
Package ‘admiralonco’
January 27, 2025

Type Package

Title Oncology Extension Package for ADaM in 'R' Asset Library

Version 1.2.0

Description Programming oncology specific Clinical Data Interchange Standards Consortium
(CDISC) compliant Analysis Data Model (ADaM) datasets in 'R'. ADaM datasets are a
mandatory part of any New Drug or Biologics License Application submitted to the
United States Food and Drug Administration (FDA). Analysis derivations are
implemented in accordance with the ``Analysis Data Model Implementation Guide''
(CDISC Analysis Data Model Team (2021), <https:
//www.cdisc.org/standards/foundational/adam>).
The package is an extension package of the 'admiral' package.

Language en-US

License Apache License (>= 2)

BugReports https://github.com/pharmaverse/admiralonco/issues

URL https://pharmaverse.github.io/admiralonco/,

https://github.com/pharmaverse/admiralonco

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5)

Imports admiral (>= 1.0.0), admiraldev (>= 1.0.0), dplyr (>= 0.8.4),
lifecycle (>= 0.1.0), lubridate (>= 1.7.4), magrittr (>= 1.5),
rlang (>= 0.4.4), tidyselect (>= 1.0.0)

Suggests pharmaversesdtm, pharmaverseadam, devtools, diffdf, lintr,
pkgdown, testthat (>= 3.0.0), knitr, methods, miniUI,
rmarkdown, roxygen2, spelling, stringr, tibble, usethis, covr,
DT, metatools, cli, gt

VignetteBuilder knitr

Config/testthat/edition 3

Config/Needs/website gert

1

https://www.cdisc.org/standards/foundational/adam
https://www.cdisc.org/standards/foundational/adam
https://github.com/pharmaverse/admiralonco/issues
https://pharmaverse.github.io/admiralonco/
https://github.com/pharmaverse/admiralonco

2 Contents

NeedsCompilation no

Author Stefan Bundfuss [aut, cre],
Ross Farrugia [aut],
Amit Jain [aut],
Andrew Smith [aut],
Teckla Akinyi [aut],
Samia Kabi [aut],
Stephen Gormley [aut],
Hinal Patel [aut],
Vinh Nguyen [aut],
Olga Starostecka [aut],
Uwe Bader [ctb],
Karl Kennedy [ctb],
Edoardo Mancini [ctb],
Matt Marino [ctb],
Gopi Vegesna [ctb],
Thomas Neitmann [ctb],
Annie Yang [ctb],
Konstantina Koukourikou [ctb],
Pavan Kumar [ctb],
Liming Jin [ctb],
Yirong Cao [ctb],
Zhang Kangjie [ctb],
F. Hoffmann-La Roche AG [cph, fnd],
GlaxoSmithKline LLC [cph, fnd],
Amgen Inc. [cph, fnd],
Bristol Myers Squibb [cph, fnd]

Maintainer Stefan Bundfuss <stefan.bundfuss@roche.com>

Repository CRAN

Date/Publication 2025-01-27 12:40:01 UTC

Contents
admiral_adrs . 3
aval_resp . 3
death_event . 4
derive_param_bor . 5
derive_param_clinbenefit . 10
derive_param_confirmed_bor . 13
derive_param_confirmed_resp . 19
derive_param_response . 24
filter_pd . 28
get_crpr_dataset . 32
rsp_y . 33
signal_crpr . 34

Index 36

admiral_adrs 3

admiral_adrs Response Analysis Dataset

Description

An example response analysis dataset

Usage

admiral_adrs

Format

An object of class tbl_df (inherits from tbl, data.frame) with 3694 rows and 75 columns.

Source

Derived from the adsl, rs and tu datasets using {admiralonco} (https://github.com/pharmaverse/
admiralonco/blob/main/inst/templates/ad_adrs.R)

aval_resp Map Character Response Values to Numeric Values

Description

Map character response values like "PR" or "SD" to numeric values.

Usage

aval_resp(arg)

Arguments

arg Character vector

Value

• 1 if arg equals "CR",

• 2 if arg equals "PR",

• 3 if arg equals "SD",

• 4 if arg equals "NON-CR/NON-PD",

• 5 if arg equals "PD",

• 6 if arg equals "NE",

• 7 if arg equals "MISSING",

• NA_real_ otherwise

https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adrs.R
https://github.com/pharmaverse/admiralonco/blob/main/inst/templates/ad_adrs.R

4 death_event

Author(s)

Stefan Bundfuss

Examples

aval_resp(c("CR", "PR", "SD", "NON-CR/NON-PD", "PD", "NE", "MISSING", "ND", NA_character_))

death_event Pre-Defined Time-to-Event Source Objects

Description

These pre-defined tte_source objects can be used as input to admiral::derive_param_tte().

Usage

death_event

lastalive_censor

pd_event

lasta_censor

rand_censor

trts_censor

Details

To see the definition of the various objects simply print the object in the R console, e.g. print(death_event).
For details of how to use these objects please refer to admiral::derive_param_tte().

Printing an object will display input dataset_name, filter (if applicable), date variable, and appro-
priate values for EVNTDESC, CNSDTDSC, SRCDOM, SRCVAR, and SRCSEQ.

See Also

admiral::derive_param_tte(), admiral::tte_source(), admiral::event_source(), admiral::censor_source()

Examples

This shows the definition of all pre-defined `tte_source` objects that ship
with {admiralonco}
for (obj in admiral::list_tte_source_objects(package = "admiralonco")$object) {

cat(obj, "\n")
print(get(obj, envir = getNamespace("admiralonco")))
cat("\n")

}

derive_param_bor 5

derive_param_bor Adds a Parameter for Best Overall Response (without confirmation)

Description

[Superseded] The derive_param_bor() function has been superseded in favor of derive_extreme_event().

Adds a parameter for best overall response, without confirmation, optionally up to first progressive
disease

Usage

derive_param_bor(
dataset,
dataset_adsl,
filter_source,
source_pd = NULL,
source_datasets = NULL,
reference_date,
ref_start_window,
missing_as_ne = FALSE,
aval_fun,
set_values_to,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset The input dataframe from which the Best Overall Response will be derived from
and added to.
The columns PARAMCD, ADT, and AVALCand the columns specified in subject_keys
and reference_date are expected.
After applying filter_source and/or source_pd the column ADT and the columns
specified by subject_keys must be a unique key of the dataframe.
Permitted Values: a data.frame() object

dataset_adsl ADSL input dataset.
The columns specified in the subject_keys argument are expected. For each sub-
ject in the passed dataset a new row is added to the input dataset. Columns
in dataset_adsl that also appear in dataset will be populated with the appro-
priate subject-specific value for these new rows.
Permitted Values: a data.frame() object

filter_source Filter to be applied to dataset to derive the Best Overall Response
source_pd Date of first progressive disease (PD)

If the parameter is specified, the observations of the input dataset for deriving
the new parameter are restricted to observations up to the specified date. Obser-
vations at the specified date are included. For subjects without first PD date all
observations are take into account.

6 derive_param_bor

Permitted Values: a date_source object (see date_source() for details)
source_datasets

Source dataframe to be used to calculate the first PD date
A named list of dataframes is expected (although for BOR) only one dataframe is
needed. It links the dataset_name from source_pd with an existing dataframe.
For example if source_pd = pd_date with

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == PD

)

and the actual response dataframe in the script is myadrs, source_datasets =
list(adrs = myadrs) should be specified.

reference_date Reference date
The reference date is used along with ref_start_window to determine those
records that occur before and after ADT (see Details section for further informa-
tion). Usually it is treatment start date (TRTSDT) or randomization date (RANDDT).
Permitted Values: a numeric date column

ref_start_window

Stable disease time window
The ref_start_window is used along with reference_date to determine those
records that occur before and after ADT (i.e. for a record determine whether
ADT >= reference_date + ref_start_window), see Details section for further
information.
Permitted Values: a non-negative numeric scalar

missing_as_ne Consider no assessments as "NE"?
If the argument is set to TRUE, the response is set to "NE" for subjects in dataset_adsl
without an assessment in the dataset after the filter has been applied. Other-
wise, the response is set to "MISSING" for these subjects.
Permitted Values: a logical scalar

aval_fun Deprecated, please use set_values_to instead.
Function to map character analysis value (AVALC) to numeric analysis value
(AVAL)
The (first) argument of the function must expect a character vector and the func-
tion must return a numeric vector.

set_values_to New columns to set
A named list returned by exprs() defining the columns to be set for the new pa-
rameter, e.g. exprs(PARAMCD = "BOR", PARAM = "Best Overall Response")
is expected. The values must be symbols, character strings, numeric values,
or NA.

subject_keys Columns to uniquely identify a subject
Permitted Values: A list of symbols created using exprs().

derive_param_bor 7

Details

Calculates the best overall response (BOR) parameter, as detailed below.

Records after PD can be removed using the source_pd and source_datasets arguments.

Note:

1. All CR, PR and PD response records are considered for Best Overall Response.

2. All SD or NON-CR/NON-PD records where ADT >= reference_date + ref_start_window are
also considered for Best Overall Response.

3. Subjects with ONLY an SD or NON-CR/NON-PD records where ADT < reference_date +
ref_start_window are assigned a Best Overall Response of NE.

4. The Best Response, from the records in steps 1 to 3, is then selected in the following order of
preference: CR, PR, SD, NON-CR/NON-PD, PD, NE, MISSING

5. The AVAL column is added and set using the aval_fun(AVALC) function

6. The columns specified by the set_values_to parameter and records are added to the dataframe
passed into the dataset argument

Note: Any responses of SD or NON-CR/NON-PD that occur before reference_date + ref_start_window
are ignored in the calculation of BOR. All other responses are included in the calculation of BOR,
irrespective of the number of days from the reference date.

Also Note: All columns from the input dataset are kept. For subjects with no records in the input
dataset (after the filter is applied) all columns are kept from ADSL which are also in the input
dataset. Columns which are not to be populated for the new parameter or populated differently
(e.g. RSSTRESC, VISIT, PARCATy, ANLzzFL, ...) should be overwritten using the set_values_to
parameter.

Value

The dataframe passed in the dataset argument with additional columns and/or rows as set in the
set_values_to argument.

Author(s)

Stephen Gormley

See Also

Other superseded: derive_param_clinbenefit(), derive_param_confirmed_bor(), derive_param_confirmed_resp(),
derive_param_response(), filter_pd()

Examples

library(magrittr)
library(dplyr)
library(tibble)
library(lubridate)
library(admiral)

Create ADSL dataset

8 derive_param_bor

adsl <- tribble(
~USUBJID, ~TRTSDTC,
"1", "2020-01-01",
"2", "2019-12-12",
"3", "2019-11-11",
"4", "2019-12-30",
"5", "2020-01-01",
"6", "2020-02-02",
"7", "2020-02-02",
"8", "2020-04-01"

) %>%
mutate(
TRTSDT = ymd(TRTSDTC),
STUDYID = "XX1234"

)

Create ADRS dataset
ovr_obs <- tribble(

~USUBJID, ~ADTC, ~AVALC, ~ANL01FL,
"1", "2020-01-01", "PR", "Y",
"1", "2020-02-01", "CR", "Y",
"1", "2020-02-16", "NE", "Y",
"1", "2020-03-01", "CR", "Y",
"1", "2020-04-01", "SD", "Y",
"2", "2020-01-01", "SD", "Y",
"2", "2020-02-01", "PR", "Y",
"2", "2020-03-01", "SD", "Y",
"2", "2020-03-13", "CR", "Y",
"3", "2019-11-12", "CR", "Y",
"3", "2019-12-02", "CR", "Y",
"3", "2020-01-01", "SD", "Y",
"4", "2020-01-01", "PR", "Y",
"4", "2020-03-01", "SD", "N",
"4", "2020-04-01", "SD", "Y",
"4", "2020-05-01", "PR", "Y",
"4", "2020-05-15", "NON-CR/NON-PD", "Y",
"5", "2020-01-01", "PR", "Y",
"5", "2020-01-10", "SD", "Y",
"5", "2020-01-20", "PR", "Y",
"5", "2020-05-15", "NON-CR/NON-PD", "Y",
"6", "2020-02-06", "PR", "Y",
"6", "2020-02-16", "CR", "Y",
"6", "2020-03-30", "PR", "Y",
"6", "2020-04-12", "PD", "Y",
"6", "2020-05-01", "CR", "Y",
"6", "2020-06-01", "CR", "Y",
"7", "2020-02-06", "PR", "Y",
"7", "2020-02-16", "CR", "Y",
"7", "2020-04-01", "NE", "N"

) %>%
mutate(PARAMCD = "OVR")

pd_obs <-

derive_param_bor 9

bind_rows(tribble(
~USUBJID, ~ADTC, ~AVALC,
"2", "2020-03-01", "Y",
"4", "2020-02-01", "Y"

) %>%
mutate(PARAMCD = "PD"))

adrs <- bind_rows(ovr_obs, pd_obs) %>%
mutate(
ADT = ymd(ADTC),
STUDYID = "XX1234"

) %>%
select(-ADTC) %>%
derive_vars_merged(

dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDT)

)

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD"

)

aval_fun_pass <- function(arg) {
case_when(

arg == "CR" ~ 11,
arg == "PR" ~ 22,
arg == "SD" ~ 33,
arg == "NON-CR/NON-PD" ~ 44,
arg == "PD" ~ 55,
arg == "NE" ~ 66,
arg == "MISSING" ~ 77,
TRUE ~ NA_real_

)
}

Derive best overall response parameter
derive_param_bor(

adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd_date,
source_datasets = list(adrs = adrs),
aval_fun = aval_fun_pass,
reference_date = TRTSDT,
ref_start_window = 28,
set_values_to = exprs(

PARAMCD = "BOR",
PARAM = "Best Overall Response"

)
) %>%

10 derive_param_clinbenefit

filter(PARAMCD == "BOR")

derive_param_clinbenefit

Adds a Parameter for Clinical Benefit

Description

[Superseded] The derive_param_clinbenefit() function has been superseded in favor of derive_extreme_event().

Adds a parameter for clinical benefit/disease control

Usage

derive_param_clinbenefit(
dataset,
dataset_adsl,
filter_source,
source_resp,
source_pd = NULL,
source_datasets,
reference_date,
ref_start_window,
aval_fun,
clinben_vals = c("CR", "PR", "SD", "NON-CR/NON-PD"),
set_values_to,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset Input dataset. This is the dataset to which the clinical benefit rate parameter will
be added.
The variables PARAMCD, AVALC, ADT, and those specified by the subject_keys
parameter and the reference_date parameter are expected.
After applying filter_source and/or source_pd the variable ADT and the vari-
ables specified by subject_keys must be a unique key of the dataset.

dataset_adsl ADSL input dataset.
The variables specified for subject_keysis expected. For each subject of the
specified dataset a new observation is added to the input dataset. Variables in
dataset_adsl that also appear in dataset will be populated with the appropri-
ate subject-specific value for these new observations.

filter_source Filter condition in dataset that represents records for overall disease response
assessment for a subject at a given timepoint, e.g. PARAMCD == "OVR" or PARAMCD
== "OVRLRESP".

source_resp A date_source object specifying the dataset, date variable, and filter condition
used to identify response status.

derive_param_clinbenefit 11

source_pd A date_source object specifying the dataset, date variable, and filter condition
used to identify disease progression.

source_datasets

A named list of data sets is expected.
The list must contain the names provided by the dataset_name field of the
date_source() objects specified for source_pd and source_resp.

reference_date Name of variable representing the index date for ref_start_window. A variable
providing a date. An unquoted symbol is expected.

ref_start_window

Integer representing number of days from reference_date that must elapse be-
fore an evaluable non-PD assessment counts toward determining clinical benefit.

aval_fun Deprecated, please use set_values_to instead.
Function to map character analysis value (AVALC) to numeric analysis value
(AVAL)
The (first) argument of the function must expect a character vector and the func-
tion must return a numeric vector.

clinben_vals A vector of response values to be considered when determining clinical benefit.

set_values_to A named list returned by exprs() containing new variables and their static value
to be populated for the clinical benefit rate parameter records, e.g. exprs(PARAMCD
= "CBR", PARAM = "Clinical Benefit Rate").

subject_keys A named list returned by exprs() containing variables used to uniquely identify
subjects.

Details

Clinical benefit/disease control is first identified by looking for subjects having response status, and
then derived for subjects that have at least one evaluable non-PD response assessment prior to first
PD (Progressive Disease) (i.e., responses inclusive of CR, PR, SD, and NON-CR/NON-PD) and after a
specified amount of time from a reference date (ref_start_window).

Note: The user input values they wish to include when determining clinical benefit using the ar-
gument clinben_vals. The default values for this are CR, PR, SD, and NON-CR/NON-PD, as listed
above. In the below example, eligible values be limited to CR and PR.

Example: clinben_vals <- c("CR", "PR")

1. The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

2. This dataset is further restricted to include user-generated response assessments from clinben_vals
or include response assessments of CR, PR, SD, and NON-CR/NON-PD, exclude missing response
assessments, and exclude those less than ref_start_window after reference_date. The
earliest assessment by ADT is then selected.

3. The dataset identified by dataset in source_resp is restricted according to its filter ar-
gument. The variable corresponding to the date parameter of source_resp is considered
together with ADT from the previous step.

4. For the observations being added to dataset, ADT is set to the earlier of the first assessment
date representing an evaluable non-PD assessment prior to first PD, or the date representing
the start of response.

12 derive_param_clinbenefit

5. For the observations being added to dataset, AVALC is set to

• Y for those subjects in the dataset meeting the criteria for clinical benefit above
• N for subjects not meeting the clinical benefit criteria in dataset or the dataset identified

in source_resp

• N for subjects present in dataset_adsl but not present in dataset or the dataset identi-
fied in source_resp.

6. AVAL is derived using AVALC as input to the function specified in aval_fun.

7. The variables specified by set_values_to are added to the new observations with values
equal to the values specified in the same.

8. The new observations are added to dataset. Variables held in common between dataset and
dataset_adsl are kept for the new observations, and are populated with their values from
dataset_adsl.

Value

The input dataset with a new parameter for clinical benefit

Author(s)

Andrew Smith

See Also

Other superseded: derive_param_bor(), derive_param_confirmed_bor(), derive_param_confirmed_resp(),
derive_param_response(), filter_pd()

Examples

library(lubridate)
library(dplyr)
library(admiral)

adsl <- tibble::tribble(
~USUBJID, ~TRTSDT,
"01", ymd("2020-01-14"),
"02", ymd("2021-02-16"),
"03", ymd("2021-03-09"),
"04", ymd("2021-04-21")

) %>%
mutate(STUDYID = "AB42")

adrs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~AVALC, ~ADT,
"01", "RSP", "Y", ymd("2021-03-14"),
"02", "RSP", "N", ymd("2021-05-07"),
"03", "RSP", "N", NA,
"04", "RSP", "N", NA,
"01", "PD", "N", NA,
"02", "PD", "Y", ymd("2021-05-07"),
"03", "PD", "N", NA,

derive_param_confirmed_bor 13

"04", "PD", "N", NA,
"01", "OVR", "SD", ymd("2020-03-14"),
"01", "OVR", "PR", ymd("2021-04-13"),
"02", "OVR", "PR", ymd("2021-04-08"),
"02", "OVR", "PD", ymd("2021-05-07"),
"02", "OVR", "CR", ymd("2021-06-20"),
"03", "OVR", "SD", ymd("2021-03-30"),
"04", "OVR", "NE", ymd("2021-05-21"),
"04", "OVR", "NA", ymd("2021-06-30"),
"04", "OVR", "NE", ymd("2021-07-24"),
"04", "OVR", "ND", ymd("2021-09-04"),

) %>%
mutate(STUDYID = "AB42", ANL01FL = "Y") %>%
derive_vars_merged(

dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDT)

)

pd <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD" & AVALC == "Y" & ANL01FL == "Y"

)

resp <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "RSP" & AVALC == "Y" & ANL01FL == "Y"

)

derive_param_clinbenefit(
dataset = adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_resp = resp,
source_pd = pd,
source_datasets = list(adrs = adrs),
reference_date = TRTSDT,
ref_start_window = 28,
set_values_to = exprs(

PARAMCD = "CBR"
)

) %>%
filter(PARAMCD == "CBR")

derive_param_confirmed_bor

Adds a Parameter for Confirmed Best Overall Response

14 derive_param_confirmed_bor

Description

[Superseded] The derive_param_confirmed_bor() function has been superseded in favor of
derive_extreme_event().

Adds a parameter for confirmed best overall response (BOR)

Usage

derive_param_confirmed_bor(
dataset,
dataset_adsl,
filter_source,
source_pd = NULL,
source_datasets = NULL,
reference_date,
ref_start_window,
ref_confirm,
max_nr_ne = 1,
accept_sd = FALSE,
missing_as_ne = FALSE,
aval_fun,
set_values_to,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset Input dataset
The PARAMCD, ADT, and AVALC variables and the variables specified by subject_keys
and reference_date are expected.
After applying filter_source and/or source_pd the variable ADT and the vari-
ables specified by subject_keys must be a unique key of the dataset.

dataset_adsl ADSL input dataset
The variables specified for subject_keys are expected. For each subject of the
specified dataset a new observation is added to the input dataset.

filter_source Source filter
All observations in dataset_source fulfilling the specified condition are con-
sidered for deriving the confirmed best overall response.

source_pd Date of first progressive disease (PD)
If the parameter is specified, the observations of the input dataset for deriving
the new parameter are restricted to observations up to the specified date. Obser-
vations at the specified date are included. For subjects without first PD date all
observations are take into account.
Permitted Values: a date_source object (see admiral::date_source() for
details)

source_datasets

Source dataset for the first PD date

derive_param_confirmed_bor 15

A named list of datasets is expected. It links the dataset_name from source_pd
with an existing dataset.
For example if source_pd = pd_date with

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == PD

)

and the actual response dataset in the script is myadrs, source_datasets =
list(adrs = myadrs) should be specified.

reference_date Reference date
The reference date is used for the derivation of "SD" and "NON-CR/NON-PD"
response (see "Details" section). Usually it is treatment start date (TRTSDT) or
randomization date (RANDDT).
Permitted Values: a numeric date variable

ref_start_window

Stable disease time window
Assessments at least the specified number of days after the reference date (i.e.
where ADT >= reference_date + ref_start_window) with response "CR",
"PR", "SD", or "NON-CR/NON-PD" are considered for "SD" or "NON-CR/NON-PD"
response.
Permitted Values: a non-negative numeric scalar

ref_confirm Minimum time period for confirmation
The assessment and the confirmatory assessment for "CR" and "PR" have to be
at least the specified number of days apart.

max_nr_ne The specified number of "NE" assessments between the assessment and the con-
firmatory assessment for "CR" and "PR" response is accepted.
Permitted Values: a non-negative numeric scalar

accept_sd Accept "SD" for "PR"?
If the argument is set to TRUE, one "SD" assessment between the assessment and
the confirmatory assessment for "PR" response is accepted. Otherwise, no "SD"
assessment must occur between the two assessments.
Permitted Values: a logical scalar

missing_as_ne Consider no assessments as "NE"?
If the argument is set to TRUE, the response is set to "NE" for subjects without an
assessment in the input dataset. Otherwise, the response is set to "MISSING" for
these subjects.
Permitted Values: a logical scalar

aval_fun Deprecated, please use set_values_to instead.
Function to map character analysis value (AVALC) to numeric analysis value
(AVAL)
The (first) argument of the function must expect a character vector and the func-
tion must return a numeric vector.

16 derive_param_confirmed_bor

set_values_to Variables to set
A named list returned by exprs() defining the variables to be set for the new pa-
rameter, e.g. exprs(PARAMCD = "CBOR", PARAM = "Confirmed Best Overall
Response") is expected. The values must be symbols, character strings, nu-
meric values, or NA.

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.

Details

1. The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

2. The following potential confirmed responses are selected from the restricted input dataset:

• "CR": An assessment is considered as complete response (CR) if
– AVALC == "CR",
– there is a confirmatory assessment with AVALC == "CR" at least ref_confirm days

after the assessment,
– all assessments between the assessment and the confirmatory assessment are "CR" or
"NE", and

– there are at most max_nr_ne "NE" assessments between the assessment and the con-
firmatory assessment.

• "PR": An assessment is considered as partial response (PR) if
– AVALC == "PR",
– there is a confirmatory assessment with AVALC %in% c("CR", "PR") at least ref_confirm

days after the assessment,
– all assessments between the assessment and the confirmatory assessment are "CR",
"PR", "SD", or "NE",

– there is no "PR" assessment after a "CR" assessment in the confirmation period,
– there are at most max_nr_ne "NE" assessments between the assessment and the con-

firmatory assessment, and
– if the accept_sd argument is set to TRUE, one "SD" assessment in the confirmation

period is accepted. Otherwise, no "SD" assessment must occur within the confirma-
tion period.

• "SD": An assessment is considered as stable disease (SD) if
– AVALC %in% c("CR", "PR", "SD") and
– the assessment is at least ref_start_window days after reference_date.

• "NON-CR/NON-PD": An assessment is considered as NON-CR/NON-PD if
– AVALC = "NON-CR/NON-PD" and
– the assessment is at least ref_start_window days after reference_date.

• "PD": An assessment is considered as progressive disease (PD) if AVALC == "PD".
• "NE": An assessment is considered as not estimable (NE) if

– AVALC == "NE" or
– AVALC %in% c("CR", "PR", "SD", "NON-CR/NON-PD") and the assessment is less than
ref_start_window days after reference_date.

derive_param_confirmed_bor 17

• "ND": An assessment is considered as not done (ND) if AVALC == "ND".
• "MISSING": An assessment is considered as missing (MISSING) if a subject has no ob-

servation in the input dataset.
If the missing_as_ne argument is set to TRUE, AVALC is set to "NE" for these subjects.

3. For each subject the best response as derived in the previous step is selected, where "CR" is
best and "MISSING" is worst in the order above. If the best response is not unique, the first one
(with respect to ADT) is selected. If the selected record is from the input dataset, all variables
are kept. If the selected record is from dataset_adsl, all variables which are in both dataset
and dataset_adsl are kept.

4. The AVAL variable is added and set to aval_fun(AVALC).

5. The variables specified by the set_values_to parameter are added to the new observations.

6. The new observations are added to input dataset.

Value

The input dataset with a new parameter for confirmed best overall response

Author(s)

Stefan Bundfuss

See Also

Other superseded: derive_param_bor(), derive_param_clinbenefit(), derive_param_confirmed_resp(),
derive_param_response(), filter_pd()

Examples

library(dplyr)
library(lubridate)
library(admiral)

Create ADSL dataset
adsl <- tibble::tribble(

~USUBJID, ~TRTSDTC,
"1", "2020-01-01",
"2", "2019-12-12",
"3", "2019-11-11",
"4", "2019-12-30",
"5", "2020-01-01",
"6", "2020-02-02",
"7", "2020-02-02",
"8", "2020-04-01",
"9", "2020-03-01"

) %>%
mutate(
TRTSDT = ymd(TRTSDTC),
STUDYID = "XX1234"

)

18 derive_param_confirmed_bor

Create ADRS dataset
ovr_obs <- tibble::tribble(

~USUBJID, ~ADTC, ~AVALC,
"1", "2020-01-01", "PR",
"1", "2020-02-01", "CR",
"1", "2020-02-16", "NE",
"1", "2020-03-01", "CR",
"1", "2020-04-01", "SD",
"2", "2020-01-01", "SD",
"2", "2020-02-01", "PR",
"2", "2020-03-01", "SD",
"2", "2020-03-13", "CR",
"3", "2019-11-12", "CR",
"3", "2019-12-02", "CR",
"3", "2020-01-01", "SD",
"4", "2020-01-01", "PR",
"4", "2020-03-01", "SD",
"4", "2020-04-01", "SD",
"4", "2020-05-01", "PR",
"4", "2020-05-15", "NON-CR/NON-PD",
"5", "2020-01-01", "PR",
"5", "2020-01-10", "SD",
"5", "2020-01-20", "PR",
"5", "2020-05-15", "NON-CR/NON-PD",
"6", "2020-02-06", "PR",
"6", "2020-02-16", "CR",
"6", "2020-03-30", "PR",
"6", "2020-04-12", "PD",
"6", "2020-05-01", "CR",
"6", "2020-06-01", "CR",
"7", "2020-02-06", "PR",
"7", "2020-02-16", "CR",
"7", "2020-04-01", "NE",
"9", "2020-03-16", "CR",
"9", "2020-04-01", "NE",
"9", "2020-04-16", "NE",
"9", "2020-05-01", "CR"

) %>%
mutate(PARAMCD = "OVR", ANL01FL = "Y")

pd_obs <-
bind_rows(tibble::tribble(
~USUBJID, ~ADTC, ~AVALC,
"6", "2020-04-12", "Y"

) %>%
mutate(PARAMCD = "PD", ANL01FL = "Y"))

adrs <- bind_rows(ovr_obs, pd_obs) %>%
mutate(
ADT = ymd(ADTC),
STUDYID = "XX1234"

) %>%
select(-ADTC) %>%

derive_param_confirmed_resp 19

derive_vars_merged(
dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDT)

)

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD" & ANL01FL == "Y"

)

Derive confirmed best overall response parameter
derive_param_confirmed_bor(

adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd_date,
source_datasets = list(adrs = adrs),
reference_date = TRTSDT,
ref_start_window = 28,
ref_confirm = 28,
set_values_to = exprs(

PARAMCD = "CBOR",
PARAM = "Best Confirmed Overall Response by Investigator"

)
) %>%

filter(PARAMCD == "CBOR")

Derive confirmed best overall response parameter (accepting SD for PR,
accept two NEs, and considering missings as NE)
derive_param_confirmed_bor(

adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd_date,
source_datasets = list(adrs = adrs),
reference_date = TRTSDT,
ref_start_window = 28,
ref_confirm = 28,
max_nr_ne = 2,
accept_sd = TRUE,
missing_as_ne = TRUE,
set_values_to = exprs(

PARAMCD = "CBOR",
PARAM = "Best Confirmed Overall Response by Investigator"

)
) %>%

filter(PARAMCD == "CBOR")

20 derive_param_confirmed_resp

derive_param_confirmed_resp

Adds a Parameter for Confirmed Response

Description

[Superseded] The derive_param_confirmed_resp() function has been superseded in favor of
derive_extreme_event().

Adds a parameter for confirmed response

Usage

derive_param_confirmed_resp(
dataset,
dataset_adsl,
filter_source,
source_pd = NULL,
source_datasets = NULL,
ref_confirm,
max_nr_ne = 1,
accept_sd = FALSE,
aval_fun,
set_values_to,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset Input dataset
The PARAMCD, ADT, and AVALC variables and the variables specified by subject_keys
and reference_date are expected.
After applying filter_source and/or source_pd the variable ADT and the vari-
ables specified by subject_keys must be a unique key of the dataset.

dataset_adsl ADSL input dataset
The variables specified for subject_keys are expected. For each subject of the
specified dataset a new observation is added to the input dataset.

filter_source Source filter
All observations in dataset_source fulfilling the specified condition are con-
sidered for deriving the confirmed response.

source_pd Date of first progressive disease (PD)
If the parameter is specified, the observations of the input dataset for deriving
the new parameter are restricted to observations up to the specified date. Obser-
vations at the specified date are included. For subjects without first PD date all
observations are take into account.
Permitted Values: a date_source object (see admiral::date_source() for
details)

derive_param_confirmed_resp 21

source_datasets

Source dataset for the first PD date
A named list of datasets is expected. It links the dataset_name from source_pd
with an existing dataset.
For example if source_pd = pd_date with

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == PD

)

and the actual response dataset in the script is myadrs, source_datasets =
list(adrs = myadrs) should be specified.

ref_confirm Minimum time period for confirmation
The assessment and the confirmatory assessment for "CR" and "PR" have to be
at least the specified number of days apart.

max_nr_ne The specified number of "NE" assessments between the assessment and the con-
firmatory assessment for "CR" and "PR" response is accepted.
Permitted Values: a non-negative numeric scalar

accept_sd Accept "SD" for "PR"?
If the argument is set to TRUE, one "SD" assessment between the assessment and
the confirmatory assessment for "PR" response is accepted. Otherwise, no "SD"
assessment must occur between the two assessments.
Permitted Values: a logical scalar

aval_fun Deprecated, please use set_values_to instead.
Function to map character analysis value (AVALC) to numeric analysis value
(AVAL)
The (first) argument of the function must expect a character vector and the func-
tion must return a numeric vector.

set_values_to Variables to set
A named list returned by exprs() defining the variables to be set for the new
parameter, e.g. exprs(PARAMCD = "CRSP", PARAM = "Confirmed Response")
is expected. The values must be symbols, character strings, numeric values, or
NA.

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.

Details

1. The input dataset (dataset) is restricted to the observations matching filter_source and to
observations before or at the date specified by source_pd.

2. A subject is considered as responder if there is at least one observation in the restricted dataset
with

• AVALC == "CR",

22 derive_param_confirmed_resp

• there is a confirmatory assessment with AVALC == "CR" at least ref_confirm days after
the assessment,

• all assessments between the assessment and the confirmatory assessment are "CR" or
"NE", and

• there are at most max_nr_ne "NE" assessments between the assessment and the confirma-
tory assessment.

or at least one observation with

• AVALC == "PR",
• there is a confirmatory assessment with AVALC %in% c("CR", "PR") at least ref_confirm

days after the assessment,
• all assessments between the assessment and the confirmatory assessment are "CR", "PR",
"SD", or "NE",

• there is no "PR" assessment after a "CR" assessment in the confirmation period,
• there are at most max_nr_ne "NE" assessments between the assessment and the confirma-

tory assessment,
• if the accept_sd argument is set to TRUE, one "SD" assessment in the confirmation period

is accepted. Otherwise, no "SD" assessment must occur within the confirmation period.

3. For responders AVALC is set to "Y" and ADT to the first date where the response criteria are
fulfilled. For all other subjects in dataset_adsl AVALC is set to "N" and ADT to NA.

4. The AVAL variable is added and set to aval_fun(AVALC).

5. The variables specified by the set_values_to parameter are added to the new observations.

6. The new observations are added to input dataset.

Value

The input dataset with a new parameter for confirmed response

Author(s)

Stefan Bundfuss

See Also

Other superseded: derive_param_bor(), derive_param_clinbenefit(), derive_param_confirmed_bor(),
derive_param_response(), filter_pd()

Examples

library(dplyr)
library(admiral)

Create ADSL dataset
adsl <- tibble::tribble(

~USUBJID, ~TRTSDTC,
"1", "2020-01-01",
"2", "2019-12-12",
"3", "2019-11-11",

derive_param_confirmed_resp 23

"4", "2019-12-30",
"5", "2020-01-01",
"6", "2020-02-02",
"7", "2020-02-02",
"8", "2020-04-01",
"9", "2020-03-01"

) %>%
mutate(

STUDYID = "XX1234"
)

Create ADRS dataset
ovr_obs <- tibble::tribble(

~USUBJID, ~ADTC, ~AVALC,
"1", "2020-01-01", "PR",
"1", "2020-02-01", "CR",
"1", "2020-02-16", "NE",
"1", "2020-03-01", "CR",
"1", "2020-04-01", "SD",
"2", "2020-01-01", "SD",
"2", "2020-02-01", "PR",
"2", "2020-03-01", "SD",
"2", "2020-03-13", "CR",
"3", "2019-11-12", "CR",
"3", "2019-12-02", "CR",
"3", "2020-01-01", "SD",
"4", "2020-01-01", "PR",
"4", "2020-03-01", "SD",
"4", "2020-04-01", "SD",
"4", "2020-05-01", "PR",
"4", "2020-05-15", "NON-CR/NON-PD",
"5", "2020-01-01", "PR",
"5", "2020-01-10", "SD",
"5", "2020-01-20", "PR",
"5", "2020-05-15", "NON-CR/NON-PD",
"6", "2020-02-06", "PR",
"6", "2020-02-16", "CR",
"6", "2020-03-30", "PR",
"6", "2020-04-12", "PD",
"6", "2020-05-01", "CR",
"6", "2020-06-01", "CR",
"7", "2020-02-06", "PR",
"7", "2020-02-16", "CR",
"7", "2020-04-01", "NE",
"9", "2020-03-16", "CR",
"9", "2020-04-01", "NE",
"9", "2020-04-16", "NE",
"9", "2020-05-01", "CR"

) %>%
mutate(PARAMCD = "OVR", ANL01FL = "Y")

pd_obs <-
bind_rows(tibble::tribble(

24 derive_param_response

~USUBJID, ~ADTC, ~AVALC,
"6", "2020-04-12", "Y"

) %>%
mutate(PARAMCD = "PD", ANL01FL = "Y"))

adrs <- bind_rows(ovr_obs, pd_obs) %>%
mutate(
ADT = lubridate::ymd(ADTC),
STUDYID = "XX1234"

) %>%
select(-ADTC)

pd_date <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD" & ANL01FL == "Y"

)

Derive confirmed response parameter
derive_param_confirmed_resp(

adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd_date,
source_datasets = list(adrs = adrs),
ref_confirm = 28,
set_values_to = exprs(

PARAMCD = "CRSP",
PARAM = "Confirmed Response by Investigator"

)
) %>%

filter(PARAMCD == "CRSP")

Derive confirmed response parameter (accepting SD for PR and two NEs)
derive_param_confirmed_resp(

adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd_date,
source_datasets = list(adrs = adrs),
ref_confirm = 28,
max_nr_ne = 2,
accept_sd = TRUE,
set_values_to = exprs(

PARAMCD = "CRSP",
PARAM = "Confirmed Response by Investigator"

)
) %>%

filter(PARAMCD == "CRSP")

derive_param_response 25

derive_param_response Adds a Parameter Indicating If a Subject Had a Response before Pro-
gressive Disease

Description

[Superseded] The derive_param_response() function has been superseded in favor of derive_extreme_event().

Adds a parameter indicating if a response has been observed. If a response has been observed,
AVALC is set to "Y", AVAL to 1 and ADT is set to the first date when a response has been observed. If
a response has not been observed, AVALC is set to "N", AVAL to 0 and ADT is set NA.

Usage

derive_param_response(
dataset,
dataset_adsl,
filter_source,
source_pd = NULL,
source_datasets = NULL,
set_values_to,
aval_fun,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset Input dataset
The variables specified by the subject_keysand ADT are expected.
After applying filter_source and/or source_pd the variable ADT and the vari-
ables specified by subject_keys must be a unique key of the dataset.

dataset_adsl Input dataset

• The variables specified for subject_keys are expected.
• For each observation of the specified dataset a new observation is added to

the input dataset. This is to capture those patients that may never have had
a tumor assessment.

filter_source Source filter
All observations in the dataset data fulfilling the specified condition are se-
lected.

source_pd Sources and conditions defining the end of the assessment period for the re-
sponses.
An object of type date_source is expected
All observations in dataset defining the response data fulfilling the filter_source
condition are considered as response if they fall before the end of the assessment
period as defined by source_pd.

26 derive_param_response

• For subjects with at least one response before the end of the assessment
period, AVALC is set to "Y", AVAL to 1, and ADT to the first date when the
response occurred.

• For all other subjects AVALC is set to "N", AVAL to 0, and ADT to NA.
source_datasets

Source dataset
A named list of datasets with one element is expected (e.g. list(adrs= adrs)).
The name must match the dataset_name field of the admiral::date_source()
object specified for source_pd.
The variables specified by the subject_keys argument and the date field of the
admiral::date_source() object are expected in the dataset.

set_values_to Variables to set
A named list returned by exprs() defining the variables to be set for the new pa-
rameter, e.g. exprs(PARAMCD = "RSP", PARAM = "Response by investigator")
is expected.
The values must be symbols, character strings, numeric values or NA.

aval_fun Deprecated, please use set_values_to instead.
Function to map character analysis value (AVALC) to numeric analysis value
(AVAL)
The (first) argument of the function must expect a character vector and the func-
tion must return a numeric vector.

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.

Details

1. The Date of the end of the assessment period (e.g. Progressive disease, as defined by pd_source)
is added to the response dataset.

2. The response dataset is restricted to observations occurring before or on the date of progres-
sive disease.

3. For each subject (with respect to the variables specified for the subject_keys parameter), the
first observation (with respect to ADT) where the response condition (filter_source param-
eter) is fulfilled is selected.

4. For each observation in dataset_adsl a new observation is created.

• For subjects with a response AVALC is set to "Y", AVAL to 1, and ADT to the first date (ADT)
where the response condition is fulfilled.

• For all other subjects AVALC is set to "N", AVAL to 0 and ADT to NA.

5. The variables specified by the set_values_to parameter are added to the new observations.

6. The new observations are added to input dataset.

Value

The input dataset with a new parameter indicating if and when a response occurred

derive_param_response 27

Author(s)

Samia Kabi

See Also

Other superseded: derive_param_bor(), derive_param_clinbenefit(), derive_param_confirmed_bor(),
derive_param_confirmed_resp(), filter_pd()

Examples

library(dplyr)
library(admiral)
library(lubridate)
library(tibble)

adsl <- tribble(
~USUBJID,
"1",
"2",
"3",
"4"

) %>%
mutate(STUDYID = "XX1234")

adrs <- tribble(
~USUBJID, ~PARAMCD, ~ADTC, ~AVALC, ~ANL01FL,
"1", "OVR", "2020-01-02", "PR", "Y",
"1", "OVR", "2020-02-01", "CR", "Y",
"1", "OVR", "2020-03-01", "CR", "Y",
"1", "OVR", "2020-04-01", "SD", "Y",
"1", "PD", NA_character_, "N", "Y",
"2", "OVR", "2021-06-15", "SD", "Y",
"2", "OVR", "2021-07-16", "PD", "Y",
"2", "OVR", "2021-09-14", "PD", "Y",
"2", "PD", "2021-09-14", "Y", "Y",
"3", "OVR", "2021-09-14", "SD", "Y",
"3", "OVR", "2021-10-30", "PD", "Y",
"3", "OVR", "2021-12-25", "CR", "Y",
"3", "PD", "2021-10-30", "Y", "Y"

) %>%
mutate(
STUDYID = "XX1234",
ADT = ymd(ADTC),
ANL01FL = "Y"

) %>%
select(-ADTC)

Define the end of the assessment period for responses:
all responses before or on the first PD will be used.
pd <- date_source(

dataset_name = "adrs",
date = ADT,

28 filter_pd

filter = PARAMCD == "PD" & AVALC == "Y"
)
Derive the response parameter
derive_param_response(

dataset = adrs,
dataset_adsl = adsl,
filter_source = PARAMCD == "OVR" & AVALC %in% c("CR", "PR") & ANL01FL == "Y",
source_pd = pd,
source_datasets = list(adrs = adrs),
set_values_to = exprs(

AVAL = yn_to_numeric(AVALC),
PARAMCD = "RSP",
PARAM = "Response by investigator"

),
subject_keys = get_admiral_option("subject_keys")

) %>%
arrange(USUBJID, PARAMCD, ADT)

filter_pd Filter up to First PD (Progressive Disease) Date

Description

[Superseded] The filter_pd() function has been superseded in favor of filter_relative().

Filter a dataset to only include the source parameter records up to and including the first PD (pro-
gressive disease). These records are passed to downstream derivations regarding responses such as
BOR (best overall response).

Usage

filter_pd(
dataset,
filter,
source_pd,
source_datasets,
subject_keys = get_admiral_option("subject_keys")

)

Arguments

dataset Input dataset
The variables ADT and those specified by subject_keys are expected.

filter Filter condition for restricting the input dataset

source_pd A admiral::date_source() object providing the date of first PD
For each subject the first date (date field) in the provided dataset (dataset_name
field) restricted by filter field is considered as first PD date.

filter_pd 29

source_datasets

A named list of data sets is expected.
The name must match the name provided by the dataset_name field of the
admiral::date_source() object specified for source_pd.

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.

Details

1. The input dataset (dataset) is restricted by filter.

2. For each subject the first PD date is derived as the first date (source_pd$date) in the source pd
dataset (source_datasets[[source_pd$dataset_name]]) restricted by source_pd$filter.

3. The restricted input dataset is restricted to records up to first PD date. Records matching first
PD date are included. For subject without any first PD date, all records are included.

Value

A subset of the input dataset

Author(s)

Teckla Akinyi, Stefan Bundfuss

See Also

Other superseded: derive_param_bor(), derive_param_clinbenefit(), derive_param_confirmed_bor(),
derive_param_confirmed_resp(), derive_param_response()

Examples

library(dplyr)
library(lubridate)
library(admiral)
library(admiralonco)

Filter OVR records up to first PD, first PD date provided in separate BDS dataset (adevent)
adrs <- tibble::tribble(

~STUDYID, ~USUBJID, ~PARAMCD, ~AVALC, ~ADT, ~ANL01FL,
"CDISCPILOT01", "01-701-1015", "OVR", "CR", "2016-01-25", "Y",
"CDISCPILOT01", "01-701-1015", "OVR", "SD", "2016-02-22", NA_character_,
"CDISCPILOT01", "01-701-1015", "OVR", "PD", "2016-02-22", "Y",
"CDISCPILOT01", "01-701-1015", "BOR", "CR", "2016-01-25", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1034", "BOR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "SD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "PR", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1035", "BOR", "PR", "2016-06-25", "Y"

) %>% mutate(

30 filter_pd

ADT = as_date(ADT)
)

adevent <- tibble::tribble(
~STUDYID, ~USUBJID, ~PARAMCD, ~AVALC, ~ADT,
"CDISCPILOT01", "01-701-1015", "PD", "Y", "2016-02-22",
"CDISCPILOT01", "01-701-1034", "PD", "Y", "2016-04-25"

) %>% mutate(
ADT = as_date(ADT)

)

pd <- date_source(
dataset_name = "adevent",
date = ADT,
filter = PARAMCD == "PD"

)

filter_pd(
dataset = adrs,
filter = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd,
source_datasets = list(adevent = adevent)

)

Filter OVR records up to first PD, first PD date provided in ADSL dataset
adsl <- tibble::tribble(

~STUDYID, ~USUBJID, ~PDDT,
"CDISCPILOT01", "01-701-1015", "2016-02-22",
"CDISCPILOT01", "01-701-1034", "2016-04-25",
"CDISCPILOT01", "01-701-1035", ""

) %>% mutate(
PDDT = as_date(PDDT)

)

pd <- date_source(
dataset_name = "adsl",
date = PDDT

)

filter_pd(
dataset = adrs,
filter = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd,
source_datasets = list(adsl = adsl)

)

Filter OVR records up to first PD, first PD date provided in input dataset (PD parameter)
adrs <- tibble::tribble(

~STUDYID, ~USUBJID, ~PARAMCD, ~AVALC, ~ADT, ~ANL01FL,
"CDISCPILOT01", "01-701-1015", "OVR", "CR", "2016-01-25", "Y",
"CDISCPILOT01", "01-701-1015", "OVR", "SD", "2016-02-22", NA_character_,
"CDISCPILOT01", "01-701-1015", "OVR", "PD", "2016-02-22", "Y",
"CDISCPILOT01", "01-701-1015", "BOR", "CR", "2016-01-25", "Y",

filter_pd 31

"CDISCPILOT01", "01-701-1034", "OVR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1034", "BOR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "SD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "PR", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1035", "BOR", "PR", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1015", "PD", "Y", "2016-02-22", "Y",
"CDISCPILOT01", "01-701-1034", "PD", "Y", "2016-04-25", "Y"

) %>% mutate(
ADT = as_date(ADT)

)

pd <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "PD"

)

filter_pd(
dataset = adrs,
filter = PARAMCD == "OVR" & ANL01FL == "Y",
source_pd = pd,
source_datasets = list(adrs = adrs)

)

Filter OVR records up to first PD, first PD date derived from OVR records
adrs <- tibble::tribble(

~STUDYID, ~USUBJID, ~PARAMCD, ~AVALC, ~ADT, ~ANL01FL,
"CDISCPILOT01", "01-701-1015", "OVR", "CR", "2016-01-25", "Y",
"CDISCPILOT01", "01-701-1015", "OVR", "SD", "2016-02-22", NA_character_,
"CDISCPILOT01", "01-701-1015", "OVR", "PD", "2016-02-22", "Y",
"CDISCPILOT01", "01-701-1015", "BOR", "CR", "2016-01-25", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1034", "OVR", "PD", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1034", "BOR", "SD", "2015-12-07", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "SD", "2016-04-25", "Y",
"CDISCPILOT01", "01-701-1035", "OVR", "PR", "2016-06-25", "Y",
"CDISCPILOT01", "01-701-1035", "BOR", "PR", "2016-06-25", "Y"

) %>% mutate(
ADT = as_date(ADT)

)

pd <- date_source(
dataset_name = "adrs",
date = ADT,
filter = PARAMCD == "OVR" & ANL01FL == "Y" & AVALC == "PD"

)

filter_pd(
dataset = adrs,
filter = PARAMCD == "OVR" & ANL01FL == "Y",

32 get_crpr_dataset

source_pd = pd,
source_datasets = list(adrs = adrs)

)

get_crpr_dataset Get CR Records Followed by PR That Lead to a Prior Error

Description

Get CR Records Followed by PR That Lead to a Prior Error

Usage

get_crpr_dataset()

Details

Some {admiralonco} functions check that in the source records CR is not followed by PR and
throw an error otherwise. The get_crpr_dataset() function allows one to retrieve the duplicate
records that lead to an error.

Note that the function always returns the dataset of duplicates from the last error that has been
thrown in the current R session. Thus, after restarting the R sessions get_crpr_dataset() will
return NULL and after a second error has been thrown, the dataset of the first error can no longer be
accessed (unless it has been saved in a variable).

Value

A data.frame or NULL

Author(s)

Stefan Bundfuss

See Also

signal_crpr()

Utilities for Dataset Checking: signal_crpr()

Examples

library(tibble)
library(dplyr)
library(lubridate)
library(admiralonco)
library(rlang)

adrs <- tribble(
~USUBJID, ~ADTC, ~AVALC,

rsp_y 33

"1", "2020-01-01", "PR",
"1", "2020-02-01", "CR",
"1", "2020-02-16", "NE",
"1", "2020-03-01", "CR",
"2", "2020-02-06", "PR",
"2", "2020-02-16", "CR",
"2", "2020-03-30", "PR",

) %>%
mutate(

ADT = ymd(ADTC),
STUDYID = "XX1234"

)

signal_crpr(adrs, order = exprs(ADT))

get_crpr_dataset()

rsp_y Pre-Defined Response Event Objects

Description

These pre-defined event() and event_joined() objects can be used as input to admiral::derive_extreme_event().

Usage

rsp_y

no_data_n

cb_y

bor_cr

bor_pr

bor_sd

bor_non_crpd

bor_pd

bor_ne

no_data_missing

crsp_y_cr

34 signal_crpr

crsp_y_pr

cbor_cr

cbor_pr

Details

To see the definition of the various objects simply print the object in the R console, e.g. bor_sd.
For details of how to use these objects please refer to admiral::derive_extreme_event().

It is assumed that dataset_name = "ovr" refers to the dataset of the only overall response assess-
ments at each visit which should be considered for the parameter derivations. For example the
dataset should include only post-baseline assessments up to first PD and before start of anti-cancer
therapy.

See Also

admiral::derive_extreme_event(), admiral::event(), admiral::event_joined()

Examples

This shows the definition of all pre-defined `event` objects that ship
with {admiralonco}
exports <- sort(getNamespaceExports("admiralonco"))
for (obj_name in exports) {

obj <- getExportedValue("admiralonco", obj_name)
if (inherits(obj, "event_def")) {
cat("\n", obj_name, ":\n", sep = "")
print(obj, indent = 2)

}
}

signal_crpr Signal CR Records Followed by PR

Description

Signal CR Records Followed by PR

Usage

signal_crpr(
dataset,
order,
msg = "Dataset contains CR records followed by PR.",
subject_keys = get_admiral_option("subject_keys"),
check_type = "warning"

)

signal_crpr 35

Arguments

dataset A data frame

order A list of variables created using exprs() determining the order or the records

msg The condition message

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.

check_type Type of message to issue when detecting PR after CR.
Permitted Values: "message", "warning" or "error"

Value

No return value, called for side effects

Author(s)

Stefan Bundfuss

See Also

get_crpr_dataset()

Utilities for Dataset Checking: get_crpr_dataset()

Examples

library(tibble)
library(dplyr)
library(lubridate)
library(admiralonco)
library(rlang)

adrs <- tribble(
~USUBJID, ~ADTC, ~AVALC,
"1", "2020-01-01", "PR",
"1", "2020-02-01", "CR",
"1", "2020-02-16", "NE",
"1", "2020-03-01", "CR",
"2", "2020-02-06", "PR",
"2", "2020-02-16", "CR",
"2", "2020-03-30", "PR",

) %>%
mutate(
ADT = ymd(ADTC),
STUDYID = "XX1234"

)

signal_crpr(adrs, order = exprs(ADT))

Index

∗ datasets
admiral_adrs, 3

∗ source_specifications
death_event, 4
rsp_y, 33

∗ superseded
derive_param_bor, 5
derive_param_clinbenefit, 10
derive_param_confirmed_bor, 13
derive_param_confirmed_resp, 20
derive_param_response, 25
filter_pd, 28

∗ utils_ds_chk
get_crpr_dataset, 32
signal_crpr, 34

∗ utils_fmt
aval_resp, 3

admiral::censor_source(), 4
admiral::derive_extreme_event(), 34
admiral::derive_param_tte(), 4
admiral::event(), 34
admiral::event_joined(), 34
admiral::event_source(), 4
admiral::tte_source(), 4
admiral_adrs, 3
aval_resp, 3

bor_cr (rsp_y), 33
bor_ne (rsp_y), 33
bor_non_crpd (rsp_y), 33
bor_pd (rsp_y), 33
bor_pr (rsp_y), 33
bor_sd (rsp_y), 33

cb_y (rsp_y), 33
cbor_cr (rsp_y), 33
cbor_pr (rsp_y), 33
crsp_y_cr (rsp_y), 33
crsp_y_pr (rsp_y), 33

death_event, 4
derive_param_bor, 5, 12, 17, 22, 27, 29
derive_param_clinbenefit, 7, 10, 17, 22,

27, 29
derive_param_confirmed_bor, 7, 12, 13, 22,

27, 29
derive_param_confirmed_resp, 7, 12, 17,

19, 27, 29
derive_param_response, 7, 12, 17, 22, 24, 29

filter_pd, 7, 12, 17, 22, 27, 28

get_crpr_dataset, 32, 35
get_crpr_dataset(), 35

lasta_censor (death_event), 4
lastalive_censor (death_event), 4

no_data_missing (rsp_y), 33
no_data_n (rsp_y), 33

pd_event (death_event), 4

rand_censor (death_event), 4
rsp_y, 33

signal_crpr, 32, 34
signal_crpr(), 32

trts_censor (death_event), 4

36

	admiral_adrs
	aval_resp
	death_event
	derive_param_bor
	derive_param_clinbenefit
	derive_param_confirmed_bor
	derive_param_confirmed_resp
	derive_param_response
	filter_pd
	get_crpr_dataset
	rsp_y
	signal_crpr
	Index

