Normal(), prior)
evaluate(cp, design, x1 = .5)

unconditional
power <- Power(Normal(), prior)
evaluate(power, design)
evaluate(power, design, optimization = TRUE) # use non-adaptive quadrature

simulate,TwoStageDesign,numeric-method 45

simulate,TwoStageDesign,numeric-method

Draw samples from a two-stage design

Description

simulate allows to draw samples from a given TwoStageDesign.

Usage

S4 method for signature 'TwoStageDesign,numeric'
simulate(object, nsim, dist, theta, seed = NULL, ...)

Arguments

object TwoStageDesign to draw samples from
nsim number of simulation runs
dist data distribution
theta location parameter of the data distribution
seed random seed
... further optional arguments

Value

simulate() returns a data.frame with nsim rows and for each row (each simulation run) the
following columns

• theta: The effect size
• n1: First-stage sample size
• c1f: Stopping for futility boundary
• c1e: Stopping for efficacy boundary
• x1: First-stage outcome
• n2: Resulting second-stage sample size after observing x1
• c2: Resulting second-stage decision-boundary after observing x1
• x2: Second-stage outcome
• reject: Decision whether the null hypothesis is rejected or not

See Also

TwoStageDesign

Examples

design <- TwoStageDesign(25, 0, 2, 25, 2, order = 5)
draw samples assuming two-armed design
simulate(design, 10, Normal(), .3, 42)

46 Student-class

Student-class Student’s t data distribution

Description

Implements exact t-distributions instead of a normal approximation

Usage

Student(two_armed = TRUE)

S4 method for signature 'Student'
quantile(x, probs, n, theta, ...)

S4 method for signature 'Student,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

Arguments

two_armed logical indicating if a two-armed trial is regarded

x outcome

probs vector of probabilities

n sample size

theta distribution parameter

... further optional arguments

object object of class Student

nsim number of simulation runs

seed random seed

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively.

Examples

datadist <- Student(two_armed = TRUE)

subject_to 47

subject_to Create a collection of constraints

Description

subject_to(...) can be used to generate an object of class ConstraintsCollection from an
arbitrary number of (un)conditional constraints.

Usage

subject_to(...)

S4 method for signature 'ConstraintsCollection,TwoStageDesign'
evaluate(s, design, optimization = FALSE, ...)

Arguments

... either constraint objects (for subject_to or optional arguments passed to evaluate)

s object of class ConstraintCollection

design object

optimization logical, if TRUE uses a relaxation to real parameters of the underlying design;
used for smooth optimization.

Value

an object of class ConstraintsCollection

See Also

subject_to is intended to be used for constraint specification the constraints in minimize.

Examples

define type one error rate and power
toer <- Power(Normal(), PointMassPrior(0.0, 1))
power <- Power(Normal(), PointMassPrior(0.4, 1))

create constrain collection
subject_to(

toer <= 0.025,
power >= 0.9

)

48 Survival-class

Survival-class Log-rank test

Description

Implements the normal approximation of the log-rank test statistic.

Usage

Survival(event_rate, two_armed = TRUE)

S4 method for signature 'Survival'
quantile(x, probs, n, theta, ...)

S4 method for signature 'Survival,numeric'
simulate(object, nsim, n, theta, seed = NULL, ...)

Arguments

event_rate probability that a subject will eventually have an event

two_armed logical indicating if a two-armed trial is regarded

x outcome

probs vector of probabilities

n sample size

theta distribution parameter

... further optional arguments

object object of class Survival

nsim number of simulation runs

seed random seed

Slots

event_rate cf. parameter ’event_rate’

See Also

see probability_density_function and cumulative_distribution_function to evaluate the
pdf and the cdf, respectively.

Examples

datadist <- Survival(event_rate=0.6, two_armed=TRUE)

SurvivalDesign 49

SurvivalDesign SurvivalDesign

Description

SurvivalDesign is a function that converts an arbitrary design to a survival design.

Usage

SurvivalDesign(design, event_rate)

S4 method for signature 'TwoStageDesign'
SurvivalDesign(design, event_rate)

S4 method for signature 'TwoStageDesign'
TwoStageDesign(n1, event_rate)

S4 method for signature 'OneStageDesign'
OneStageDesign(n, event_rate)

S4 method for signature 'OneStageDesign'
SurvivalDesign(design, event_rate)

S4 method for signature 'GroupSequentialDesign'
GroupSequentialDesign(n1, event_rate)

S4 method for signature 'GroupSequentialDesign'
SurvivalDesign(design, event_rate)

Arguments

design design that should be converted to a survival design

event_rate probability that a subject in either group will eventually have an event

n1 design object to convert (overloaded from TwoStageDesign)

n design object to convert (overloaded from TwoStageDesign)

Value

Converts any type of design to a survival design

Examples

design <- get_initial_design(0.4, 0.025, 0.1)
SurvivalDesign(design, 0.8)

design_os <- get_initial_design(0.4, 0.025, 0.1, type_design = "one-stage")
design_gs <- get_initial_design(0.4, 0.025, 0.1, type_design = "group-sequential")

50 tunable_parameters

OneStageDesign(design_os, 0.7)

GroupSequentialDesign(design_gs, 0.8)

tunable_parameters Switch between numeric and S4 class representation of a design

Description

Get tunable parameters of a design as numeric vector via tunable_parameters or update a design
object with a suitable vector of values for its tunable parameters.

Usage

tunable_parameters(object, ...)

S4 method for signature 'TwoStageDesign'
tunable_parameters(object, ...)

S4 method for signature 'TwoStageDesign'
update(object, params, ...)

S4 method for signature 'OneStageDesign'
update(object, params, ...)

Arguments

object TwoStageDesign object to update

... further optional arguments

params vector of design parameters, must be in same order as returned by
tunable_parameters

Details

The tunable slot of a TwoStageDesign stores information about the set of design parameters which
are considered fixed (not changed during optimization) or tunable (changed during optimization).
For details on how to fix certain parameters or how to make them tunable again, see make_fixed
and make_tunable.

Value

tunable_parameters returns the numerical values of all tunable parameters as a vector. update
returns the updated design.

TwoStageDesign-class 51

See Also

TwoStageDesign

Examples

design <- TwoStageDesign(25, 0, 2, 25, 2, order = 5)
tunable_parameters(design)
design2 <- update(design, tunable_parameters(design) + 1)
tunable_parameters(design2)

TwoStageDesign-class Two-stage designs

Description

TwoStageDesign is the fundamental design class of the adoptr package. Formally, we represent a
generic two-stage design as a five-tuple

(
n1, c

f
1 , c

e
1, n2(·), c2(·)

)
. Here, n1 is the first-stage sample

size (per group), cf1 and ce1 are boundaries for early stopping for futility and efficacy, respectively.
Since the trial design is a two-stage design, the elements n2(·) (stage-two sample size) and c2(·)
(stage-two critical value) are functions of the first-stage outcome X1 = x1. X1 denotes the first-
stage test statistic. A brief description on this definition of two-stage designs can be read here. For
available methods, see the ’See Also’ section at the end of this page.

Usage

TwoStageDesign(n1, ...)

S4 method for signature 'numeric'
TwoStageDesign(
n1,
c1f,
c1e,
n2_pivots,
c2_pivots,
order = NULL,
event_rate,
...

)

S4 method for signature 'TwoStageDesign'
summary(object, ..., rounded = TRUE)

https://optad.github.io/adoptr/articles/adoptr.html

52 TwoStageDesign-class

Arguments

n1 stage-one sample size

... further optional arguments

c1f early futility stopping boundary

c1e early efficacy stopping boundary

n2_pivots numeric vector, stage-two sample size on the integration pivot points

c2_pivots numeric vector, stage-two critical values on the integration pivot points

order integer, integration order of the employed Gaussian quadrature integration rule
to evaluate scores. Automatically set to length(n2_pivots) if
length(n2_pivots) == length(c2_pivots) > 1, otherwise c2 and n2 are taken
to be constant in stage-two and replicated to match the number of pivots speci-
fied by order

event_rate probability that a subject in either group will eventually have an event, only
needs to be specified for time-to-event endpoints

object object to show

rounded should rounded n-values be used?

Details

summary can be used to quickly compute and display basic facts about a TwoStageDesign. An ar-
bitrary number of names UnconditionalScore objects can be provided via the optional arguments
... and are included in the summary displayed using print.

Slots

n1 cf. parameter ’n1’

c1f cf. parameter ’c1f’

c1e cf. parameter ’c1e’

n2_pivots vector of length ’order’ giving the values of n2 at the pivot points of the numeric inte-
gration rule

c2_pivots vector of length order giving the values of c2 at the pivot points of the numeric integra-
tion rule

x1_norm_pivots normalized pivots for integration rule (in [-1, 1]) the actual pivots are scaled to
the interval [c1f, c1e] and can be obtained by the internal method
adoptr:::scaled_integration_pivots(design)

weights weights of of integration rule at x1_norm_pivots for approximating integrals over x1

tunable named logical vector indicating whether corresponding slot is considered a tunable pa-
rameter (i.e. whether it can be changed during optimization via minimize or not; cf.
make_fixed)

TwoStageDesignSurvival-class 53

See Also

For accessing sample sizes and critical values safely, see methods in n and c2; for modifying be-
haviour during optimizaton see make_tunable; to convert between S4 class represenation and nu-
meric vector, see tunable_parameters; for simulating from a given design, see simulate; for
plotting see plot,TwoStageDesign-method. Both group-sequential and one-stage designs (!) are
implemented as subclasses of TwoStageDesign.

Examples

design <- TwoStageDesign(50, 0, 2, 50.0, 2.0, 5)
pow <- Power(Normal(), PointMassPrior(.4, 1))
summary(design, "Power" = pow)

TwoStageDesignSurvival-class

Two-stage design for time-to-event-endpoints

Description

When conducting a study with time-to-event endpoints, the main interest is not the sample size, but
the number of overall necessary events. Thus, adoptr does not use the sample size for calculating
the design. Instead, it uses the number of events directly. In the framework of adoptr, all the
calculations are done group-wise, where both of the groups are equal-sized. This means, that the
number of events adoptr has computed is only half of the overall number of necessary events. In
order to facilitate this issue, the look of the summary and show functions have been changed in the
survival analysis setting. The sample size is implicitly determined by dividing the number of events
by the event rate. Survival objects are only created, when the argument event_rate is not missing.

Slots

event_rate probability that a subject in either group will eventually have an event

See Also

TwoStageDesign for superclass and inherited methods

54 ZSquared-class

ZSquared-class Distribution class of a squared normal distribution

Description

Implementation of Z2, where Z is normally distributed with mean µ and variance σ2. Z2 is chi-
squared distributed with 1 degree of freedom and non-centrality parameter (µ/σ)2. The function
get_tau_ZSquared computes the factor τ = (µ/σ)2, such that τ is the equivalent of θ in the nor-
mally distributed case. The square of a normal distribution Z2 can be used for two-sided hypothesis
testing.

Usage

ZSquared(two_armed = TRUE)

get_tau_ZSquared(mu, sigma)

Arguments

two_armed logical indicating if a two-armed trial is regarded

mu mean of Z

sigma standard deviation of Z

Examples

zsquared <- ZSquared(FALSE)

H1 <- PointMassPrior(get_tau_ZSquared(0.4, 1), 1)

Index

<=,ConditionalScore,ConditionalScore-method
(Constraints), 14

<=,ConditionalScore,numeric-method
(Constraints), 14

<=,UnconditionalScore,UnconditionalScore-method
(Constraints), 14

<=,UnconditionalScore,numeric-method
(Constraints), 14

<=,numeric,ConditionalScore-method
(Constraints), 14

<=,numeric,UnconditionalScore-method
(Constraints), 14

>=,ConditionalScore,ConditionalScore-method
(Constraints), 14

>=,ConditionalScore,numeric-method
(Constraints), 14

>=,UnconditionalScore,UnconditionalScore-method
(Constraints), 14

>=,UnconditionalScore,numeric-method
(Constraints), 14

>=,numeric,ConditionalScore-method
(Constraints), 14

>=,numeric,UnconditionalScore-method
(Constraints), 14

adoptr, 3, 51, 53
adoptr-package (adoptr), 3
ANOVA, 3, 32
ANOVA (ANOVA-class), 4
ANOVA-class, 4
AverageN2, 5, 31
AverageN2 (AverageN2-class), 5
AverageN2-class, 5

Binomial, 3, 18, 42
Binomial (Binomial-class), 6
Binomial-class, 6
bounds, 7, 41
bounds,ContinuousPrior-method (bounds),

7

bounds,PointMassPrior-method (bounds), 7

c2, 8, 30, 53
c2,OneStageDesign,numeric-method (c2), 8
c2,TwoStageDesign,numeric-method (c2), 8
ChiSquared, 3
ChiSquared (ChiSquared-class), 9
ChiSquared-class, 9
composite, 10, 44
condition, 11, 41
condition,ContinuousPrior,numeric-method

(condition), 11
condition,PointMassPrior,numeric-method

(condition), 11
ConditionalPower, 3, 44
ConditionalPower

(ConditionalPower-class), 12
ConditionalPower-class, 12
ConditionalSampleSize, 3, 27, 44
ConditionalSampleSize

(ConditionalSampleSize-class),
13

ConditionalSampleSize-class, 13
ConditionalScore, 36
ConstraintCollection (subject_to), 47
Constraints, 14
ContinuousPrior, 3, 37, 41
ContinuousPrior

(ContinuousPrior-class), 16
ContinuousPrior-class, 16
cumulative_distribution_function, 4, 7,

10, 17, 32, 33, 46, 48
cumulative_distribution_function,Binomial,numeric,numeric,numeric-method

(cumulative_distribution_function),
17

cumulative_distribution_function,ChiSquared,numeric,numeric,numeric-method
(cumulative_distribution_function),
17

cumulative_distribution_function,NestedModels,numeric,numeric,numeric-method
(cumulative_distribution_function),

55

56 INDEX

17
cumulative_distribution_function,Normal,numeric,numeric,numeric-method

(cumulative_distribution_function),
17

cumulative_distribution_function,Student,numeric,numeric,numeric-method
(cumulative_distribution_function),
17

cumulative_distribution_function,Survival,numeric,numeric,numeric-method
(cumulative_distribution_function),
17

DataDistribution, 3, 39–41, 43
DataDistribution

(DataDistribution-class), 18
DataDistribution-class, 18
distribution, 7, 11–13, 18, 19, 38–40, 42

evaluate (Scores), 43
evaluate,AverageN2,TwoStageDesign-method

(AverageN2-class), 5
evaluate,CompositeScore,TwoStageDesign-method

(composite), 10
evaluate,ConditionalPower,TwoStageDesign-method

(ConditionalPower-class), 12
evaluate,ConditionalSampleSize,TwoStageDesign-method

(ConditionalSampleSize-class),
13

evaluate,Constraint,TwoStageDesign-method
(Constraints), 14

evaluate,ConstraintsCollection,TwoStageDesign-method
(subject_to), 47

evaluate,IntegralScore,TwoStageDesign-method
(Scores), 43

evaluate,MaximumSampleSize,TwoStageDesign-method
(MaximumSampleSize-class), 26

evaluate,N1,TwoStageDesign-method
(N1-class), 30

expectation, 19, 41
expectation,ContinuousPrior,function-method

(expectation), 19
expectation,PointMassPrior,function-method

(expectation), 19
expected (Scores), 43
expected,ConditionalScore-method

(Scores), 43
ExpectedNumberOfEvents

(ConditionalSampleSize-class),
13

ExpectedSampleSize, 3

ExpectedSampleSize
(ConditionalSampleSize-class),
13

get_initial_design, 20
get_lower_boundary_design, 22
get_lower_boundary_design,GroupSequentialDesign-method

(get_lower_boundary_design), 22
get_lower_boundary_design,OneStageDesign-method

(get_lower_boundary_design), 22
get_lower_boundary_design,TwoStageDesign-method

(get_lower_boundary_design), 22
get_tau_ANOVA (ANOVA-class), 4
get_tau_Pearson2xK (Pearson2xK-class),

35
get_tau_ZSquared (ZSquared-class), 54
get_upper_boundary_design

(get_lower_boundary_design), 22
get_upper_boundary_design,GroupSequentialDesign-method

(get_lower_boundary_design), 22
get_upper_boundary_design,OneStageDesign-method

(get_lower_boundary_design), 22
get_upper_boundary_design,TwoStageDesign-method

(get_lower_boundary_design), 22
group-sequential, 53
GroupSequentialDesign, 3
GroupSequentialDesign

(GroupSequentialDesign-class),
24

GroupSequentialDesign,GroupSequentialDesign-method
(SurvivalDesign), 49

GroupSequentialDesign,numeric-method
(GroupSequentialDesign-class),
24

GroupSequentialDesign-class, 24
GroupSequentialDesignSurvival-class,

25

make_fixed, 50, 52
make_fixed (make_tunable), 25
make_fixed,TwoStageDesign-method

(make_tunable), 25
make_tunable, 25, 50, 53
make_tunable,TwoStageDesign-method

(make_tunable), 25
MaximumSampleSize

(MaximumSampleSize-class), 26
MaximumSampleSize-class, 26
minimize, 15, 20, 22, 26, 27, 29, 30, 47, 52

INDEX 57

n, 8, 53
n (n1), 29
n,TwoStageDesign,numeric-method (n1), 29
N1, 5, 31
N1 (N1-class), 30
n1, 29
n1,TwoStageDesign-method (n1), 29
N1-class, 30
n2 (n1), 29
n2,GroupSequentialDesign,numeric-method

(n1), 29
n2,OneStageDesign,numeric-method (n1),

29
n2,TwoStageDesign,numeric-method (n1),

29
NestedModels, 4
NestedModels (NestedModels-class), 31
NestedModels-class, 31
nloptr, 28
Normal, 3, 18, 42
Normal (Normal-class), 32
Normal-class, 32

one-stage designs, 53
OneStageDesign, 3
OneStageDesign (OneStageDesign-class),

33
OneStageDesign,numeric-method

(OneStageDesign-class), 33
OneStageDesign,OneStageDesign-method

(SurvivalDesign), 49
OneStageDesign-class, 33
OneStageDesignSurvival-class, 35

Pearson2xK, 3
Pearson2xK (Pearson2xK-class), 35
Pearson2xK-class, 35
plot,OneStageDesign-method

(OneStageDesign-class), 33
plot,TwoStageDesign-method, 36
PointMassPrior, 3, 17, 41
PointMassPrior (PointMassPrior-class),

37
PointMassPrior-class, 37
posterior, 38, 41
posterior,DataDistribution,ContinuousPrior,numeric-method

(posterior), 38
posterior,DataDistribution,PointMassPrior,numeric-method

(posterior), 38

Power, 3
Power (ConditionalPower-class), 12
predictive_cdf, 39, 41
predictive_cdf,DataDistribution,ContinuousPrior,numeric-method

(predictive_cdf), 39
predictive_cdf,DataDistribution,PointMassPrior,numeric-method

(predictive_cdf), 39
predictive_pdf, 40, 41
predictive_pdf,DataDistribution,ContinuousPrior,numeric-method

(predictive_pdf), 40
predictive_pdf,DataDistribution,PointMassPrior,numeric-method

(predictive_pdf), 40
print, 52
print (print.adoptrOptimizationResult),

41
print.adoptrOptimizationResult, 41
Prior, 11–13, 16, 37–40, 43
Prior (Prior-class), 41
Prior-class, 41
probability_density_function, 4, 7, 10,

32, 33, 42, 46, 48
probability_density_function,Binomial,numeric,numeric,numeric-method

(probability_density_function),
42

probability_density_function,ChiSquared,numeric,numeric,numeric-method
(probability_density_function),
42

probability_density_function,NestedModels,numeric,numeric,numeric-method
(probability_density_function),
42

probability_density_function,Normal,numeric,numeric,numeric-method
(probability_density_function),
42

probability_density_function,Student,numeric,numeric,numeric-method
(probability_density_function),
42

probability_density_function,Survival,numeric,numeric,numeric-method
(probability_density_function),
42

quantile,Binomial-method
(Binomial-class), 6

quantile,ChiSquared-method
(ChiSquared-class), 9

quantile,NestedModels-method
(NestedModels-class), 31

quantile,Normal-method (Normal-class),
32

58 INDEX

quantile,Student-method
(Student-class), 46

quantile,Survival-method
(Survival-class), 48

Score, 5, 12, 13, 15, 27, 30, 43
Scores, 3, 11, 13, 14, 27, 43
simulate, 53
simulate,Binomial,numeric-method

(Binomial-class), 6
simulate,ChiSquared,numeric-method

(ChiSquared-class), 9
simulate,NestedModels,numeric-method

(NestedModels-class), 31
simulate,Normal,numeric-method

(Normal-class), 32
simulate,Student,numeric-method

(Student-class), 46
simulate,Survival,numeric-method

(Survival-class), 48
simulate,TwoStageDesign,numeric-method,

45
Student, 3
Student (Student-class), 46
Student-class, 46
subject_to, 47
summary,TwoStageDesign-method

(TwoStageDesign-class), 51
Survival, 3
Survival (Survival-class), 48
Survival-class, 48
SurvivalDesign, 49
SurvivalDesign,GroupSequentialDesign-method

(SurvivalDesign), 49
SurvivalDesign,OneStageDesign-method

(SurvivalDesign), 49
SurvivalDesign,TwoStageDesign-method

(SurvivalDesign), 49

tunable_parameters, 26, 50, 53
tunable_parameters,TwoStageDesign-method

(tunable_parameters), 50
TwoStageDesign, 3, 8, 21, 23–26, 29, 30, 33,

34, 36, 45, 50, 51, 53
TwoStageDesign (TwoStageDesign-class),

51
TwoStageDesign,GroupSequentialDesign-method

(GroupSequentialDesign-class),
24

TwoStageDesign,GroupSequentialDesignSurvival-method
(GroupSequentialDesign-class),
24

TwoStageDesign,numeric-method
(TwoStageDesign-class), 51

TwoStageDesign,OneStageDesign-method
(OneStageDesign-class), 33

TwoStageDesign,OneStageDesignSurvival-method
(OneStageDesign-class), 33

TwoStageDesign,TwoStageDesign-method
(SurvivalDesign), 49

TwoStageDesign-class, 51
TwoStageDesignSurvival-class, 53

UnconditionalScore, 52
update,OneStageDesign-method

(tunable_parameters), 50
update,TwoStageDesign-method

(tunable_parameters), 50

ZSquared, 3
ZSquared (ZSquared-class), 54
ZSquared-class, 54

	adoptr
	ANOVA-class
	AverageN2-class
	Binomial-class
	bounds
	c2
	ChiSquared-class
	composite
	condition
	ConditionalPower-class
	ConditionalSampleSize-class
	Constraints
	ContinuousPrior-class
	cumulative_distribution_function
	DataDistribution-class
	expectation
	get_initial_design
	get_lower_boundary_design
	GroupSequentialDesign-class
	GroupSequentialDesignSurvival-class
	make_tunable
	MaximumSampleSize-class
	minimize
	n1
	N1-class
	NestedModels-class
	Normal-class
	OneStageDesign-class
	OneStageDesignSurvival-class
	Pearson2xK-class
	plot,TwoStageDesign-method
	PointMassPrior-class
	posterior
	predictive_cdf
	predictive_pdf
	print.adoptrOptimizationResult
	Prior-class
	probability_density_function
	Scores
	simulate,TwoStageDesign,numeric-method
	Student-class
	subject_to
	Survival-class
	SurvivalDesign
	tunable_parameters
	TwoStageDesign-class
	TwoStageDesignSurvival-class
	ZSquared-class
	Index

