Package 'admixr'

October 12, 2022

Title An Interface for Running 'ADMIXTOOLS' Analyses

Version 0.9.1

Description An interface for performing all stages of 'ADMIXTOOLS' analyses (<https://reich.hms.harvard.edu/software>) entirely from R. Wrapper functions (D, f4, f3, etc.) completely automate the generation of intermediate configuration files, run 'ADMIXTOOLS' programs on the command-line, and parse output files to extract values of interest. This allows users to focus on the analysis itself instead of worrying about low-level technical details. A set of complementary functions for processing and filtering of data in the 'EIGENSTRAT' format is also provided.

License MIT + file LICENSE

URL https://github.com/bodkan/admixr

BugReports https://github.com/bodkan/admixr/issues

Depends R (>= 3.6.0)

Imports dplyr, magrittr, readr, stringr, tibble, stats, rlang, utils

Suggests covr, glue, testthat, tidyr, knitr, rmarkdown, tidyverse

SystemRequirements ADMIXTOOLS suite of command-line utilities for population genetics. See https://reich.hms.harvard.edu/software for the most recent installation instructions and further information.

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Martin Petr [aut, cre] (<https://orcid.org/0000-0003-4879-8421>)

Maintainer Martin Petr <contact@bodkan.net>

Repository CRAN

Date/Publication 2020-07-03 10:50:06 UTC

R topics documented:

count_snps	 			 		 		 	2
download_data	 			 		 		 	3
eigenstrat	 			 		 		 	3
f4ratio	 			 		 		 	4
filter_bed	 			 		 		 	5
keep_transitions	 			 		 		 	6
loginfo									7
merge eigenstrat									8
print.admixr_result	 			 		 		 	8
print.EIGENSTRAT									9
qpAdm									9
qpAdm_filter									10
qpAdm_rotation									
qpWave									
read_ind									
read output									14
relabel									15
reset									
transversions_only									
write_ind									
	 	•••	•••	 	•••	 	• •	 	1/
									19

Index

count_snps

Count the number/proportion of present/missing sites in each sample

Description

Count the number/proportion of present/missing sites in each sample

Usage

```
count_snps(data, missing = FALSE, prop = FALSE)
```

Arguments

data	EIGENSTRAT data object.
missing	Count present SNPs or missing SNPs?
prop	Calculate the proportion instead of counts?

Value

A data.frame object with SNP counts/proportions.

download_data

Examples

```
## Not run: snps <- eigenstrat(download_data(dirname = tempdir()))
present_count <- count_snps(snps)
missing_count <- count_snps(snps, missing = TRUE)
present_proportion <- count_snps(snps, prop = TRUE)
missing_proportion <- count_snps(snps, missing = TRUE, prop = TRUE)
## End(Not run)</pre>
```

download_data Download example SNP data.

Description

The data is downloaded to a temporary directory by default.

Usage

```
download_data(dirname = tempdir())
```

Arguments

dirname Directory in which to put the data (EIGENSTRAT trio of snp/geno/ind files).

eigenstrat

EIGENSTRAT data constructor

Description

This function creates an instance of the EIGENSTRAT S3 class, which encapsulates all paths to data files required for an ADMIXTOOLS analysis.

Usage

eigenstrat(prefix = NULL, ind = NULL, snp = NULL, geno = NULL, exclude = NULL)

prefix	Shared path to an EIGENSTRAT trio (set of ind/snp/geno files).
ind, snp, geno	Paths to individual EIGENSTRAT components.
exclude	Pre-defined snp file with excluded sites.

f4ratio

Value

S3 object of the EIGENSTRAT class.

Examples

```
## Not run: # download an example genomic data and get the path prefix to the
# trio of snp/geno/ind files in an EIGENSTRAT format
prefix <- download_data(dirname = tempdir())
# wrap the trio of snp/geno/ind files in an object of the class
# EIGENSTRAT
snps <- eigenstrat(prefix)
## End(Not run)
```

f4ratio

Calculate the D, f4, f4-ratio, or f3 statistic.

Description

Calculate the D, f4, f4-ratio, or f3 statistic.

Usage

```
f4ratio(data, X, A, B, C, O, outdir = NULL, params = NULL)
d(
    data,
    W,
    X,
    Y,
    Z,
    quartets = NULL,
    outdir = NULL,
    f4mode = FALSE,
    params = NULL
)
f3(data, A, B, C, outdir = NULL, inbreed = FALSE, params = NULL)
```

data	EIGENSTRAT data object.
outdir	Where to put all generated files (temporary directory by default).

filter_bed

params	Named list of parameters and their values.
W, X, Y, Z, A, B,	C, 0
	Population names according to the nomenclature used in Patterson et al., 2012.
quartets	List of character vectors (quartets of population/sample labels)
f4mode	Calculate the f4 statistic instead of the D statistic.
inbreed	See README.3PopTest in ADMIXTOOLS for an explanation.

Value

Data frame object with calculated statistics

Examples

```
## Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))</pre>
# define a set of populations to analyze
pops <- c("French", "Sardinian", "Han", "Papuan", "Dinka")</pre>
result_f4ratio <- f4ratio(</pre>
    X = pops, A = "Altai", B = "Vindija", C = "Yoruba", O = "Chimp",
    data = snps
)
result_d <- d(</pre>
    W = pops, X = "Yoruba", Y = "Vindija", Z = "Chimp",
    data = snps
)
result_f4 <- f4(
    W = pops, X = "Yoruba", Y = "Vindija", Z = "Chimp",
    data = snps
)
result_f3 <- f3(
    A = pops, B = "Mbuti", C = "Khomani_San",
    data = snps
)
## End(Not run)
```

filter_bed

Filter EIGENSTRAT data based on a given BED file

Description

Keep (or discard) SNPs that overlap (or lie outside of) regions in a given BED file.

Usage

```
filter_bed(data, bed, remove = FALSE, outfile = tempfile(fileext = ".snp"))
```

Arguments

data	EIGENSTRAT data object.
bed	Path to a BED file.
remove	Remove sites falling inside the BED file regions? By default, sites that do not overlap BED regions are removed.
outfile	Path to an output snp file with coordinates of excluded sites.

Details

This function requires a functioning bedtools installation! See:

- https://github.com/arq5x/bedtools2
- https://bedtools.readthedocs.io/

Value

Updated S3 EIGENSTRAT data object.

Examples

```
## Not run: # download an example genomic data set
prefix <- download_data(dirname = tempdir())
# create an EIGENSTRAT R object from the downloaded data
snps <- eigenstrat(prefix)
# get the path to an example BED file
bed <- file.path(dirname(prefix), "regions.bed")
# BED file contains regions to keep in an analysis
snps_kept <- filter_bed(snps, bed)
# BED file contains regions to remove from an analysis
snps_removed <- filter_bed(snps, bed, remove = TRUE)</pre>
```

End(Not run)

keep_transitions Remove transversions (C->T and G->A substitutions)

Description

Remove substitutions that are more likely to be a result of ancient DNA damage (C->T and G->A substitutions).

loginfo

Usage

keep_transitions(data, outfile = tempfile(fileext = ".snp"))

Arguments

data	EIGENSTRAT data object.
outfile	Path to an output snp file with coordinates of excluded sites.

Value

Updated S3 EIGENSTRAT data object with an additional 'exclude' slot specifying the path to the set of SNPs to be removed.

108	gin	fo
- U E	· · · ·	

Print the full log output of an admixr wrapper to the console.

Description

Print the full log output of an admixr wrapper to the console.

Usage

```
loginfo(x, target = NA, save = FALSE, prefix = NA, dir = ".", suffix = ".txt")
```

Arguments

х	Output from one of the admixr wrappers (d, f4, qpAdm,)
target	A specific log to examine (relevant for multiple target qpAdm runs)
save	Save the log output to a disk?
prefix	Prefix of the output log file(s) (name of the admixr command by default)
dir	In which directory to save the log file(s)?
suffix	Suffix of the output log file(s) (".txt" by default)

Examples

Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))</pre>

define a set of populations to analyze and calculate a D statistic pops <- c("French", "Sardinian", "Han", "Papuan", "Khomani_San", "Mbuti", "Dinka") result_d <- d(W = pops, X = "Yoruba", Y = "Vindija", Z = "Chimp", data = snps)

examine the full log output associated with the returned object

```
loginfo(result_d)
```

End(Not run)

merge_eigenstrat Merge two sets of EIGENSTRAT datasets

Description

This function utilizes the 'mergeit' command distributed in ADMIXTOOLS.

Usage

```
merge_eigenstrat(merged, a, b, strandcheck = "NO")
```

Arguments

merged	Prefix of the path to the merged EIGENSTRAT snp/ind/geno trio.
a, b	Two EIGENSTRAT objects to merge.
strandcheck	Deal with potential strand issues? Mostly for historic reasons. For details see the README of ADMIXTOOLS convertf.

print.admixr_result	Print out the admixr result object (dataframe or a list) without showing
	the hidden attributes.

Description

Print out the admixr result object (dataframe or a list) without showing the hidden attributes.

Usage

```
## S3 method for class 'admixr_result'
print(x, ...)
```

х	admixr output object (dataframe or a list produced by qpAdm/qpWave)
	Additional arguments passed to print.

print.EIGENSTRAT EIGENSTRAT print method

Description

Print EIGENSTRAT object components.

Usage

```
## S3 method for class 'EIGENSTRAT'
print(x, ...)
```

Arguments

х	EIGENSTRAT data object.
	Further arguments passed to or from other methods.

qpAdm

Calculate ancestry proportions in a set of target populations.

Description

Calculate ancestry proportions in a set of target populations.

Usage

```
qpAdm(
   data,
   target,
   sources,
   outgroups,
   outdir = NULL,
   params = list(allsnps = "YES", summary = "YES", details = "YES")
)
```

data	EIGENSTRAT data object.
target	Vector of target populations (evaluated one at a time).
sources	Source populations related to true ancestors.
outgroups	Outgroup populations.
outdir	Where to put all generated files (temporary directory by default).
params	Named list of parameters and their values.

Value

List of three components: 1. estimated ancestry proportions 2. ranks statistics 3. analysis of patterns (all possible subsets of ancestry sources).

Examples

```
## Not run: # download example data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))
# estimate the proportion of Neandertal ancestry in a French
# individual and other associated qpAdm statistics (see detailed
# description in the tutorial vignette)
result <- qpAdm(
    target = "French",
    sources = c("Vindija", "Yoruba"),
    outgroups = c("Chimp", "Denisova", "Altai"),
    data = snps
)
## End(Not run)</pre>
```

qpAdm_filter	Filter qpAdm rotation results for only 'sensible	e' models
--------------	--	-----------

Description

Filter for p-value larger than a specified cuttof and admixture proportions between 0 and 1.

Usage

 $qpAdm_filter(x, p = 0.05)$

Arguments

х	Output of a qpAdm_rotation() function
р	p-value cutoff (default 0: will only filter for sensible admixture proportions)

Value

qpAdm_rotation object filtered down based on p-value

qpAdm_rotation

Examples

```
## Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))</pre>
# find the set of most likely two-source qpAdm models of
# a French individual - produce only the 'proportions'
# qpAdm summary
models <- qpAdm_rotation(</pre>
    data = snps,
    target = "French",
    candidates = c("Dinka", "Mbuti", "Yoruba", "Vindija",
                    "Altai", "Denisova", "Chimp"),
    minimize = TRUE,
    nsources = 2,
    ncores = 2,
    fulloutput = FALSE
)
# filter out models which can clearly be rejected
fits <- qpAdm_filter(models, p = 0.05)</pre>
## End(Not run)
```

qpAdm_rotation	Fit qpAdm models based on the rotation strategy described in Harney
	<i>et al. 2020 (bioRxiv)</i>

Description

Fit qpAdm models based on the rotation strategy described in Harney et al. 2020 (bioRxiv)

Usage

```
qpAdm_rotation(
   data,
   target,
   candidates,
   minimize = TRUE,
   nsources = 2,
   ncores = 1,
   fulloutput = FALSE
}
```

)

data	EIGENSTRAT dataset
target	Target population that is modeled as admixed

candidates	Potential candidates for sources and outgroups
minimize	Test also all possible subsets of outgroups? (default TRUE)
nsources	Number of sources to pull from the candidates
ncores	Number of CPU cores to utilize for model fitting
fulloutput	Report also 'ranks' and 'subsets' analysis from qpAdm in addition to the admix- ture proportions results? (default FALSE)

Value

qpAdm list with proportions, ranks and subsets elements (as with a traditional qpAdm run) or just the proportions (determined by the value of the 'fulloutput' argument)

Examples

```
## End(Not run)
```

)

Find	the	most	likely	number	of	ancestry	waves	using	the	qpWave
meth	od.									

Description

qpWave

Given a set of 'left' populations, estimate the lowest number of necessary admixture sources related to the set of 'right' populations.

qpWave

Usage

```
qpWave(
   data,
   left,
   right,
   maxrank = NULL,
   details = FALSE,
   outdir = NULL,
   params = NULL
)
```

Arguments

data	EIGENSTRAT data object.
left, right	Character vectors of populations labels.
maxrank	Maximum rank to test for.
details	Return the A, B matrices used in rank calculations?
outdir	Where to put all generated files (temporary directory by default).
params	Named list of parameters and their values.

Details

It has been shown (Reich, Nature 2012 - Reconstructing Native American population history) that if the 'left' populations are mixtures of N different sources related to the set of 'right' populations, the rank of the matrix of the form $f_4(left_i, left_j; right_k, right_l)$ will have a rank N - 1. This function uses the ADMIXTOOLS command qpWave to find the lowest possible rank of this matrix that is consistent with the data.

Value

Table of rank test results.

Examples

```
## Not run: # download example data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))
# run the qpWave wrapper (detailed description in the tutorial vignette)
result <- qpWave(
    left = c("French", "Sardinian", "Han"),
    right = c("Altai", "Yoruba", "Mbuti"),
    data = snps
)</pre>
```

End(Not run)

read_ind

Description

These functions each read one part of the EIGENSTRAT dataset trio.

Usage

```
read_ind(data)
```

```
read_snp(data, exclude = FALSE)
```

read_geno(data)

Arguments

data	EIGENSTRAT data object.
exclude	Read the list of excluded SNPs?

Details

Note that read_geno() will only read plain-text geno files, not compressed ones.

Value

A data.frame object.

read_output

Read an output file from one of the ADMIXTOOLS programs.

Description

Read an output file from one of the ADMIXTOOLS programs.

Usage

read_output(file, ...)

Arguments

file	A path to an output file.
	See the 'details' argument of qpWave.

Value

A tibble with the results.

relabel

Description

Replace population/sample names with specified group labels.

Usage

```
relabel(data, ..., outfile = tempfile(fileext = ".ind"))
```

Arguments

data	EIGENSTRAT trio.
	Population/sample names to merge (each new group defined as a character vector).
outfile	Path to an output snp file with coordinates of excluded sites.

Value

Updated S3 EIGENSTRAT data object with an additional 'group' slot specifying the path to a new ind file. #'

Examples

Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))</pre>

```
# group individual samples into larger populations, creating a new
# EIGENSTRAT R object
new_snps <- relabel(
    snps,
    European = c("French", "Sardinian"),
    African = c("Dinka", "Yoruba", "Mbuti", "Khomani_San"),
    Archaic = c("Vindija", "Altai", "Denisova")
)
```

End(Not run)

reset

Description

Set 'exclude' and 'group' modifications of snp and ind files, effectively resetting the dataset into its original state.

Usage

reset(data)

Arguments

data EIGENSTRAT data object.

Value

EIGENSTRAT data S3 object.

Examples

```
## Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))
# group individual samples into larger populations, creating a new
# EIGENSTRAT R object
new_snps <- relabel(
    snps,
    European = c("French", "Sardinian"),
    African = c("Dinka", "Yoruba", "Mbuti", "Khomani_San"),
    Archaic = c("Vindija", "Altai", "Denisova")
)
# remove the population grouping in the previous step - this
# results in the same EIGENSTRAT object tht we started with
original_snps <- reset(new_snps)
## End(Not run)</pre>
```

transversions_only *Remove transversions (C->T and G->A substitutions)*

Description

Remove substitutions that are more likely to be a result of ancient DNA damage (C->T and G->A substitutions).

Usage

```
transversions_only(data, outfile = tempfile(fileext = ".snp"))
```

Arguments

data	EIGENSTRAT data object.
outfile	Path to an output snp file with coordinates of excluded sites.

Value

Updated S3 EIGENSTRAT data object with an additional 'exclude' slot specifying the path to the set of SNPs to be removed from a downstream analysis.

Examples

```
## Not run: # download an example genomic data set and prepare it for analysis
snps <- eigenstrat(download_data(dirname = tempdir()))</pre>
```

perform the calculation only on transversions snps_tv <- transversions_only(snps) results_d <- d(W = "French", X = "Dinka", Y = "Altai", Z = "Chimp", data = snps_tv)</pre>

End(Not run)

write_ind

Write an EIGENSTRAT ind/snp/geno file.

Description

Write an EIGENSTRAT ind/snp/geno file.

Usage

```
write_ind(df, file)
write_snp(df, file)
write_geno(df, file)
```

df	A data.frame object.
file	Path to an output file.

Index

 $count_snps, 2$ d(f4ratio),4 $\texttt{download_data, 3}$ eigenstrat, 3 f3(f4ratio),4 f4(f4ratio),4 f4ratio,4 filter_bed, 5 keep_transitions, 6 loginfo,7 merge_eigenstrat, 8 print.admixr_result, 8 print.EIGENSTRAT,9 qpAdm, 9 $\texttt{qpAdm_filter, 10}$ $\texttt{qpAdm_rotation, 11}$ qpWave, 12 $read_geno(read_ind), 14$ read_ind, 14 read_output, 14 read_snp (read_ind), 14 relabel, <mark>15</mark> reset, 16 transversions_only, 17

write_geno (write_ind), 17
write_ind, 17
write_snp (write_ind), 17