
Package ‘adagio’
October 26, 2023

Type Package

Title Discrete and Global Optimization Routines

Version 0.9.2

Date 2023-10-26

Maintainer Hans W. Borchers <hwborchers@googlemail.com>

Depends R (>= 3.1.0)

Imports graphics, stats, lpSolve (>= 5.6.15)

Description The R package 'adagio' will provide methods and algorithms for
(discrete) optimization, e.g. knapsack and subset sum procedures,

derivative-free Nelder-Mead and Hooke-Jeeves minimization, and
some (evolutionary) global optimization functions.

License GPL (>= 3)

NeedsCompilation no

Author Hans W. Borchers [aut, cre]

Repository CRAN

Date/Publication 2023-10-26 13:30:03 UTC

R topics documented:
assignment . 2
bpp_approx . 3
change_making . 5
CMAES . 6
fminviz,flineviz . 8
hamiltonian . 9
Historize . 12
hookejeeves . 13
knapsack . 15
maxempty . 17
maxquad . 18
maxsub . 19
mknapsack . 21

1

2 assignment

neldermead . 23
occurs . 26
setcover . 27
SIAM test functions . 28
simpleDE . 29
simpleEA . 31
subsetsum . 32
Testfunctions . 34
transfinite . 37

Index 39

assignment Linear Sum Assignment Problem

Description

Linear (sum) assignment problem, or LSAP.

Usage

assignment(cmat, dir = "min")

Arguments

cmat quadratic (numeric) matrix, the cost matrix.

dir direction, can be "min" or "max".

Details

Solves the linear (sum) assignment problem for quadratic matrices. Uses the lp.assign function
from the lpSolve package, that is it solves LSAP as a mixed integer linear programming problem.

Value

List with components perm, the permutation that defines the minimum solution, min, the minimum
value, and err is always 0, i.e. not used at the moment.

Note

Slower than the Hungarian algorithm in package clue.

References

Burkard, R., M. Dell’Amico, and S. Martello (2009). Assignment Problems. Society for Industrial
and Applied Mathematics (SIAM).

Martello, S., and P. Toth (1990). Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Ltd.

bpp_approx 3

See Also

clue::solve_LSAP

Examples

Example similar to clue::solve_LSAP
set.seed(8237)
x <- matrix(sample(1:100), nrow = 10)
y <- assignment(x)
show permutation and check minimum sum
y$perm # 7 6 10 5 8 2 1 4 9 3
y$min # 173
z <- cbind(1:10, y$perm)
x[z] # 16 9 49 6 17 14 1 44 10 7
y$min == sum(x[z]) # TRUE

Not run:
Example: minimize sum of distances of complex points
n <- 100
x <- rt(n, df=3) + 1i * rt(n, df=3)
y <- runif(n) + 1i * runif(n)
cmat <- round(outer(x, y, FUN = function(x,y) Mod(x - y)), 2)
system.time(T1 <- assignment(cmat)) # elapsed: 0.003
T1$min / 100 # 145.75

Hungarian algorithm in package 'clue'
library("clue")
system.time(T2 <- solve_LSAP(cmat)) # elapsed: 0.014
sum(cmat[cbind(1:n, T2)]) # 145.75

End(Not run)

bpp_approx Approximate Bin Packing

Description

Solves the Bin Packing problem approximately.

Usage

bpp_approx(S, cap, method = c("firstfit", "bestfit", "worstfit"))

Arguments

S vector of weights (or sizes) of items.

cap same capacity for all the bins.

method which approximate method to use.

4 bpp_approx

Details

Solves approximately the Bin Packing problem for numeric weights and bins, all having the same
volume.

Possible methods are "firstfit", "bestfit", and "worstfit". "firstfit" tries to place each item as early
as possible, "bestfit" such that the remaining space in the bin is as small as possible, and "worstfit"
such that the remaining space is as big as possible.

Best results are achieved with the "bestfit" method. "firstfit" may be a reasonable alternative. For
smaller and medium-sized data the approximate results will come quite close to the exact solution,
see the examples.

In general, the results are much better if the items in S are sorted decreasingly. If they are not, an
immediate warning is issued.

Value

A list of the following components:

nbins minimum number of bins.

xbins index of the bin each item is assigned to.

sbins sum of item sizes in each bin.

filled total volume filled in the bins (as percentage).

Note

The Bin Packing problem can be solved as a Linear Program. The formulation is a bit tricky, and it
turned out ’lpSolve’ does not solve medium-sized problems in acceptable time. (Tests with ’Rglpk’
will follow.)

Author(s)

Hans W. Borchers

References

Silvano Martello. "Bin packing problems". In: 23rd Belgian Mathematical Optimization Workshop,
La-Roche-en-Ardennes 2019.

See Also

Function binpacking in package ’knapsack’ (on R-Forge).

Examples

(1)
S <- c(50, 3, 48, 53, 53, 4, 3, 41, 23, 20, 52, 49)
cap <- 100
bpp_approx(S, cap, method = "bestfit")
exact -- $nbins 4, filled 99.75 %
firstfit -- $nbins 6, filled 66.5 %

change_making 5

bestfit -- $nbins 5, filled 79.8 %
! when decreasingly sorted, 'bestfit' with nbins = 4

(2)
S <- c(100,99,89,88,87,75,67,65,65,57,57,49,47,31,27,18,13,9,8,1)
cap <- 100
bpp_approx(S, cap, method = "firstfit")
firstfit: 12 bins; exact: 12 bins

Not run:
(3)
S <- c(99,99,96,96,92,92,91,88,87,86,

85,76,74,72,69,67,67,62,61,56,
52,51,49,46,44,42,40,40,33,33,
30,30,29,28,28,27,25,24,23,22,
21,20,17,14,13,11,10, 7, 7, 3)

cap <- 100
bpp_approx(S, cap)
exact: 25; firstfit: 25; bestfit: 25 nbins

(4)
20 no.s in 1..100, capacity 100
set.seed(7013)
S <- sample(1:100, 20, replace = TRUE)
cap <- 100
bpp_approx(sort(S, decreasing = TRUE), cap, method = "bestfit")
exact: 12 bins; firstfit and bestfit: 13; worstfit: 14 bins

End(Not run)

change_making Change Making Problem

Description

Solves the Change Making problem as an integer linear program.

Usage

change_making(items, value)

Arguments

items vector of integer numbers greater than zero.

value integer number

6 CMAES

Details

The Change Making problem attempts to find a minimal combination of items that sum up to a
given value. If the items are distinct positive integers, the solution is unique.

If the problem is infeasible, i.e. there is no such combination, the returned count is 0.

The problem is treated as an Integer Linear Program (ILP) and solved with the lp solver in lpSolve.

Value

Returns a list with components count, the number of items used to sum up to the value, and
solution, the number of items used per item.

References

See the Wikipedia article on the "change making problem".

See Also

setcover

Examples

items = c(2, 5, 10, 50, 100)
value = 999
change_making(items, value)

Not run:
solutions <- numeric(20)
for (m in 1:20) {

sol <- change_making(items, m)
solutions[m] <- sol$count

}
solutions
#> [1] 0 1 0 2 1 3 2 4 3 1 4 2 5 3 2 4 3 5 4 2

End(Not run)

CMAES Covariance Matrix Adaptation Evolution Strategy

Description

The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is an evolutionary algorithm for
difficult non-linear non-convex optimization problems in continuous domain. The CMA-ES is typ-
ically applied to unconstrained or bounded constraint optimization problems, and search space di-
mensions between three and fifty.

CMAES 7

Usage

pureCMAES(par, fun, lower = NULL, upper = NULL, sigma = 0.5,
stopfitness = -Inf, stopeval = 1000*length(par)^2, ...)

Arguments

par objective variables initial point.

fun objective/target/fitness function.

lower,upper lower and upper bounds for the parameters.

sigma coordinate wise standard deviation (step size).

stopfitness stop if fitness < stopfitness (minimization).

stopeval stop after stopeval number of function evaluations

... additional parameters to be passed to the function.

Details

The CMA-ES implements a stochastic variable-metric method. In the very particular case of a
convex-quadratic objective function the covariance matrix adapts to the inverse of the Hessian ma-
trix, up to a scalar factor and small random fluctuations. The update equations for mean and covari-
ance matrix maximize a likelihood while resembling an expectation-maximization algorithm.

Value

Returns a list with components xmin and fmin.

Be patient; for difficult problems or high dimensions the function may run for several minutes;
avoid problem dimensions of 30 and more!

Note

There are other implementations of Hansen’s CMAES in package ‘cmaes’ (simplified form) and in
package ‘parma’ as cmaes() (extended form).

Author(s)

Copyright (c) 2003-2010 Nikolas Hansen for Matlab code PURECMAES; converted to R by Hans
W Borchers. (Hansen’s homepage: www.cmap.polytechnique.fr/~nikolaus.hansen/)

References

Hansen, N. (2011). The CMA Evolution Strategy: A Tutorial.
https://arxiv.org/abs/1604.00772

Hansen, N., D.V. Arnold, and A. Auger (2013). Evolution Strategies. J. Kacprzyk and W. Pedrycz
(Eds.). Handbook of Computational Intelligence, Springer-Verlag, 2015.

See Also

cmaes::cmaes, parma::cmaes

https://arxiv.org/abs/1604.00772

8 fminviz,flineviz

Examples

Not run:
Polynomial minimax approximation of data points
(see the Remez algorithm)
n <- 10; m <- 101 # polynomial of degree 10; no. of data points
xi <- seq(-1, 1, length = m)
yi <- 1 / (1 + (5*xi)^2) # Runge's function

pval <- function(p, x) # Horner scheme
outer(x, (length(p) - 1):0, "^") %*% p

pfit <- function(x, y, n) # polynomial fitting of degree n
qr.solve(outer(x, seq(n, 0), "^"), y)

fn1 <- function(p) # objective function
max(abs(pval(p, xi) - yi))

pf <- pfit(xi, yi, 10) # start with a least-squares fitting
sol1 <- pureCMAES(pf, fn1, rep(-200, 11), rep(200, 11))
zapsmall(sol1$xmin)
[1] -50.24826 0.00000 135.85352 0.00000 -134.20107 0.00000
[7] 59.19315 0.00000 -11.55888 0.00000 0.93453

print(sol1$fmin, digits = 10)
[1] 0.06546780411

Polynomial fitting in the L1 norm
(or use LP or IRLS approaches)
fn2 <- function(p)

sum(abs(pval(p, xi) - yi))

sol2 <- pureCMAES(pf, fn2, rep(-100, 11), rep(100, 11))
zapsmall(sol2$xmin)
[1] -21.93238 0.00000 62.91083 0.00000 -67.84847 0.00000
[7] 34.14398 0.00000 -8.11899 0.00000 0.84533

print(sol2$fmin, digits = 10)
[1] 3.061810639

End(Not run)

fminviz,flineviz Visualize Function Minimum

Description

Visualizes multivariate functions around a point or along a line between two points in R^n.

hamiltonian 9

Usage

fminviz(fn, x0, nlines = 2*length(x0),
npoints = 51, scaled = 1.0)

flineviz(fn, x1, x2, npoints = 51, scaled = 0.1)

Arguments

fn multivariate function to be visualized.

x0,x1,x2 points in n-dimensional space.

nlines number of lines to plot.

npoints number of points used to plot a line.

scaled scale factor to extend the line(s).

Details

fminviz vizualizes the behavior of a multivariate function fn around a point x0. It randomly selects
nlines lines through x0 in R^n and draws the curves of the function along these lines in one graph.

Curves that have at least one point below fn(x0) are drawn in red, all others in blue. The scale on
the x-axis is the Euclidean distance in R^n. The scale factor can change it.

flineviz vizualizes the behavior of a multivariate function fn along the straight line between the
points x1 and x2. Points x1 and x2 are also plotted.

Value

Plots a line graph and returns NULL (invisibly).

Examples

Not run:
f1 <- function(x) x[1]^2 - x[2]^2
fminviz(f1, c(0, 0), nlines = 10)

f2 <- function(x) (1 - x[1])^2 + 100*(x[2] - x[1]^2)^2
flineviz(f2, c(0, 0), c(1, 1))

End(Not run)

hamiltonian Finds a Hamiltonian path or cycle

Description

A Hamiltionian path or cycle (a.k.a. Hamiltonian circuit) is a path through a graph that visits each
vertex exactly once, resp. a closed path through the graph.

10 hamiltonian

Usage

hamiltonian(edges, start = 1, cycle = TRUE)

Arguments

edges an edge list describing an undirected graph.

start vertex number to start the path or cycle.

cycle Boolean, should a path or a full cycle be found.

Details

hamiltonian() applies a backtracking algorithm that is relatively efficient for graphs of up to 30–
40 vertices. The edge list is first transformed to a list where the i-th component contains the list of
all vertices connected to vertex i.

The edge list must be of the form c(v1, v2, v3, v2, ...) meaning that there are edges v1 --> v2,
v3 --> v4, etc., connecting these vertices. Therefore, an edge list has an even number of entries.

If the function returns NULL, there is no Hamiltonian path or cycle. The function does not check if
the graph is connected or not. And if cycle = TRUE is used, then there also exists an edge from the
last to the first entry in the resulting path.

Ifa Hamiltonian cycle exists in the graph it will be found whatever the starting vertex was. For a
Hamiltonian path this is different and a successful search may very well depend on the start.

Value

Returns a vector containing vertex number of a valid path or cycle, or NULL if no path or cycle has
been found (i.e., does not exist); If a cycle was requested, there exists an edge from the last to the
first vertex in this list of edges.

Note

See the igraph package for more information about handling graphs and defining them through
edge lists or other constructs.

Author(s)

Hans W. Borchers

References

Papadimitriou, Ch. H., and K. Steiglitz (1998). Optimization Problems: Algorithms and Complex-
ity. Prentice-Hall/Dover Publications.

See Also

Package igraph

hamiltonian 11

Examples

Dodekaeder graph
D20_edges <- c(

1, 2, 1, 5, 1, 6, 2, 3, 2, 8, 3, 4, 3, 10, 4, 5, 4, 12,
5, 14, 6, 7, 6, 15, 7, 8, 7, 16, 8, 9, 9, 10, 9, 17, 10, 11,
11, 12, 11, 18, 12, 13, 13, 14, 13, 19, 14, 15, 15, 20, 16, 17, 16, 20,
17, 18, 18, 19, 19, 20)

hamiltonian(D20_edges, cycle = TRUE)
[1] 1 2 3 4 5 14 13 12 11 10 9 8 7 16 17 18 19 20 15 6
hamiltonian(D20_edges, cycle = FALSE)
[1] 1 2 3 4 5 14 13 12 11 10 9 8 7 6 15 20 16 17 18 19

Herschel graph
The Herschel graph the smallest non-Hamiltonian polyhedral graph.
H11_edges <- c(

1, 2, 1, 8, 1, 9, 1, 10, 2, 3, 2, 11, 3, 4, 3, 9, 4, 5,
4, 11, 5, 6, 5, 9, 5, 10, 6, 7, 6, 11, 7, 8, 7, 10, 8, 11)

hamiltonian(H11_edges, cycle = FALSE)
NULL

Not run:
Example: Graph constructed from squares
N <- 45 # 23, 32, 45
Q <- (2:trunc(sqrt(2*N-1)))^2
sq_edges <- c()
for (i in 1:(N-1)) {

for (j in (i+1):N) {
if ((i+j)

sq_edges <- c(sq_edges, i, j)
}

}

require(igraph)
sq_graph <- make_graph(sq_edges, directed=FALSE)
plot(sq_graph)

if (N == 23) {
does not find a path with start=1 ...
hamiltonian(sq_edges, start=18, cycle=FALSE)
hamiltonian(sq_edges) # NULL

} else if (N == 32) {
the first of these graphs that is Hamiltonian ...
hamiltonian(sq_edges, cycle=FALSE)
hamiltonian(sq_edges)

} else if (N == 45) {
takes much too long ...
hamiltonian(sq_edges, cycle=FALSE)
hamiltonian(sq_edges)

}
End(Not run)

12 Historize

Historize Historize function

Description

Provides storage for function calls.

Usage

Historize(fun, len = 0, ...)

Arguments

fun Function of one or several variables.

len If > 0, input values will be stored, too.

... Additional parameters to be handed to the function.

Details

Historize() adds storage to the function. If len=0 then only function values will be stored in a
vector, if len>0 then variables will be stored in a vector, and function values will be stored in a
matrix, one line for every function call.

If Fn = Historize(...) is the ’historized’ function, then the storage can be retrieved with Fn(),
and can be cleared with Fn(NULL).

Filling the storage will take extra time and can slow down the function calls. Especially also storing
the variables used in the call (with len>0) will make it considerably slower.

Functions can have multivariate output; the user is asked to take care of handling the output vector
or matrix correctly. The function may even require additional parameters.

Value

Returns a list, $input the input variables as matrix, $H2 the function values as vector, $nvars the
number of input variables of the function, and $ncalls the number or recorded function calls.

Note

Can also be applied to functions that output a vector (same length for every call).

Author(s)

Hans W. Borchers

See Also

trace

hookejeeves 13

Examples

f <- function(x) sum(x^2)
F <- Historize(f, len = 1)
c(F(c(1,1)), F(c(1,2)), F(c(2,1)), F(c(2,2)))
#> [1] 2 5 5 8
F()
#> $input
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 1 2
#> [3,] 2 1
#> [4,] 2 2
#>
#> $values
#> [1] 2 5 5 8
#>
#> $nvars
#> [1] 2
#>
#> $ncalls
#> [1] 4
F(NULL) # reset memory

Rastrigin under Differential Evolution

Fn <- Historize(fnRastrigin)
dm <- 10
lb <- rep(-5.2, dm); ub <- -lb

sol <- simpleDE(Fn, lower = lb, upper = ub)
fvalues <- Fn()$values
fvals <- cummin(fvalues)

Not run:
plot(fvalues, type = 'p', col = 7, pch = '.', cex = 2,

main = "Simple DE optimization", xlab = '', ylab = '')
lines(fvals, col = 2, lwd = 2)
legend(length(fvalues), max(fvalues),

c("Intermediate values", "cummulated min"),
xjust = 1, col = c(7, 2), lwd = 2)

grid()
End(Not run)

hookejeeves Hooke-Jeeves Minimization Method

Description

An implementation of the Hooke-Jeeves algorithm for derivative-free optimization.

14 hookejeeves

Usage

hookejeeves(x0, f, lb = NULL, ub = NULL,
tol = 1e-08,
target = Inf, maxfeval = Inf, info = FALSE, ...)

Arguments

x0 starting vector.

f nonlinear function to be minimized.

lb, ub lower and upper bounds.

tol relative tolerance, to be used as stopping rule.

target iteration stops when this value is reached.

maxfeval maximum number of allowed function evaluations.

info logical, whether to print information during the main loop.

... additional arguments to be passed to the function.

Details

This method computes a new point using the values of f at suitable points along the orthogonal
coordinate directions around the last point.

Value

List with following components:

xmin minimum solution found so far.

fmin value of f at minimum.

fcalls number of function evaluations.

niter number of iterations performed.

Note

Hooke-Jeeves is notorious for its number of function calls. Memoization is often suggested as a
remedy.

For a similar implementation of Hooke-Jeeves see the ‘dfoptim’ package.

References

C.T. Kelley (1999), Iterative Methods for Optimization, SIAM.

Quarteroni, Sacco, and Saleri (2007), Numerical Mathematics, Springer-Verlag.

See Also

neldermead

knapsack 15

Examples

Rosenbrock function
rosenbrock <- function(x) {

n <- length(x)
x1 <- x[2:n]
x2 <- x[1:(n-1)]
sum(100*(x1-x2^2)^2 + (1-x2)^2)

}

hookejeeves(c(0,0,0,0), rosenbrock)
$xmin
[1] 1.000000 1.000001 1.000002 1.000004
$fmin
[1] 4.774847e-12
$fcalls
[1] 2499
$niter
#[1] 26

hookejeeves(rep(0,4), lb=rep(-1,4), ub=0.5, rosenbrock)
$xmin
[1] 0.50000000 0.26221320 0.07797602 0.00608027
$fmin
[1] 1.667875
$fcalls
[1] 571
$niter
[1] 26

knapsack 0-1 Knapsack Problem

Description

Solves the 0-1 (binary) single knapsack problem.

Usage

knapsack(w, p, cap)

Arguments

w integer vector of weights.

p integer vector of profits.

cap maximal capacity of the knapsack, integer too.

16 knapsack

Details

knapsack solves the 0-1, or: binary, single knapsack problem by using the dynamic programming
approach. The problem can be formulated as:

Maximize sum(x*p) such that sum(x*w) <= cap, where x is a vector with x[i] == 0 or 1.

Knapsack procedures can even solve subset sum problems, see the examples 3 and 3’ below.

Value

A list with components capacity, profit, and indices.

Author(s)

HwB email: <hwborchers@googlemail.com>

References

Papadimitriou, C. H., and K. Steiglitz (1998). Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications 1982, 1998.

Horowitz, E., and S. Sahni (1978). Fundamentals of Computer Algorithms. Computer Science
Press, Rockville, ML.

See Also

knapsack::knapsack

Examples

Example 1
p <- c(15, 100, 90, 60, 40, 15, 10, 1)
w <- c(2, 20, 20, 30, 40, 30, 60, 10)
cap <- 102
(is <- knapsack(w, p, cap))
[1] 1 2 3 4 6 , capacity 102 and total profit 280

Example 2
p <- c(70, 20, 39, 37, 7, 5, 10)
w <- c(31, 10, 20, 19, 4, 3, 6)
cap <- 50
(is <- knapsack(w, p, cap))
[1] 1 4 , capacity 50 and total profit 107

Not run:
Example 3: subset sum
p <- seq(2, 44, by = 2)^2
w <- p
is <- knapsack(w, p, 2012)
p[is$indices] # 16 36 64 144 196 256 324 400 576

Example 3': maximize number of items
w <- seq(2, 44, by = 2)^2

maxempty 17

p <- numeric(22) + 1
is <- knapsack(w, p, 2012)

Example 4 from Rosetta Code:
w = c(9, 13, 153, 50, 15, 68, 27, 39, 23, 52, 11,

32, 24, 48, 73, 42, 43, 22, 7, 18, 4, 30)
p = c(150, 35, 200, 160, 60, 45, 60, 40, 30, 10, 70,

30, 15, 10, 40, 70, 75, 80, 20, 12, 50, 10)
cap = 400
system.time(is <- knapsack(w, p, cap)) # 0.001 sec

End(Not run)

maxempty Maximally Empty Rectangle Problem

Description

Find the largest/maximal empty rectangle, i.e. with largest area, not containing given points.

Usage

maxempty(x, y, ax = c(0, 1), ay = c(0, 1))

Arguments

x, y coordinates of points to be avoided.

ax, ay left and right resp. lower and upper constraints.

Details

Find the largest or maximal empty two-dimensional rectangle in a rectangular area. The edges
of this rectangle have to be parallel to the edges of the enclosing rectangle (and parallel to the
coordinate axes). ‘Empty’ means that none of the points given are contained in the interior of the
found rectangle.

Value

List with area and rect the rectangle as a vector usable for the rect graphics function.

Note

The algorithm has a run-time of O(n^2) while there are run-times of O(n*log(n)) reported in the
literature, utilizing a more complex data structure. I don’t know of any comparable algorithms for
the largest empty circle problem.

Author(s)

HwB email: <hwborchers@googlemail.com>

18 maxquad

References

B. Chazelle, R. L. Drysdale, and D. T. Lee (1986). Computing the Largest Empty Rectangle. SIAM
Journal of Computing, Vol. 15(1), pp. 300–315.

A. Naamad, D. T. Lee, and W.-L. Hsu (1984). On the Maximum Empty Rectangle Problem. Dis-
crete Applied Mathematics, Vol. 8, pp. 267–277.

See Also

Hmisc::largest.empty with a Fortran implementation of this code.

Examples

N <- 100; set.seed(8237)
x <- runif(N); y <- runif(N)
R <- maxempty(x, y, c(0,1), c(0,1))
R
$area
[1] 0.08238793
$rect
[1] 0.7023670 0.1797339 0.8175771 0.8948442

Not run:
plot(x, y, pch="+", xlim=c(0,1), ylim=c(0,1), col="darkgray",

main = "Maximally empty rectangle")
rect(0, 0, 1, 1, border = "red", lwd = 1, lty = "dashed")
do.call(rect, as.list(R$rect))
grid()
End(Not run)

maxquad The MAXQUAD Test Function

Description

Lemarechal’s MAXQUAD optimization test function.

Usage

maxquad(n, m)

Arguments

n number of variables of the generated test function.

m number of functions to compete for the maximum.

Details

MAXQUAD actually is a family of minimax functions, parametrized by the number n of variables
and the number m of functions whose maximum it is.

maxsub 19

Value

Returns a list with components fn the generated test function of n variables, and gr the correspond-
ing (analytical) gradient function.

References

Kuntsevich, A., and F. Kappel (1997). SolvOpt – The Solver for Local Nonlinear Optimization
Problems. Manual Version 1.1, Institute of Mathematics, University of Graz.

Lemarechal, C., and R. Mifflin, Eds. (1978). Nonsmooth Optimization. Pergamon Press, Oxford.

Shor, N. Z. (1985). Minimization Methods for Non-differentiable Functions. Series in Computa-
tional Mathematics, Springer-Verlag, Berlin.

Examples

Test function of 5 variables, defined as maximum of 5 smooth functions
maxq <- maxquad(5, 5)
fnMaxquad <- maxq$fn
grMaxquad <- maxq$gr
shor

maxsub Maximal Sum Subarray

Description

Find a subarray with maximal positive sum.

Usage

maxsub(x, inds = TRUE)

maxsub2d(A)

Arguments

x numeric vector.
A numeric matrix
inds logical; shall the indices be returned?

Details

maxsub finds a contiguous subarray whose sum is maximally positive. This is sometimes called
Kadane’s algorithm. maxsub will use a very fast version with a running time of O(n) where n is the
length of the input vector x.

maxsub2d finds a (contiguous) submatrix whose sum of elements is maximally positive. The ap-
proach taken here is to apply the one-dimensional routine to summed arrays between all rows of A.
This has a run-time of O(n^3), though a run-time of O(n^2 log n) seems possible see the reference
below. maxsub2d can solve a 100-by-100 matrix in a few seconds – but beware of bigger ones.

20 maxsub

Value

Either just a maximal sum, or a list this sum as component sum plus the start and end indices as a
vector inds.

Note

In special cases, the matrix A may be sparse or (as in the example section) only have one nonzero
element in each row and column. Expectation is that there may exists a more efficient (say O(n^2))
algorithm in these special cases.

Author(s)

HwB <hwborchers@googlemail.com>

References

Bentley, Jon (1986). “Programming Pearls”, Column 7. Addison-Wesley Publ. Co., Reading, MA.

T. Takaoka (2002). Efficient Algorithms for the Maximum Subarray Problem by Distance Matrix
Multiplication. The Australasian Theory Symposion, CATS 2002.

Examples

Find a maximal sum subvector
set.seed(8237)
x <- rnorm(1e6)
system.time(res <- maxsub(x, inds = TRUE))
res

Standard example: Find a maximal sum submatrix
A <- matrix(c(0,-2,-7,0, 9,2,-6,2, -4,1,-4,1, -1,8,0,2),

nrow = 4, ncol = 4, byrow =TRUE)
maxsub2d(A)
$sum: 15
$inds: 2 4 1 2 , i.e., rows = 2..4, columns = 1..2

Not run:
Application to points in the unit square:
set.seed(723)
N <- 50; w <- rnorm(N)
x <- runif(N); y <- runif(N)
clr <- ifelse (w >= 0, "blue", "red")
plot(x, y, pch = 20, col = clr, xlim = c(0, 1), ylim = c(0, 1))

xs <- unique(sort(x)); ns <- length(xs)
X <- c(0, ((xs[1:(ns-1)] + xs[2:ns])/2), 1)
ys <- unique(sort(y)); ms <- length(ys)
Y <- c(0, ((ys[1:(ns-1)] + ys[2:ns])/2), 1)
abline(v = X, col = "gray")
abline(h = Y, col = "gray")

A <- matrix(0, N, N)

mknapsack 21

xi <- findInterval(x, X); yi <- findInterval(y, Y)
for (i in 1:N) A[yi[i], xi[i]] <- w[i]

msr <- maxsub2d(A)
rect(X[msr$inds[3]], Y[msr$inds[1]], X[msr$inds[4]+1], Y[msr$inds[2]+1])

End(Not run)

mknapsack Multiple 0-1 Knapsack Problem

Description

Solves the 0-1 (binary) multiple knapsack problem.

Usage

mknapsack(w, p, cap)

Arguments

w vector of (positive) weights.

p vector of (positive) profits.

cap vector of capacities of different knapsacks.

Details

Solves the 0-1 multiple knapsack problem for a set of profits and weights.
A multiple 0-1 knapsack problem can be formulated as:

maximize vstar = p(1)*(x(1,1) + ... + x(m,1)) + + p(n)*(x(1,n) + ... + x(m,n)) subject
to w(1)*x(i,1) + ... + w(n)*x(i,n) <= cap(i) for i=1,...,m x(1,j) + ... + x(m,j) <= 1 for
j=1,...,n x(i,j) = 0 or 1 for i=1,...,m , j=1,...,n ,

The multiple knapsack problem is reformulated as a linear program and solved with the help of
package lpSolve.

This function can be used for the single knapsack problem as well, but the ’dynamic programming’
version in the knapsack function is faster (but: allows only integer values).

The solution found is most often not unique and may not be the most compact one. In the future,
we will attempt to ’compactify’ through backtracking. The number of backtracks will be returned
in list element bs.

Value

A list with components, ksack the knapsack numbers the items are assigned to, value the total
value/profit of the solution found, and bs the number of backtracks used.

22 mknapsack

Note

Contrary to earlier versions, the sequence of profits and weights has been interchanged: first the
weights, then profits.

The compiled version was transferred to the knapsack package on R-Forge (see project ’optimist’).

References

Kellerer, H., U. Pferschy, and D. Pisinger (2004). Knapsack Problems. Springer-Verlag, Berlin
Heidelberg.

Martello, S., and P. Toth (1990). Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Ltd.

See Also

Other packages implementing knapsack routines.

Examples

Example 1: single knapsack
w <- c(2, 20, 20, 30, 40, 30, 60, 10)
p <- c(15, 100, 90, 60, 40, 15, 10, 1)
cap <- 102
(is <- mknapsack(w, p, cap))
which(is$ksack == 1)
[1] 1 2 3 4 6 , capacity 102 and total profit 280

Example 2: multiple knapsack
w <- c(40, 60, 30, 40, 20, 5)
p <- c(110, 150, 70, 80, 30, 5)
cap <- c(85, 65)
is <- mknapsack(w, p, cap)
kps 1: 1,4; kps 2: 2,6; value: 345

Example 3: multiple knapsack
p <- c(78, 35, 89, 36, 94, 75, 74, 79, 80, 16)
w <- c(18, 9, 23, 20, 59, 61, 70, 75, 76, 30)
cap <- c(103, 156)
is <- mknapsack(w, p, cap)
kps 1: 3,4,5; kps 2: 1,6,9; value: 452

Not run:
How to Cut Your Planks with R
R-bloggers, Rasmus Baath, 2016-06-12
#
This is application of multiple knapsacks to cutting planks into pieces.

planks_we_have <- c(120, 137, 220, 420, 480)
planks_we_want <- c(19, 19, 19, 19, 79, 79, 79, 103, 103,

103, 135, 135, 135, 135, 160)
s <- mknapsack(planks_we_want, planks_we_want + 1, planks_we_have)
s$ksack

neldermead 23

[1] 5 5 5 5 3 5 5 4 1 5 4 5 3 2 4

Solution w/o backtracking
bin 1 : 103 | Rest: 17
bin 2 : 135 | Rest: 2
bin 3 : 79 + 135 | Rest: 6
bin 4 : 103 + 135 + 160 | Rest: 22
bin 5 : 4*19 + 2*79 + 103 + 135 | Rest: 8
#
Solution with reversing the bins (bigger ones first)
bin 1 : 103 | Rest: 4
bin 2 : 2*19 + 79 | Rest: 20
bin 3 : 79 + 135 | Rest: 6
bin 4 : 2*19 + 79 + 135 + 160 | Rest: 8
bin 5 : 2*103 + 2*135 | Rest: 17
#
Solution with backtracking (compactification)
sol = c(1, 4, 4, 1, 1, 3, 4, 5, 5, 5, 5, 4, 2, 3, 4)
bin 1 : 2*19 + 79 | Rest: 3
bin 2 : 135 | Rest: 2
bin 3 : 79 + 135 | Rest: 6
bin 4 : 2*19 + 79 + 135 + 160 | Rest: 8
bin 5 : 3*103 + 135 | Rest: 36

End(Not run)

neldermead Nelder-Mead Minimization Method

Description

An implementation of the Nelder-Mead algorithm for derivative-free optimization / function mini-
mization.

Usage

neldermead(fn, x0, ..., adapt = TRUE,
tol = 1e-10, maxfeval = 10000,

step = rep(1.0, length(x0)))

neldermeadb(fn, x0, ..., lower, upper, adapt = TRUE,
tol = 1e-10, maxfeval = 10000,
step = rep(1, length(x0)))

Arguments

fn nonlinear function to be minimized.

x0 starting point for the iteration.

adapt logical; adapt to parameter dimension.

24 neldermead

tol terminating limit for the variance of function values; can be made *very* small,
like tol=1e-50.

maxfeval maximum number of function evaluations.

step size and shape of initial simplex; relative magnitudes of its elements should
reflect the units of the variables.

... additional arguments to be passed to the function.

lower, upper lower and upper bounds.

Details

Also called a ‘simplex’ method for finding the local minimum of a function of several variables.
The method is a pattern search that compares function values at the vertices of the simplex. The
process generates a sequence of simplices with ever reducing sizes.

The simplex function minimisation procedure due to Nelder and Mead (1965), as implemented by
O’Neill (1971), with subsequent comments by Chambers and Ertel 1974, Benyon 1976, and Hill
1978. For another elaborate implementation of Nelder-Mead in R based on Matlab code by Kelley
see package ‘dfoptim’.

eldermead can be used up to 20 dimensions (then ‘tol’ and ‘maxfeval’ need to be increased). With
adapt=TRUE it applies adaptive coefficients for the simplicial search, depending on the problem
dimension – see Fuchang and Lixing (2012). This approach especially reduces the number of
function calls.

With upper and/or lower bounds, neldermeadb applies transfinite to define the function on all
of R^n and to retransform the solution to the bounded domain. Of course, if the optimum is near to
the boundary, results will not be as accurate as when the minimum is in the interior.

Value

List with following components:

xmin minimum solution found.

fmin value of f at minimum.

fcount number of iterations performed.

restarts number of restarts.

errmess error message

Note

Original FORTRAN77 version by R O’Neill; MATLAB version by John Burkardt under LGPL
license. Re-implemented in R by Hans W. Borchers.

References

Nelder, J., and R. Mead (1965). A simplex method for function minimization. Computer Journal,
Volume 7, pp. 308-313.

O’Neill, R. (1971). Algorithm AS 47: Function Minimization Using a Simplex Procedure. Applied
Statistics, Volume 20(3), pp. 338-345.

neldermead 25

J. C. Lagarias et al. (1998). Convergence properties of the Nelder-Mead simplex method in low
dimensions. SIAM Journal for Optimization, Vol. 9, No. 1, pp 112-147.

Fuchang Gao and Lixing Han (2012). Implementing the Nelder-Mead simplex algorithm with
adaptive parameters. Computational Optimization and Applications, Vol. 51, No. 1, pp. 259-277.

See Also

hookejeeves

Examples

Classical tests as in the article by Nelder and Mead
Rosenbrock's parabolic valley
rpv <- function(x) 100*(x[2] - x[1]^2)^2 + (1 - x[1])^2
x0 <- c(-2, 1)
neldermead(rpv, x0) # 1 1

Fletcher and Powell's helic valley
fphv <- function(x)

100*(x[3] - 10*atan2(x[2], x[1])/(2*pi))^2 +
(sqrt(x[1]^2 + x[2]^2) - 1)^2 +x[3]^2

x0 <- c(-1, 0, 0)
neldermead(fphv, x0) # 1 0 0

Powell's Singular Function (PSF)
psf <- function(x) (x[1] + 10*x[2])^2 + 5*(x[3] - x[4])^2 +

(x[2] - 2*x[3])^4 + 10*(x[1] - x[4])^4
x0 <- c(3, -1, 0, 1)
neldermead(psf, x0) # 0 0 0 0, needs maximum number of function calls

Bounded version of Nelder-Mead
lower <- c(-Inf, 0, 0)
upper <- c(Inf, 0.5, 1)
x0 <- c(0, 0.1, 0.1)
neldermeadb(fnRosenbrock, c(0, 0.1, 0.1), lower = lower, upper = upper)
$xmin = c(0.7085595, 0.5000000, 0.2500000)
$fmin = 0.3353605

Not run:
Can run Rosenbrock's function in 30 dimensions in one and a half minutes:
neldermead(fnRosenbrock, rep(0, 30), tol=1e-20, maxfeval=10^7)
$xmin
[1] 0.9999998 1.0000004 1.0000000 1.0000001 1.0000000 1.0000001
[7] 1.0000002 1.0000001 0.9999997 0.9999999 0.9999997 1.0000000
[13] 0.9999999 0.9999994 0.9999998 0.9999999 0.9999999 0.9999999
[19] 0.9999999 1.0000001 0.9999998 1.0000000 1.0000003 0.9999999
[25] 1.0000000 0.9999996 0.9999995 0.9999990 0.9999973 0.9999947
$fmin
[1] 5.617352e-10
$fcount
[1] 1426085
elapsed time is 96.008000 seconds

26 occurs

End(Not run)

occurs Finding Subsequences

Description

Counts items, or finds subsequences of (integer) sequences.

Usage

count(x, sorted = TRUE)

occurs(subseq, series)

Arguments

x array of items, i.e. numbers or characters.

sorted logical; default is to sort items beforehand.

subseq vector of integers.

series vector of integers.

Details

count counts the items, similar to table, but as fast and a more tractable output. If sorted then
the total number per item will be counted, else per repetition.

If m and n are the lengths of s and S resp., then occurs(s, S) determines all positions i such that s
== S[i, ..., i+m-1].

The code is vectorized and relatively fast. It is intended to complement this with an implementation
of Rabin-Karp, and possibly Knuth-Morris-Pratt and Boyer-Moore algorithms.

Value

count returns a list with components v the items and e the number of times it apears in the array.
occurs returns a vector of indices, the positions where the subsequence appears in the series.

Examples

Examples
patrn <- c(1,2,3,4)
exmpl <- c(3,3,4,2,3,1,2,3,4,8,8,23,1,2,3,4,4,34,4,3,2,1,1,2,3,4)
occurs(patrn, exmpl)
[1] 6 13 23

Not run:
set.seed(2437)
p <- sample(1:20, 1000000, replace=TRUE)

setcover 27

system.time(i <- occurs(c(1,2,3,4,5), p)) #=> [1] 799536
user system elapsed
0.017 0.000 0.017 [sec]

system.time(c <- count(p))
user system elapsed
0.075 0.000 0.076
print(c)
$v
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
$e
[1] 49904 50216 49913 50154 49967 50045 49747 49883 49851 49893
[11] 50193 50024 49946 49828 50319 50279 50019 49990 49839 49990

End(Not run)

setcover Set cover problem

Description

Solves the Set Cover problem as an integer linear program.

Usage

setcover(Sets, weights)

Arguments

Sets matrix of 0s and 1s, each line defining a subset.

weights numerical weights for each subset.

Details

The Set Cover problems attempts to find in subsets (of a ’universe’) a minimal set of subsets that
still covers the whole set.

Each line of the matrix Sets defines a characteristic function of a subset. It is required that each
element of the universe is contained in at least one of these subsets.

The problem is treated as an Integer Linear Program (ILP) and solved with the lp solver in lpSolve.

Value

Returns a list with components sets, giving the indices of subsets, and objective, the sum of
weights of subsets present in the solution.

References

See the Wikipedia article on the "set cover problem".

28 SIAM test functions

See Also

knapsack

Examples

Define 12 subsets of universe {1, ..., 10}.
set.seed(7*11*13)
A <- matrix(sample(c(0,1), prob = c(0.8,0.2), size = 120, replace =TRUE),

nrow = 12, ncol = 10)
sol <- setcover(Sets = A, weights = rep(1, 12))
sol
$sets
[1] 1 2 9 12
$no.sets
##[1] 4

all universe elements are covered:
colSums(A[sol$sets,])
[1] 1 1 2 1 1 1 2 1 1 2

SIAM test functions Trefethen and Wagon Test Functions

Description

Test functions for global optimization posed for the SIAM 100-digit challenge in 2002 by Nick
Trefethen, Oxford University, UK.

Usage

fnTrefethen(p2)
fnWagon(p3)

Arguments

p2 Numerical vector of length 2.

p3 Numerical vector of length 3.

Details

These are highly nonlinear and oscillating functions in two and three dimensions with thousands of
local mimima inside the unit square resp. cube (i.e., [-1, 1] x [-1, 1] or [-1, 1] x [-1, 1] x [-1, 1]).

Value

Function value is a single real number.

simpleDE 29

Author(s)

HwB <hwborchers@googlemail.com>

References

F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel (2004). The SIAM 100-Digit Challenge: A
Study in High-Accuracy Numerical Computing. Society for Industrial and Applied Mathematics.

Examples

x <- 2*runif(5) - 1
fnTrefethen(x)
fnWagon(x)

Not run:
T <- matrix(NA, nrow=1001, ncol=1001)
for (i in 1:1001) {

for (j in 1:1001) {
T[i, j] <- fnTrefethen(c(x[i], y[j]))

}
}
image(x, y, T)
contour(x, y, T, add=TRUE)

End(Not run)

simpleDE Simple Differential Evolution Algorithm

Description

Simple Differential Evolution for Minimization.

Usage

simpleDE(fun, lower, upper, N = 64, nmax = 256, r = 0.4,
confined = TRUE, log = FALSE)

Arguments

fun the objective function to be minimized.
lower vector of lower bounds for all coordinates.
upper vector of upper bounds for all coordinates.
N population size.
nmax bound on the number of generations.
r amplification factor.
confined logical; stay confined within bounds.
log logical; shall a trace be printed.

30 simpleDE

Details

Evolutionary search to minimize a function: For points in the current generation, children are
formed by taking a linear combination of parents, i.e., each member of the next generation has
the form

p1 + r(p2 − p3)

where the pi are members of the current generation and r is an amplification factor.

Value

List with the following components:

fmin function value at the minimum found.

xmin numeric vector representing the minimum.

nfeval number of function calls.

Note

Original Mathematica version by Dirk Laurie in the SIAM textbook. Translated to R by Hans W
Borchers.

Author(s)

HwB <hwborchers@googlemail.com>

References

Dirk Laurie. “A Complex Optimization". Chapter 5 In: F. Bornemann, D. Laurie, S. Wagon, and J.
Waldvogel (Eds.). The SIAM 100-Digit Challenge. Society of Industrial and Applied Mathematics,
2004.

See Also

simpleEA, DEoptim in the ‘DEoptim’ package.

Examples

simpleDE(fnTrefethen, lower = c(-1,-1), upper = c(1,1))
$fmin
[1] -3.306869
$xmin
[1] -0.02440308 0.21061243 # this is the true global optimum!

simpleEA 31

simpleEA Simple Evolutionary Algorithm

Description

Simple Evolutionary Algorithm for Minimization.

Usage

simpleEA(fn, lower, upper, N = 100, ..., con = 0.1, new = 0.05,
tol = 1e-10, eps = 1e-07, scl = 1/2, confined = FALSE, log = FALSE)

Arguments

fn the objective function to be minimized.

lower vector of lower bounds for all coordinates.

upper vector of upper bounds for all coordinates.

N number of children per parent.

... additional parameters to be passed to the function.

con percentage of individuals concentrating to the best parents.

new percentage of new individuals not focussed on existing parents.

tol tolerance; if in the last three loops no better individuals were found up to this
tolerance, stop.

eps grid size bound to be reached.

scl scaling factor for shrinking the grid.

confined logical; shall the set of individuals be strictly respect the boundary? Default:
FALSE.

log logical, should best solution found be printed per step.

Details

Evolutionary search to minimize a function: For each point in the current generation, n random
points are introduced and the n best results of each generation (and its parents) are used to form the
next generation.

The scale shrinks the generation of new points as the algorithm proceeds. It is possible for some
children to lie outside the given rectangle, and therefore the final result may lie outside the unit
rectangle well. (TO DO: Make this an option.)

32 subsetsum

Value

List with the following components:

par numeric vector representing the minimum found.

val function value at the minimum found.

fun.calls number of function calls made.

rel.scl last scaling factor indicating grid size in last step.

rel.tol relative tolerance within the last three minima found.

Note

Original Mathematica Version by Stan Wagon in the SIAM textbook. Translated to R by Hans W
Borchers.

Author(s)

HwB <hwborchers@googlemail.com>

References

Stan Wagon. “Think Globally, Act Locally". Chapter 4 In: F. Bornemann, D. Laurie, S. Wagon,
and J. Waldvogel (Eds.). The SIAM 100-Digit Challenge. Society of Industrial and Applied Math-
ematics, 2004.

See Also

DEoptim in the ‘DEoptim’ package.

Examples

simpleEA(fnTrefethen, lower=c(-1,-1), upper=c(1,1), log=FALSE)
$par
[1] -0.02440310 0.21061243 # this is the true global optimum!
$val
[1] -3.306869

subsetsum Subset Sum Problem

Description

Subset sum routine for positive integers.

Usage

subsetsum(S, t, method = "greedy")

sss_test(S, t)

subsetsum 33

Arguments

S vector of positive integers.

t target value, bigger than all items in S.

method can be “greedy” or “dynamic”, where “dynamic” stands for the dynamic pro-
gramming approach.

Details

subsetsum is searching for a set of elements in S that sum up to t by continuously adding more
elements of S.

It is not required that S is decreasingly sorted. But for reasons of efficiency and smaller execution
times it is urgently recommended to sort the item set in decreasing order. See the examples to find
out how to handle your data.

The first components will be preferred, i.e., if S is decreasing, the sum with larger elements will be
found, if increasing, the sum with smaller elements. Because of timing considerations, the default
is to sort decreasingly before processing.

The dynamic method may be faster for large sets, but will also require much more memory if the
target value is large.

sss_test will find the biggest number below or equal to t that can be expressed as a sum of items
in S. It will not return any indices. It can be quite fast, though it preprocesses the set S to be sorted
decreasingly, too.

Value

List with the target value, if reached, and vector of indices of elements in S that sum up to t.

If no solution is found, the dynamic method will return indices for the largest value below the target,
the greedy method witll return NULL.

sss_test will simply return maximum sum value found.

Note

A compiled version – and much faster, in Fortran – can be found in package ’knapsack’ (R-Forge,
project ’optimist’) as subsetsum. A recursive version, returning *all* solutions, is much too slow
in R, but is possible in Julia and can be asked from the author.

Author(s)

HwB email: <hwborchers@googlemail.com>

References

Horowitz, E., and S. Sahni (1978). Fundamentals of Computer Algorithms. Computer Science
Press, Rockville, ML.

See Also

maxsub

34 Testfunctions

Examples

t <- 5842
S <- c(267, 493, 869, 961, 1000, 1153, 1246, 1598, 1766, 1922)

S is not decreasingly sorted, so ...
o <- order(S, decreasing = TRUE)
So <- S[o] # So is decreasingly sorted

sol <- subsetsum(So, t) # $inds: 2 4 6 7 8 w.r.t. So
is <- o[sol$inds] # is: 9 7 5 4 3 w.r.t. S
sum(S[is]) # 5842

Not run:
amount <- 4748652
products <-
c(30500,30500,30500,30500,42000,42000,42000,42000,

42000,42000,42000,42000,42000,42000,71040,90900,
76950,35100,71190,53730,456000,70740,70740,533600,
83800,59500,27465,28000,28000,28000,28000,28000,
26140,49600,77000,123289,27000,27000,27000,27000,
27000,27000,80000,33000,33000,55000,77382,48048,
51186,40000,35000,21716,63051,15025,15025,15025,
15025,800000,1110000,59700,25908,829350,1198000,1031655)

prepare set
prods <- products[products <= amount] # no elements > amount
prods <- sort(prods, decreasing=TRUE) # decreasing order

now find one solution
system.time(is <- subsetsum(prods, amount))
user system elapsed
0.030 0.000 0.029

prods[is]
[1] 70740 70740 71190 76950 77382 80000 83800
[8] 90900 456000 533600 829350 1110000 1198000

sum(prods[is]) == amount
[1] TRUE

Timings:
unsorted decr.sorted
"greedy" 22.930 0.030 (therefore the default settings)
"dynamic" 2.515 0.860 (overhead for smaller sets)
sss_test 8.450 0.040 (no indices returned)

End(Not run)

Testfunctions Optimization Test Functions

Testfunctions 35

Description

Simple and often used test function defined in higher dimensions and with analytical gradients,
especially suited for performance tests. Analytical gradients, where existing, are provided with the
gr prefix. The dimension is determined by the length of the input vector.

Usage

fnRosenbrock(x)
grRosenbrock(x)
fnRastrigin(x)
grRastrigin(x)
fnNesterov(x)
grNesterov(x)
fnNesterov1(x)
fnNesterov2(x)
fnHald(x)
grHald(x)
fnShor(x)
grShor(x)

Arguments

x numeric vector of a certain length.

Details

Rosenbrock – Rosenbrock’s famous valley function from 1960. It can also be regarded as a least-
squares problem:

n−1∑
i=1

(1− xi)2 + 100(xi+1 − x2i)2

No. of Vars.: n >= 2
Bounds: -5.12 <= xi <= 5.12
Local minima: at f(-1, 1, . . . , 1) for n >= 4
Minimum: 0.0
Solution: xi = 1, i = 1:n

Nesterov – Nesterov’s smooth adaptation of Rosenbrock, based on the idea of Chebyshev polyno-
mials. This function is even more difficult to optimize than Rosenbrock’s:

(1− x1)2/4 +
n−1∑
i=1

(1 + xi+1 − 2x2i)
2

Two nonsmooth Nesterov functions are available: Nesterov2 and Nesterov1, defined as

(1− x1)2/4 +
n−1∑
i=1

|1 + xi+1 − 2x2i |

36 Testfunctions

|1− x1|/4 +
n−1∑
i=1

(|1 + xi+1 − 2|xi||

No. of Vars.: n >= 2
Bounds: -5.12 <= xi <= 5.12
Local minima: ?
Minimum: 0.0
Solution: xi = 1, i = 1:n

Nesterov1 and Nesterov2 – Simlar to Nesterov, except the terms added are taken with absolute
value, which makes this function nonsmooth and painful for gradient-based optimization routines;
no gradient provided.
(Nesterov2 uses absolute instead of quadratic terms.)

Rastrigin – Rastrigin’s function is a famous, non-convex example from 1989 for global optimiza-
tion. It is a typical example of a multimodal function with many local minima:

10n+

n∑
1

(x2i − 10 cos(2πxi))

No. of Vars.: n >= 2
Bounds: -5.12 <= xi <= 5.12
Local minima: many
Minimum: 0.0
Solution: xi = 0, i = 1:n

Hald – Hald’s function is a typical example of a non-smooth test function, from Hald and Madsen
in 1981.

max
1≤i≤n

| x1 + x2ti
1 + x3ti + x4t2i + x5t3i

− exp(ti)|

where n = 21 and ti = −1 + (i− 1)/10 for 1 ≤ i ≤ 21.

No. of Vars.: n =5
Bounds: -1 <= xi <= 1
Local minima: ?
Minimum: 0.0001223713
Solution: (0.99987763, 0.25358844, -0.74660757, 0.24520150, -0.03749029)

Shor – Shor’s function is another typical example of a non-smooth test function, a benchmark for
Shor’s R-algorithm.

transfinite 37

Value

Returns the values of the test function resp. its gradient at that point. If an analytical gradient is not
available, a function computing the gradient numerically will be provided.

References

Search the Internet.

Examples

x <- runif(5)
fnHald(x); grHald(x)

Compare analytical and numerical gradient
shor_gr <- function(x) adagio:::ns.grad(fnShor, x) # internal gradient
grShor(x); shor_gr(x)

transfinite Boxed Region Transformation

Description

Transformation of a box/bound constrained region to an unconstrained one.

Usage

transfinite(lower, upper, n = length(lower))

Arguments

lower, upper lower and upper box/bound constraints.

n length of upper, lower if both are scalars, to which they get repeated.

Details

Transforms a constraint region in n-dimensional space bijectively to the unconstrained Rn space,
applying a atanh resp. exp transformation to each single variable that is bound constraint.

It provides two functions, h: B = []x...x[] --> R^n and its inverse hinv. These functions can, for
example, be used to add box/bound constraints to a constrained optimization problem that is to be
solved with a (nonlinear) solver not allowing constraints.

Value

Returns to functions as components h and hinv of a list.

38 transfinite

Note

Based on an idea of Ravi Varadhan, intrinsically used in his implementation of Nelder-Mead in the
‘dfoptim’ package.

For positivity constraints, x>=0, this approach is considered to be numerically more stable than
x-->exp(x) or x-->x^2.

Examples

lower <- c(-Inf, 0, 0)
upper <- c(Inf, 0.5, 1)
Tf <- transfinite(lower, upper)
h <- Tf$h; hinv <- Tf$hinv

Not run:
Solve Rosenbrock with one variable restricted
rosen <- function(x) {

n <- length(x)
x1 <- x[2:n]; x2 <- x[1:(n-1)]
sum(100*(x1-x2^2)^2 + (1-x2)^2)

}
f <- function(x) rosen(hinv(x)) # f must be defined on all of R^n
x0 <- c(0.1, 0.1, 0.1) # starting point not on the boundary!
nm <- nelder_mead(h(x0), f) # unconstraint Nelder-Mead
hinv(nm$xmin); nm$fmin # box/bound constraint solution
[1] 0.7085596 0.5000000 0.2500004
[1] 0.3353605

End(Not run)

Index

∗ discrete-optimization
assignment, 2
bpp_approx, 3
change_making, 5
knapsack, 15
maxempty, 17
maxsub, 19
mknapsack, 21
setcover, 27
subsetsum, 32

∗ graph-algorithms
hamiltonian, 9

∗ manip
Historize, 12
transfinite, 37

∗ optimize
CMAES, 6
hookejeeves, 13
neldermead, 23
simpleDE, 29
simpleEA, 31

∗ testfunctions
maxquad, 18
SIAM test functions, 28
Testfunctions, 34

∗ visualize
fminviz,flineviz, 8

assignment, 2

bpp_approx, 3

change_making, 5
CMAES, 6
count (occurs), 26

flineviz (fminviz,flineviz), 8
fminviz (fminviz,flineviz), 8
fminviz,flineviz, 8
fnHald (Testfunctions), 34

fnNesterov (Testfunctions), 34
fnNesterov1 (Testfunctions), 34
fnNesterov2 (Testfunctions), 34
fnRastrigin (Testfunctions), 34
fnRosenbrock (Testfunctions), 34
fnShor (Testfunctions), 34
fnTrefethen (SIAM test functions), 28
fnWagon (SIAM test functions), 28

grHald (Testfunctions), 34
grNesterov (Testfunctions), 34
grRastrigin (Testfunctions), 34
grRosenbrock (Testfunctions), 34
grShor (Testfunctions), 34

hamiltonian, 9
Historize, 12
hookejeeves, 13, 25

knapsack, 15, 28

maxempty, 17
maxquad, 18
maxsub, 19, 33
maxsub2d (maxsub), 19
mknapsack, 21

neldermead, 14, 23
neldermeadb (neldermead), 23

occurs, 26

pureCMAES (CMAES), 6

setcover, 6, 27
SIAM test functions, 28
simpleDE, 29
simpleEA, 30, 31
sss_test (subsetsum), 32
subsetsum, 32

Testfunctions, 34
transfinite, 37

39

	assignment
	bpp_approx
	change_making
	CMAES
	fminviz,flineviz
	hamiltonian
	Historize
	hookejeeves
	knapsack
	maxempty
	maxquad
	maxsub
	mknapsack
	neldermead
	occurs
	setcover
	SIAM test functions
	simpleDE
	simpleEA
	subsetsum
	Testfunctions
	transfinite
	Index

