Package ‘adaptMT’

October 12, 2022

Type Package

Title Adaptive P-Value Thresholding for Multiple Hypothesis Testing
with Side Information

Version 1.0.0
Maintainer Lihua Lei <lihua.lei@berkeley.edu>

Description Implementation of adaptive p-
value thresholding (AdaPT), including both a framework that allows the user to specify any
algorithm to learn local false discovery rate and a pool of convenient functions that imple-
ment specific
algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>.

License MIT + file LICENSE
Encoding UTF-8

LazyData true

URL https://arxiv.org/abs/1609.06035,
https://github.com/lihualei71/adaptMT

BugReports https://github.com/lihualei71/adaptMT/issues

Suggests glmnet, HDtweedie, mgcv, splines, testthat, knitr, rmarkdown,
dplyr

RoxygenNote 6.0.1

Imports methods

VignetteBuilder knitr

NeedsCompilation no

Author Lihua Lei [aut, cre]

Repository CRAN

Date/Publication 2018-07-31 12:00:03 UTC

https://arxiv.org/abs/1609.06035
https://arxiv.org/abs/1609.06035
https://github.com/lihualei71/adaptMT
https://github.com/lihualei71/adaptMT/issues

2 adapt

R topics documented:

adapt e e 2
adapt_gam L. e 5
adapt_glm e 6
adapt_glmnet L e 8
corr_Ifdr e 9
ctgm_Ifdr Lo 10
ESITOZEI .« . v v vt e e e e e e e e e e e e e e 12
gen_adapt_model oL 13
gen exp_family 15
plot_1d . . . e e 16
Plot_2d . . . e e e e 17

Index 19

adapt Adaptive P-value Thresholding
Description

adapt is a framework allowing for arbitrary exponential families for computing E-steps and arbi-
trary algorithms for fitting M-steps.

Usage

adapt(x, pvals, models, dist = beta_family(), s@ = rep(@.45, length(pvals)),
alphas = seq(@.01, 1, 0.01), params@ = list(pix = NULL, mux = NULL),
nfits = 20, nms = 1, niter_fit = 10, tol = 1e-04, niter_ms = 20,
cr = "BIC", verbose = list(print = TRUE, fit = FALSE, ms = TRUE))

Arguments

X covariates (i.e. side-information). Should be compatible to models. See Details

pvals a vector of values in [0, 1]. P-values

models an object of class "adapt_model" or a list of objects of class "adapt_model".
See Details

dist an object of class "gen_exp_family". beta_family() as default

s0 a vector of values in [0, 0.5). Initial threshold.

alphas a vector of values in (0, 1). Target FDR levels.

params@ a list in the form of list(pix =, mux =). Initial guess of pi(x) and mu(x). NULL
as default

nfits a positive integer. Number of model-fitting steps. See Details

nms a non-negative integer. Number of model selection steps. See Details

niter_fit a positive integer. Number of EM iterations in model fitting

adapt 3

tol a positive scalar. EM algorithm stops when pi(x) and mu(x) in consecutive steps
differ by at most tol’ for each element

niter_ms a positive integer. Number of EM iterations in model selection

cr a string. The criterion for model selection with BIC as default. Also support
AIC, AICC and HIC

verbose a list of logical values in the form of list(print =, fit =, ms =). Each ele-
ment indicates whether the relevant information is outputted to the console. See
Details

Details

x should have a type compatible to the fitting functions in models. For GLM and GAM, x should
be a data.frame. For glmnet, x should be a matrix.

models could either be an adapt_model object, if a single model is used, or a list of adapt_model
objects, each of which corresponding to a model. Each element should be generated by gen_adapt_model.
For glm/gam/glmnet, one can use the shortcut by running gen_adapt_model with name = "glm"

or "gam" or "glmnet" but without specifying pifun, mufun, pifun_init and mufun_init. See
examples below.

nfits is the number of model fitting steps plus nms, the model selection steps, if models contains
multiple adapt_model objects. Suppose M is the number of masked p-values at the initial step,
then the model is updated at the initial step and at every time when [M/nfits] more p-values are
revealed. If nms > @, model selection is performed at the initial step an at every time when [M/nms]
more p-values are revealed. Between two consecutive model selection steps, the model selected
from the last step is used for model fitting. For example, when M = 10000, nfits = 10 and nms = 2,
model selection will be performed at the initial step and when 5000 p-values are revealed, while the
model fitting will be performed when 1000, 2000, 3000, 4000, 6000, 7000, 8000, 9000 p-values are
revealed.

verbose has three elements: print, fit and ms. If print = TRUE, the progress of the main pro-
cedure is outputted to the console, in the form of "alpha = 0.05: FDPhat 0.0333, Number of Re;j.
30" (where the numbers are made up for illustration). If fit = TRUE, a progress bar for the model
fitting is outputted to the console. Similarly, if ms = TRUE, a progress bar for the model selection is
outputted to the console.

For ultra-large scale problems (n > 1075), it is recommended to keep alphas short because the
output s is of size n x length(alphas). is length(alphas).

The output qvals gives the g-values of each hypothesis. qvals[i] is defined as the minimum target
FDR level such that pvals[i] is rejected. For hypotheses with p-values above s0, the g-values are
set to be Inf because they are never rejected by AdaPT for whatever alpha.

The output order gives the order of (the indices of) p-values being revealed, i.e. being in the region
(s, 1-s). The latter hypotheses appeared in order have smaller g-values (i.e. are more likely to be
rejected).

Value

nrejs a vector of integers. Number of rejections for each alpha

rejs a list of vector of integers. The set of indices of rejections for each alpha

params

gvals
order

alphas
dist
models

info

args

Examples

adapt

a matrix of size length(pvals) X length(alphas). Threshold curves for each
alpha

a list. Each element is a list in the form of list(pix =, mux =, alpha =,
nmasks =), recording the parameter estimates, the achieved alpha and the num-
ber of masked p-values. To avoid massive storage cost, it only contains the
information when a new target FDR level is achieved. As a result, it might be
shorter than nfits.

a vector of values in [0, 1]UInf. Q-values. See Details

a permutation of 1:1length(pvals). Indices of hypotheses arranged in the order
of reveal. See Details

same as the input alphas

same as the input dist

a list of adapt_model objects of length params. The model used in each fitting
step. As in params, it only contains the model when a new target FDR level is
achieved and each element corresponds to an element of params.

a list of length nfits. Each element is a list recording extra information in each
fitting step, e.g. degree of freedom (df) and variable importance (vi). As in
params, it only contains the model information when a new target FDR level is
achieved and each element corresponds to an element of params.

a list including the other inputs nfits, nms, niter_fit, niter_ms, tol, cr

Load estrogen data

data(estrogen)

pvals <- as.numer
x <- data.frame(x
dist <- beta_fami

ic(estrogen$pvals)
= as.numeric(estrogen$ord_high))

IyO

Subsample the data for convenience
inds <- (x$x <= 5000)
pvals <- pvals[inds]

x <- x[inds, ,drop

Generate models

= FALSE]

for function adapt

library("splines")

formulas <- paste@("ns(x, df =", 6:10, ")")

models <- lapply(formulas, function(formula){
piargs <- muargs <- list(formula = formula)
gen_adapt_model (name = "glm", piargs = piargs, muargs = muargs)

b

Run adapt

res <- adapt(x = x, pvals = pvals, models = models,

dist

= dist, nfits = 10)

adapt_gam 5

adapt_gam Adaptive P-value Thresholding with Generalized Additive Models

Description

adapt_gamis a wrapper of adapt that fits pi(x) and mu(x) by gam from mgcv package.

Usage

adapt_gam(x, pvals, pi_formulas, mu_formulas, piargs = list(),
muargs = list(), dist = beta_family(), s@ = rep(0.45, length(pvals)),

alphas = seq(@.01, 1, 0.01), ...)
Arguments
X covariates (i.e. side-information). Should be compatible to models. See Details
pvals a vector of values in [0, 1]. P-values
pi_formulas a vector/list of strings/formulas. Formulas for fitting pi(x) by gam. See Details
mu_formulas a vector/list of strings/formulas. Formulas for fitting mu(x) by gam. See Details
piargs a list. Other arguments passed to gam for fitting pi(x)
muargs a list. Other arguments passed to gam for fitting mu(x)
dist an object of class "gen_exp_family". beta_family() as default
s0 a vector of values in [0, 0.5). Initial threshold.
alphas a vector of values in (0, 1). Target FDR levels.

other arguments passed to adapt (except models)

Details

pi_formulas and mu_formulas can either be a list or a vector with each element being a string or
a formula. For instance, suppose x has a single column with name x1, the following five options
are valid for the same inputs (ns forms a spline basis with df knots and s forms a spline basis with
knots automatically selected by generalized cross-validation):

.c("x1", "ns(x1, df = 8)", "s(x1)");

. c("~x1", "~ ns(x1, df = 8)", "s(x1)");

. list("x1", "ns(x1, df = 8)", "s(x1)");

. list("~ x1", "~ ns(x1, df = 8)", "s(x1)");

. list(~ x1, ~ ns(x1, df = 8), s(x1))

Whn A W N =

There is no need to specify the name of the response variable, as this is handled in the function.

When x has a few variables, it is common to use non-parametric GLM by replacing x by a spline
basis of x. In this case, ns from library(splines) package or s from mgcv package are suggested.
When s (from mgcv package) is used, it is treated as a single model because the knots will be
selected automatically.

adapt_glm

See Also

adapt, adapt_glm, adapt_glmnet, gam, ns, s

Examples

Generate a 2-dim x

n <- 400

x1 <- x2 <- seq(-100, 100, length.out = 20)
x <- expand.grid(x1, x2)

colnames(x) <- c("x1", "x2")

Generate p-values (one-sided z test)

Set all hypotheses in the central circle with radius 30 to be
non-nulls. For non-nulls, z~N(2,1) and for nulls, z~N(0,1).
HO <- apply(x, 1, function(coord){sum(coord*2) < 9003})

mu <- ifelse(Ho, 2, @)

set.seed(0)

zvals <- rnorm(n) + mu

pvals <- 1 - pnorm(zvals)

Run adapt_gam with a 2d spline basis

library("mgcv")

formula <- "s(x1, x2)"

dist <- beta_family()

res <- adapt_gam(x = x, pvals = pvals, pi_formulas = formula,
mu_formulas = formula, dist = dist, nfits = 5)

adapt_glm Adaptive P-value Thresholding with Generalized Linear Models

Description

adapt_glmis a wrapper of adapt that fits pi(x) and mu(x) by glm.

Usage

adapt_glm(x, pvals, pi_formulas, mu_formulas, dist = beta_family(),
s@ = rep(0.45, length(pvals)), alphas = seq(@.01, 1, 0.01),
piargs = list(), muargs = list(), ...)

Arguments

X covariates (i.e. side-information). Should be compatible to models. See Details

pvals a vector of values in [0, 1]. P-values

adapt_glm

pi_formulas
mu_formulas
dist

s0

alphas
piargs

muargs

Details

a vector/list of strings/formulas. Formulas for fitting pi(x) by glm. See Details
a vector/list of strings/formulas. Formulas for fitting mu(x) by glm. See Details
an object of class "gen_exp_family". beta_family() as default

a vector of values in [0, 0.5). Initial threshold.

a vector of values in (0, 1). Target FDR levels.

a list. Other arguments passed to glm for fitting pi(x)

a list. Other arguments passed to glm for fitting mu(x)

other arguments passed to adapt (except models)

pi_formulas and mu_formulas can either be a list or a vector with each element being a string or
a formula. For instance, suppose x has a single column with name x1, the following five options are
valid for the same inputs (ns forms a spline basis with df knots):

| I OS E

. c("x1", "ns(x1, df = 8)");

. c("~x1", "~ ns(x1, df = 8)");

. list("x1", "ns(x1, df = 8)");

. list("~ x1", "~ ns(x1, df = 8)");
. list(~ x1, ~ ns(x1, df = 8))

There is no need to specify the name of the response variable, as this is handled in the function.

When x has a few variables, it is common to use non-parametric GLM by replacing x by a spline
basis of x. In this case, ns from library(splines) package is suggested.

See Also

adapt, adapt_gam, adapt_glmnet, glm, ns

Examples

Load estrogen data

data(estrogen)

pvals <- as.numeric(estrogen$pvals)

x <- data.frame(x

= as.numeric(estrogen$ord_high))

dist <- beta_family()

Subsample the data for convenience
inds <- (x$x <= 5000)

pvals <- pvals[inds]

x <- x[inds, ,drop = FALSE]

Run adapt_glm

library("splines")
formulas <- paste@("ns(x, df =", 6:10, ")")
res <- adapt_glm(x = x, pvals = pvals, pi_formulas = formulas,

mu_formulas = formulas, dist = dist, nfits = 10)

8 adapt_glmnet

Run adapt by manually setting models for glm
models <- lapply(formulas, function(formula){
piargs <- muargs <- list(formula = formula)
gen_adapt_model (name = "glm", piargs = piargs, muargs = muargs)
»
res2 <- adapt(x = x, pvals = pvals, models = models,
dist = dist, nfits = 10)

Check equivalence
identical(res, res2)

adapt_glmnet Adaptive P-value Thresholding with L1/L2 Penalized Generalized Lin-
ear Models

Description

adapt_glmnet is a wrapper of adapt that fits pi(x) and mu(x) by glmnet from glmnet package.

Usage

adapt_glmnet(x, pvals, piargs = list(), muargs = list(),
dist = beta_family(), s@ = rep(0.45, length(pvals)), alphas = seq(@.01,

1, 0.01), ...)
Arguments
X covariates (i.e. side-information). Should be compatible to models. See Details
pvals a vector of values in [0, 1]. P-values
piargs a list. Other arguments passed to glmnet for fitting pi(x)
muargs a list. Other arguments passed to glmnet for fitting mu(x)
dist an object of class "gen_exp_family". beta_family() as default
s a vector of values in [0, 0.5). Initial threshold.
alphas a vector of values in (0, 1). Target FDR levels.

other arguments passed to adapt (except models)

Details

adapt_glmnet by default implements LASSO on x with lambda selected by cross-validation. Spec-
ify in piargs and muargs if ridge or elastic-net penalty is needed.

See Also

adapt, adapt_glm, adapt_gam, glmnet

corr_Ifdr 9

Examples

Generate a 100-dim covariate x
set.seed(0)

m <- 100

n <- 1000

x <= matrix(runif(n * m), n, m)

Generate the parameters from a conditional two-group
logistic-Gamma GLM where pi(x) and mu(x) are both
linear in x. pi(x) has an intercept so that the average
of pi(x) is 0.3
inv_logit <- function(x) {exp(x) /7 (1 + exp(x))}
pil <- 0.3
beta.pi <- c(3, 3, rep(0, m-2))
betad.pi <- uniroot(function(b){
mean(inv_logit(x %*% beta.pi + b)) - pil
}, c(-100, 100))$root
pi <- inv_logit(x %x% beta.pi + beta@.pi)
beta.mu <- c(2, 2, rep(@, m-2))
betad.mu <- @
mu <- pmax(1, x %*% beta.mu + beta@.mu)

#
#
#
#

Generate p-values

HO <- as.logical(ifelse(runif(n) < pi, 1, 0))
y <- ifelse(H@, rexp(n, 1/mu), rexp(n, 1))
pvals <- exp(-y)

Run adapt_glmnet
res <- adapt_glmnet(x, pvals, s@ = rep(@.15, n), nfits = 5)

corr_lfdr Quantifying Information Loss of Adaptive P-Value Thresholding

Description
corr_l1fdr computes the oracle local FDR estimate, by using revealing all p-values, and computes
the Pearson correlation between it and the estimate within each step of adapt.

Usage

corr_l1fdr(obj, x, pvals, model = NULL, niter_oracle = 100)

Arguments
obj an ’adapt’ object. Output of adapt function
X covariates (i.e. side-information). Should be compatible to models.

pvals a vector of values in [0, 1]. P-values

10

model

niter_oracle

Value

ctgm_Ifdr

an optional argument. If model = NULL then the last model in obj$models is
used for fitting the oracle model (i.e. with all p-values revealed). Otherwise it
should be an "adapt_model’ object

an positive integer. Number of iterations in EM algorithm

e corra vector of values in [0, 1]. Pearson correlation of oracle local FDR estimate and the

estimates within each step. Each value corresponds to an entry of obj$params
e oracle_lfdra vector of values in [0, 1]. Oracle local FDR estimate

e Ifdra matrix of values in [0, 1]. Local FDR estimates within each step.

* alphasa vector of values in [0, 1]. The target FDR levels corresponding to each local FDR

estimate

» nmasksa vector of integers. The number of masked p-values corresponding to each local FDR

estimate

Examples

Load estrogen data

data(estrogen)

pvals <- as.numeric(estrogen$pvals)

x <- data.frame(x = as.numeric(estrogen$ord_high))
dist <- beta_family()

Subsample the data for convenience
inds <- (x$x <= 5000)

pvals <- pvals[inds]

x <- x[inds, ,drop = FALSE]

Run adapt_glm

library("splines")

formulas <- paste@("ns(x, df =", 6:10, ")")

res <- adapt_glm(x = x, pvals = pvals, pi_formulas = formulas,
mu_formulas = formulas, dist = dist, nfits = 10)

Run corr_1fdr
obj <- corr_1fdr(res, x, pvals)
obj$corr

ctgm_lfdr

Fitting Conditional Two-Groups Models on Unmasked P-Values

Description

ctgm_1fdr computes the oracle local FDR estimate, by using all p-values without masking.

ctgm_Ifdr 11

Usage

ctgm_1fdr(x, pvals, models, dist = beta_family(), type = c("over”, "raw"),
params@ = list(pix = NULL, mux = NULL), niter = 50, cr = "BIC",
verbose = TRUE)

Arguments
X covariates (i.e. side-information). Should be compatible to models. See Details
pvals a vector of values in [0, 1]. P-values
models an object of class "adapt_model" or a list of objects of class "adapt_model".
See Details
dist an object of class "gen_exp_family". beta_family() as default
type a character. Either "over" or "raw" indicating the type of local FDR estimates.
See Details
params@ a list in the form of list(pix =, mux =). Initial values of pi(x) and mu(x). Both
can be set as NULL
niter a positive integer. Number of EM iterations.
cr a string. The criterion for model selection with BIC as default. Also support
AIC, AICC and HIC
verbose a logical values in the form of list(fit = , ms =). Indicate whether the progress
of model fitting and model selection is displayed
Details

ctgm_1fdr implements the EM algorithm to fit pi(x) and mu(x) on unmasked p-values. Although
it is not related to FDR control of AdaPT, it provides useful measures for post-hoc justification and
other purposes. For instance, one can use these local FDR estimates for prioritizing the hypotheses
if strict FDR control is not required.

In contrast to adapt, cytm_1fdr does not guarantee FDR control unless the model is correctly
specified. It is recommended to use ctgm_1fdr only when FDR control is not required.

x should have a type compatible to the fitting functions in models. For GLM and GAM, x should
be a data.frame. For glmnet, x should be a matrix.

models could either be an adapt_model object, if a single model is used, or a list of adapt_model
objects, each of which corresponding to a model. Each element should be generated by gen_adapt_model.
For glm/gam/glmnet, one can use the shortcut by running gen_adapt_model with name = "glm"

or "gam" or "glmnet" but without specifying pifun, mufun, pifun_init and mufun_init. See
examples below.

When type = "over”, it yields a conservative estimate of local FDR
Ufdr(p) = (1 —m +m fi(1)/(1 —m + 71 fi(p)).
When type = "raw”, it yields the original local FDR.
Lfdr(p) = (1 =m1)/(1 = 71+ 71 f1(p))-

The former is shown to be more stable and reliable because the weak identifiability in conditional
mixture models.

12 estrogen

Value

* Ifdra vector of values in [0, 1]. Local FDR estimates of each hypothesis.

* modelan adapt_model object. The selected model if multiple models are provided.

Examples

Load estrogen data

data(estrogen)

pvals <- as.numeric(estrogen$pvals)

x <- data.frame(x = as.numeric(estrogen$ord_high))
dist <- beta_family()

Subsample the data for convenience
inds <- (x$x <= 5000)

pvals <- pvals[inds]

x <- x[inds, ,drop = FALSE]

Generate models for function adapt

library("splines")

formulas <- paste@("ns(x, df =", 6:10, ")")

models <- lapply(formulas, function(formula){
piargs <- muargs <- list(formula = formula)
gen_adapt_model (name = "glm”, piargs = piargs, muargs = muargs)

b

Run ctgm_lfdr with two types of 1lfdr estimates
res_over <- ctgm_lfdr(x, pvals, models, type = "over")
res_raw <- ctgm_lfdr(x, pvals, models, type = "raw")

Compare two estimates
par(mfrow = c(2, 1))
hist(res_over$lfdr)
hist(res_raw$lfdr)

estrogen Gene/Drug response dataset

Description

P-values and ordering of genes drawn from a microarray dataset, consisting of 22283 genes on
breast cancer cells in response to estrogen, from NCBI Gene Expression Omnibus (GEO) through
’GEOquery’ package, with index "GDS2324".

Usage

estrogen

gen_adapt_model 13

Format

An object of class data. frame with 22283 rows and 3 columns.

Details

The original dataset "GDS2324" consists of gene expression measurements for n = 22283 genes,
in response to estrogen treatments in breast cancer cells for five groups of patients, with different
dosage levels and 5 trials in each. The task is to identify the genes responding to a low dosage.
The p-value for gene i is obtained by a one-sided permutation test which evaluates evidence for a
change in gene expression level between the control group (placebo) and the low-dose group. The
p-values are then ordered according to permutation t-statistics comparing the control and low-dose
data, pooled, against data from a higher dosage (with genes that appear to have a strong response at
higher dosages placed earlier in the list).

Two orderings are considered: first, a stronger (more informative) ordering based on a comparison
to the highest dosage; and second, a weaker (less informative) ordering based on a comparison to a
medium dosage.

The variables are as follows:

* pvals. p-values
* ord_high. stronger ordering

* ord_mod. weaker ordering

The R code to produce the data can be found in ’/extdata/estrogen_get_pvals.R’.

gen_adapt_model adapt_model Objects for M-steps

Description

adapt_model objects provide the functions and their arguments in computing the M-steps. Each
object can be passed to adapt as a candidate model.

Usage

gen_adapt_model(pifun = NULL, mufun = NULL, pifun_init = NULL,
mufun_init = NULL, piargs = list(), muargs = list(),

piargs_init = list(), muargs_init = list(), name = "")
Arguments
pifun a function to fit pi(x). See Details
mufun a function to fit mu(x). See Details
pifun_init a function to fit pi(x) at the initial step
mufun_init a function to fit mu(x) at the initial step

piargs a list. Arguments for "pifun". An empty list as default

14 gen_adapt_model

muargs a list. Arguments for "mufun”. An empty list as default

piargs_init a list. Arguments for piargs_init. An empty list as default

muargs_init a list. Arguments for muargs_init. An empty list as default

name a string. An optional argument for the user-specified name of the model. An

empty string as default.

Details

pifun should be in the form of pifun(formula, data, family, weights, ...) or pifun(x, vy,
family, ...). The former includes glm and gam and the latter includes glmnet. The outputs should
be in the form of list(fitv =, info=, ...) where fitv gives the estimate of pi(x), as a vector
with the same order of x, and info should at least contain a key df if model selection is used, i.e.
info=1list(df=, ...)

mufun should be in the form of pifun(formula, data, family, weights, ...) or pifun(x, vy,
family, weights, ...). Note that mufun must take weights as an input. The outputs should be
in the same form as pifun except that fitv should give the estimate of mu(x).

When pifun /mufun takes the form of (formula, family, ...), piargs/muargs should at least
contain a key formula; when pifun / mufun takes the form of (x, y, family, ...), piargs /
muargs can be empty.

For glm/gam/glmnet, one can use the shortcut by running gen_adapt_model with name = "glm"
or "gam" or "glmnet" but without specifying pifun, mufun, pifun_init and mufun_init. See
examples below.

Value
name same as the input name
algo a list recording pifun, mufun, pifun_init and mufun_init
args a list recording piargs, muargs, piargs_init and muargs_init
Examples

Exemplary code to generate 'adapt_model' for logistic-Gamma glm with naive initialization.
The real implementation in the package is much more complicated.

pifun as a logistic regression

pifun <- function(formula, data, weights, ...){
glm(formula, data, weights = weights, family = binomial(), ...)
3
pifun_init as a constant
pifun_init <- function(x, pvals, s, ...){
rep(0.1, length(pvals))
3
mufun as a Gamma GLM
mufun <- function(formula, data, weights, ...){
glm(formula, data, weights = weights, family = Gamma(), ...)
3

mufun_init as a constant

gen_exp_family 15

mufun_init <- function(x, pvals, s, ...){
rep(1.5, length(pvals))
3
library(”splines”) # for using ns() in the formula
piargs <- list(formula = "ns(x, df = 8)")
muargs <- list(formula = "ns(x, df = 8)")

name <- "glm"
mod <- gen_adapt_model(pifun, mufun, pifun_init, mufun_init,
piargs, muargs, name = name)

mod

Using shortcut for GLM. See the last paragraph of Details.

mod2 <- gen_adapt_model(name = "glm"”, piargs = piargs, muargs = muargs)
mod2
gen_exp_family Generate exp_family Objects for Exponential Families
Description

exp_family objects contain all required information in an exponential family to perform the E-step.
The exponential function is encoded by

h(p; 1) = exp{(n(p) —n(p*))g(p) — (A(n) — A(p*))}

where ¢g(p) is an arbitrary transformation, y is the mean parameter, 7 is the natural parameter,
and A(y) is the partition function. The extra redundant parameter p* is to guarantee that U ([0, 1])
belongs to the class.

Usage
gen_exp_family(g, ginv, eta, mustar, A, name = NULL, family = NULL)

beta_family()

inv_gaussian_family()

Arguments
g a function. An transformation of p-values
ginv a function. The inverse function of g
eta a function. The natural parameter as a function of the mean parameter mu
mustar a scalar. The mean parameter that gives U([0, 1])

A a function. The partition function

16 plot_1d

name a string. A name for the family. NULL by default

family an object of class "family" from stats package. The family used for model
fitting in glm, gam, glmnet, etc..

Details

Beta family (beta_family()): modeling p-values as Beta-distributed random variables, i.e. g(p) =
—log(p), n(p) = =1/u, px = 1, A(u) = log(p), name = "beta" and family = Gamma(). Beta-
family is highly recommended for general problems and used as default.

Inverse-gaussian family (inv_gaussian_family()): modeling p-values as transformed z-scores,
ie. g(p) = @ (p)(Pisthec.d.f.ofastandardnormalrandomvariable), n(y) = u, px = 0,
A(p) = p?/2, name = "inv_gaussian" and family = gaussian().

Value

an object of class "exp_family". This includes all inputs and h, the density function.

plot_1d Plotting Functions for AdaPT with 1D Covariates

Description
Plotting the outputs of adapt when x is 1-dimensional, including threshold curves and level curves
of local FDR.
Usage
plot_1d_thresh(obj, x, pvals, alpha, title, xlab = "x", xlim = NULL,
disp_ymax = 0.2, num_yticks = 3, rand_seed_perturb = NA, ...)

plot_1d_lfdr(obj, x, pvals, alpha, title, xlab = "x", xlim = NULL,

disp_ymax = 0.2, num_yticks = 3, legend_pos = "topright”, ...)
Arguments
obj an ’adapt’ object
X covariates (i.e. side-information). Should be compatible to models and 1-
dimensional.
pvals a vector of values in [0, 1]. P-values
alpha a positive scalar in (0, 1). Target FDR level
title a string. Title of the figure
xlab a string. Label of the x-axis
x1lim a vector of length 2. Limits of x-axis

disp_ymax a positive scalar in (0, 1]. Maximum value displayed in the y-axis

plot_2d 17

num_yticks a positive integer. Number of ticks in the y-axis
rand_seed_perturb
random seed if jitter is added. NA if no jittering is needed

other arguments passed to par

legend_pos a string. Position of the legend

Examples

Load estrogen data

data(estrogen)

pvals <- as.numeric(estrogen$pvals)

x <- data.frame(x = as.numeric(estrogen$ord_high))
dist <- beta_family()

Subsample the data for convenience
inds <- (x$x <= 5000)

pvals <- pvals[inds]

x <- x[inds, ,drop = FALSE]

Run adapt_glm

library("splines")

formulas <- paste@("ns(x, df =", 6:10, ")")

res <- adapt_glm(x = x, pvals = pvals, pi_formulas = formulas,
mu_formulas = formulas, dist = dist, nfits = 10)

Plots

par(mfrow = c(2, 1))

plot_1d_thresh(res, x, pvals, 0.1, "P-value Thresholds (alpha = 0.1)",
disp_ymax = 0.5)

plot_1d_1fdr(res, x, pvals, 0.1, "Level Curves of 1fdr (alpha = 0.1)",
disp_ymax = 0.5)
plot_2d Plotting Functions for AdaPT with 2D Covariates

Description
Plotting the outputs of adapt when x is 2-dimensional, including threshold curves and level curves
of local FDR.
Usage
plot_2d_thresh(obj, x, pvals, alpha, title, xlab = NULL, ylab = NULL,
keyaxes = list(), ...)

plot_2d_l1fdr(obj, x, pvals, alpha, title, targetp, xlab = NULL, ylab = NULL,
keyaxes = list(), ...)

18

Arguments

obj
X

pvals
alpha
title
xlab, ylab
keyaxes

targetp

Details

plot_2d

an ’adapt’ object

covariates (i.e. side-information). Should be compatible to models and 2-
dimensional.

a vector of values in [0, 1]. P-values

a positive scalar in (0, 1). Target FDR level

a string. Title of the figure

a string. Label of x/y-axis

a list of arguments passed into axis. The graphical setting for the legend bar. An
empty list by default

other arguments passed to par
arealin (0, 1). See Details

The breaks in the legend of plot_2d_thresh correspond to the maximum, the 95

plot_2d_1fdr gives the contour plot of local FDR estimates when all p-values are equal to targetp.
It is recommended to run plot_2d_1fdr for multiple targetp’s ranging from 0.001, 0.005, 0.01,

0.05.

Examples

Generate a 2-dim x

n <- 400

x1 <- x2 <- seq(-100, 100, length.out = 20)
x <- expand.grid(x1, x2)
colnames(x) <- c("x1", "x2")

Generate p-values (one-sided z test)

Set all hypotheses in the central circle with radius 30 to be
non-nulls. For non-nulls, z~N(2,1) and for nulls, z~N(0,1).
HO <- apply(x, 1, function(coord){sum(coord*2) < 9003})

mu <- ifelse(Ho, 2, @)

set.seed(0)

zvals <- rnorm(n) + mu
pvals <- 1 - pnorm(zvals)

Run adapt_gam with a 2d spline basis

library("mgcv")

formula <- "s(x1, x2)"
dist <- beta_family()
res <- adapt_gam(x = x, pvals = pvals, pi_formulas = formula,

Plots

mu_formulas = formula, dist = dist, nfits = 5)

plot_2d_thresh(res, x, pvals, 0.3, "P-value Thresholds (alpha = 0.3)")
plot_2d_1fdr(res, x, pvals, 0.3, "Local FDR Estimates (alpha = 0.3, p = 0.01)", 0.01)

Index

x datasets
estrogen, 12

adapt, 2, 5-9, 13
adapt_gam, 5,7, 8
adapt_glm, 6, 6, 8
adapt_glmnet, 6, 7, 8

beta_family, 2,5,7,8, 11
beta_family (gen_exp_family), 15

corr_1fdr, 9
ctgm_1fdr, 10

estrogen, 12
family, 16

gam, 5, 6, 14, 16
gen_adapt_model, 3, 11, 13, 14
gen_exp_family, 2,5,7, 8,11, 15
glm, 6, 7,14, 16
glmnet, 8, 14, 16

inv_gaussian_family (gen_exp_family), 15
ns, 5-7

par, 17, 18

plot_1d, 16

plot_1d_1fdr (plot_1d), 16
plot_1d_thresh (plot_1d), 16
plot_2d, 17

plot_2d_1fdr (plot_2d), 17
plot_2d_thresh (plot_2d), 17

s,5 6

19

	adapt
	adapt_gam
	adapt_glm
	adapt_glmnet
	corr_lfdr
	ctgm_lfdr
	estrogen
	gen_adapt_model
	gen_exp_family
	plot_1d
	plot_2d
	Index

