
Package ‘actxps’
January 7, 2025

Title Create Actuarial Experience Studies: Prepare Data, Summarize
Results, and Create Reports

Version 1.6.0

Maintainer Matt Heaphy <mattrmattrs@gmail.com>

Description Experience studies are used by actuaries to explore historical
experience across blocks of business and to inform assumption setting
activities. This package provides functions for preparing data, creating
studies, visualizing results, and beginning assumption development.
Experience study methods, including exposure calculations, are described in:
Atkinson & McGarry (2016) ``Experience Study Calculations''
<https://www.soa.org/49378a/globalassets/assets/files/research/
experience-study-calculations.pdf>.
The limited fluctuation credibility method used by the 'exp_stats()'
function is described in: Herzog (1999, ISBN:1-56698-374-6)
``Introduction to Credibility Theory''.

License MIT + file LICENSE

URL https://github.com/mattheaphy/actxps/,

https://mattheaphy.github.io/actxps/

BugReports https://github.com/mattheaphy/actxps/issues

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, RColorBrewer, rmarkdown, testthat (>= 3.0.0), shiny
(>= 1.7.5), bslib (>= 0.5.1), thematic

Config/testthat/edition 3

Depends R (>= 4.1)

Imports dplyr (>= 1.1.1), ggplot2, tibble, rlang, glue, purrr, scales,
gt (>= 0.9.0), paletteer, recipes, generics, readr, tidyr,
vctrs, clock, cli

LazyData true

VignetteBuilder knitr

1

https://www.soa.org/49378a/globalassets/assets/files/research/experience-study-calculations.pdf
https://www.soa.org/49378a/globalassets/assets/files/research/experience-study-calculations.pdf
https://github.com/mattheaphy/actxps/
https://mattheaphy.github.io/actxps/
https://github.com/mattheaphy/actxps/issues

2 add_predictions

NeedsCompilation no

Author Matt Heaphy [aut, cre]

Repository CRAN

Date/Publication 2025-01-07 13:00:02 UTC

Contents

add_predictions . 2
add_transactions . 3
agg_sim_dat . 4
as_exp_df . 5
as_trx_df . 8
autoplot_exp . 11
autotable . 13
expose . 15
expose_split . 18
exp_shiny . 19
exp_stats . 22
is_exposed_df . 25
plot_special . 27
plot_special_trx . 28
pol_yr . 29
qx_iamb . 30
sim_data . 31
step_expose . 32
summary.exposed_df . 33
toy_census . 34
trx_stats . 35

Index 39

add_predictions Add predictions to a data frame

Description

Attach predicted values from a model to a data frame with exposure-level records.

Usage

add_predictions(.data, model, ..., col_expected = NULL)

add_transactions 3

Arguments

.data A data frame, preferably with the class exposed_df
model A model object that has an S3 method for predict()
... Additional arguments passed to predict()

col_expected NULL or a character vector containing column names for each value returned by
predict()

Details

This function attaches predictions from a model to a data frame that preferably has the class
exposed_df. The model argument must be a model object that has an S3 method for the predict()
function. This method must have new data for predictions as the second argument.

The col_expected argument is optional.

• If NULL, names from the result of predict() will be used. If there are no names, a default
name of "expected" is assumed. In the event that predict() returns multiple values, the
default name will be suffixed by "_x", where x = 1 to the number of values returned.

• If a value is passed, it must be a character vector of same length as the result of predict()

Value

A data frame or exposed_df object with one of more new columns containing predictions.

Examples

expo <- expose_py(census_dat, "2019-12-31") |>
mutate(surrender = status == "Surrender")

mod <- glm(surrender ~ inc_guar + pol_yr, expo, family = 'binomial')
add_predictions(expo, mod, type = 'response')

add_transactions Add transactions to an experience study

Description

Attach summarized transactions to a data frame with exposure-level records.

Usage

add_transactions(
.data,
trx_data,
col_pol_num = "pol_num",
col_trx_date = "trx_date",
col_trx_type = "trx_type",
col_trx_amt = "trx_amt"

)

4 agg_sim_dat

Arguments

.data A data frame with exposure-level records with the class exposed_df. Use
as_exposed_df() to convert a data frame to an exposed_df object if neces-
sary.

trx_data A data frame containing transactions details. This data frame must have columns
for policy numbers, transaction dates, transaction types, and transaction amounts.

col_pol_num Name of the column in trx_data containing the policy number

col_trx_date Name of the column in trx_data containing the transaction date

col_trx_type Name of the column in trx_data containing the transaction type

col_trx_amt Name of the column in trx_data containing the transaction amount

Details

This function attaches transactions to an exposed_df object. Transactions are grouped and sum-
marized such that the number of rows in the exposed_df object does not change. Two columns are
added to the output for each transaction type. These columns have names of the pattern trx_n_{*}
(transaction counts) and trx_amt_{*} (transaction_amounts).

Transactions are associated with the exposed_df object by matching transactions dates with expo-
sure dates ranges found in exposed_df.

All columns containing dates must be in YYYY-MM-DD format.

Value

An exposed_df object with two new columns containing transaction counts and amounts for each
transaction type found in trx_data. The exposed_df’s trx_types attributes will be updated to
include the new transaction types found in trx_data.

See Also

expose(), as_exposed_df()

Examples

expo <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")
add_transactions(expo, withdrawals)

agg_sim_dat Aggregate simulated annuity data

Description

A pre-aggregated version of surrender and withdrawal experience from the simulated data sets
census_dat, withdrawals, and account_vals. This data is theoretical only and does not rep-
resent the experience on any specific product.

as_exp_df 5

Usage

agg_sim_dat

Format

A data frame containing summarized experience study results grouped by policy year, income guar-
antee presence, tax-qualified status, and product.

An object of class tbl_df (inherits from tbl, data.frame) with 180 rows and 16 columns.

Details

pol_yr Policy year

inc_guar Indicates whether the policy was issued with an income guarantee

qual Indicates whether the policy was purchased with tax-qualified funds

product Product: a, b, or c

exposure_n Sum of policy year exposures by count

claims_n Sum of claim counts

av Sum of account value

exposure_amt Sum of policy year exposures weighted by account value

claims_amt Sum of claims weighted by account value

av_sq Sum of squared account values

n Number of exposure records

wd Sum of partial withdrawal transactions

wd_n Count of partial withdrawal transactions

wd_flag Count of exposure records with partial withdrawal transactions

wd_sq Sum of squared partial withdrawal transactions

av_w_wd Sum of account value for exposure records with partial withdrawal transactions

See Also

census_dat

as_exp_df Termination summary helper functions

Description

Convert aggregate termination experience studies to the exp_df class.

6 as_exp_df

Usage

as_exp_df(
x,
expected = NULL,
wt = NULL,
col_claims,
col_exposure,
col_n_claims,
col_weight_sq,
col_weight_n,
target_status = NULL,
start_date = as.Date("1900-01-01"),
end_date = NULL,
credibility = FALSE,
conf_level = 0.95,
cred_r = 0.05,
conf_int = FALSE

)

is_exp_df(x)

Arguments

x An object. For as_exp_df(), x must be a data frame.

expected A character vector containing column names in x with expected values

wt Optional. Length 1 character vector. Name of the column in x containing
weights to use in the calculation of claims, exposures, partial credibility, and
confidence intervals.

col_claims Optional. Name of the column in x containing claims. The assumed default is
"claims".

col_exposure Optional. Name of the column in x containing exposures. The assumed default
is "exposure".

col_n_claims Optional and only used used when wt is passed. Name of the column in x
containing the number of claims.

col_weight_sq Optional and only used used when wt is passed. Name of the column in x
containing the sum of squared weights.

col_weight_n Optional and only used used when wt is passed. Name of the column in x
containing exposure record counts.

target_status Character vector of target status values. Default value = NULL.

start_date Experience study start date. Default value = 1900-01-01.

end_date Experience study end date

credibility If TRUE, future calls to summary() will include partial credibility weights and
credibility-weighted termination rates.

conf_level Confidence level used for the Limited Fluctuation credibility method and confi-
dence intervals

as_exp_df 7

cred_r Error tolerance under the Limited Fluctuation credibility method

conf_int If TRUE, future calls to summary() will include confidence intervals around the
observed termination rates and any actual-to-expected ratios.

Details

is_exp_df() will return TRUE if x is an exp_df object.

as_exp_df() will coerce a data frame to an exp_df object if that data frame has columns for
exposures and claims.

as_exp_df() is most useful for working with aggregate summaries of experience that were not
created by actxps where individual policy information is not available. After converting the data
to the exp_df class, summary() can be used to summarize data by any grouping variables, and
autoplot() and autotable() are available for reporting.

If nothing is passed to wt, the data frame x must include columns containing:

• Exposures (exposure)

• Claim counts (claims)

If wt is passed, the data must include columns containing:

• Weighted exposures (exposure)

• Weighted claims (claims)

• Claim counts (n_claims)

• The raw sum of weights NOT multiplied by exposures

• Exposure record counts (.weight_n)

• The raw sum of squared weights (.weight_sq)

The names in parentheses above are expected column names. If the data frame passed to as_exp_df()
uses different column names, these can be specified using the col_* arguments.

When a column name is passed to wt, the columns .weight, .weight_n, and .weight_sq are
used to calculate credibility and confidence intervals. If credibility and confidence intervals aren’t
required, then it is not necessary to pass anything to wt. The results of as_exp_df() and any
downstream summaries will still be weighted as long as the exposures and claims are pre-weighted.

target_status, start_date, and end_date are optional arguments that are only used for printing
the resulting exp_df object.

Value

For is_exp_df(), a length-1 logical vector. For as_exp_df(), an exp_df object.

See Also

exp_stats() for information on how exp_df objects are typically created from individual exposure
records.

8 as_trx_df

Examples

convert pre-aggregated experience into an exp_df object
dat <- as_exp_df(agg_sim_dat, col_exposure = "exposure_n",

col_claims = "claims_n",
target_status = "Surrender",
start_date = 2005, end_date = 2019,
conf_int = TRUE)

dat
is_exp_df(dat)

summary by policy year
summary(dat, pol_yr)

repeat the prior exercise on a weighted basis
dat_wt <- as_exp_df(agg_sim_dat, wt = "av",

col_exposure = "exposure_amt",
col_claims = "claims_amt",
col_n_claims = "claims_n",
col_weight_sq = "av_sq",
col_weight_n = "n",
target_status = "Surrender",
start_date = 2005, end_date = 2019,
conf_int = TRUE)

dat_wt

summary by policy year
summary(dat_wt, pol_yr)

as_trx_df Transaction summary helper functions

Description

Convert aggregate transaction experience studies to the trx_df class.

Usage

as_trx_df(
x,
col_trx_amt = "trx_amt",
col_trx_n = "trx_n",
col_trx_flag = "trx_flag",
col_exposure = "exposure",
col_percent_of = NULL,
col_percent_of_w_trx = NULL,
col_trx_amt_sq = "trx_amt_sq",
start_date = as.Date("1900-01-01"),

as_trx_df 9

end_date = NULL,
conf_int = FALSE,
conf_level = 0.95

)

is_trx_df(x)

Arguments

x An object. For as_trx_df(), x must be a data frame.

col_trx_amt Optional. Name of the column in x containing transaction amounts.

col_trx_n Optional. Name of the column in x containing transaction counts.

col_trx_flag Optional. Name of the column in x containing the number of exposure records
with transactions.

col_exposure Optional. Name of the column in x containing exposures.

col_percent_of Optional. Name of the column in x containing a numeric variable to use in
"percent of" calculations.

col_percent_of_w_trx

Optional. Name of the column in x containing a numeric variable to use in
"percent of" calculations with transactions.

col_trx_amt_sq Optional and only required when col_percent_of is passed and conf_int is
TRUE. Name of the column in x containing squared transaction amounts.

start_date Experience study start date. Default value = 1900-01-01.

end_date Experience study end date

conf_int If TRUE, future calls to summary() will include confidence intervals around the
observed utilization rates and any percent_of output columns.

conf_level Confidence level for confidence intervals

Details

is_trx_df() will return TRUE if x is a trx_df object.

as_trx_df() will coerce a data frame to a trx_df object if that data frame has the required columns
for transaction studies listed below.

as_trx_df() is most useful for working with aggregate summaries of experience that were not
created by actxps where individual policy information is not available. After converting the data
to the trx_df class, summary() can be used to summarize data by any grouping variables, and
autoplot() and autotable() are available for reporting.

At a minimum, the following columns are required:

• Transaction amounts (trx_amt)

• Transaction counts (trx_n)

• The number of exposure records with transactions (trx_flag). This number is not neces-
sarily equal to transaction counts. If multiple transactions are allowed per exposure period,
trx_flag will be less than trx_n.

10 as_trx_df

• Exposures (exposure)

If transaction amounts should be expressed as a percentage of another variable (i.e. to calculate
utilization rates or actual-to-expected ratios), additional columns are required:

• A denominator "percent of" column. For example, the sum of account values.

• A denominator "percent of" column for exposure records with transactions. For example, the
sum of account values across all records with non-zero transaction amounts.

If confidence intervals are desired and "percent of" columns are passed, an additional column for
the sum of squared transaction amounts (trx_amt_sq) is also required.

The names in parentheses above are expected column names. If the data frame passed to as_trx_df()
uses different column names, these can be specified using the col_* arguments.

start_date, and end_date are optional arguments that are only used for printing the resulting
trx_df object.

Unlike trx_stats(), as_trx_df() only permits a single transaction type and a single percent_of
column.

Value

For is_trx_df(), a length-1 logical vector. For as_trx_df(), a trx_df object.

See Also

trx_stats() for information on how trx_df objects are typically created from individual exposure
records.

Examples

convert pre-aggregated experience into a trx_df object
dat <- as_trx_df(agg_sim_dat,

col_exposure = "n",
col_trx_amt = "wd",
col_trx_n = "wd_n",
col_trx_flag = "wd_flag",
col_percent_of = "av",
col_percent_of_w_trx = "av_w_wd",
col_trx_amt_sq = "wd_sq",
start_date = 2005, end_date = 2019,
conf_int = TRUE)

dat
is_trx_df(dat)

summary by policy year
summary(dat, pol_yr)

autoplot_exp 11

autoplot_exp Plot experience study results

Description

Plot experience study results

Usage

S3 method for class 'exp_df'
autoplot(
object,
...,
x = NULL,
y = NULL,
color = NULL,
mapping,
second_axis = FALSE,
second_y = NULL,
scales = "fixed",
geoms = c("lines", "bars", "points"),
y_labels = scales::label_percent(accuracy = 0.1),
second_y_labels = scales::label_comma(accuracy = 1),
y_log10 = FALSE,
conf_int_bars = FALSE

)

S3 method for class 'trx_df'
autoplot(
object,
...,
x = NULL,
y = NULL,
color = NULL,
mapping,
second_axis = FALSE,
second_y = NULL,
scales = "fixed",
geoms = c("lines", "bars", "points"),
y_labels = scales::label_percent(accuracy = 0.1),
second_y_labels = scales::label_comma(accuracy = 1),
y_log10 = FALSE,
conf_int_bars = FALSE

)

12 autoplot_exp

Arguments

object An object of class exp_df created by the function exp_stats() or an object of
class trx_df created by the function trx_stats().

... Faceting variables passed to ggplot2::facet_wrap().

x An unquoted column name in object or expression to use as the x variable.

y An unquoted column name in object or expression to use as the y variable. If
unspecified, y will default to the observed termination rate (q_obs) for exp_df
objects and the observed utilization rate (trx_util) for trx_df objects.

color An unquoted column name in object or expression to use as the color and
fill variables.

mapping Aesthetic mapping passed to ggplot2::ggplot(). NOTE: If mapping is sup-
plied, the x, y, and color arguments will be ignored.

second_axis Logical. If TRUE, the variable specified by second_y (default = exposure) is
plotted on a second y-axis using an area geometry.

second_y An unquoted column name in object to use as the y variable on the second
y-axis. If unspecified, this will default to exposure.

scales The scales argument passed to ggplot2::facet_wrap().

geoms Type of geometry. If "lines" is passed, the plot will display lines and points. If
"bars", the plot will display bars. If "points", the plot will display points only.

y_labels Label function passed to ggplot2::scale_y_continuous().
second_y_labels

Same as y_labels, but for the second y-axis.

y_log10 If TRUE, the y-axes are plotted on a log-10 scale.

conf_int_bars If TRUE, confidence interval error bars are included in the plot. For exp_df ob-
jects, this option is available for termination rates and actual-to-expected ratios.
For trx_df objects, this option is available for utilization rates and any pct_of
columns.

Details

If no aesthetic map is supplied, the plot will use the first grouping variable in object on the x axis
and q_obs on the y axis. In addition, the second grouping variable in object will be used for color
and fill.

If no faceting variables are supplied, the plot will use grouping variables 3 and up as facets. These
variables are passed into ggplot2::facet_wrap(). Specific to trx_df objects, transaction type
(trx_type) will also be added as a faceting variable.

Value

a ggplot object

See Also

plot_termination_rates(), plot_actual_to_expected()

autotable 13

Examples

study_py <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")

study_py <- study_py |>
add_transactions(withdrawals)

exp_res <- study_py |> group_by(pol_yr) |> exp_stats()
autoplot(exp_res)

trx_res <- study_py |> group_by(pol_yr) |> trx_stats()
autoplot(trx_res)

autotable Tabular experience study summary

Description

autotable() is a generic function used to create a table from an object of a particular class. Tables
are constructed using the gt package.

autotable.exp_df() is used to convert experience study results to a presentation-friendly format.

autotable.trx_df() is used to convert transaction study results to a presentation-friendly format.

Usage

autotable(object, ...)

S3 method for class 'exp_df'
autotable(
object,
fontsize = 100,
decimals = 1,
colorful = TRUE,
color_q_obs = "RColorBrewer::GnBu",
color_ae_ = "RColorBrewer::RdBu",
rename_cols = rlang::list2(...),
show_conf_int = FALSE,
show_cred_adj = FALSE,
decimals_amt = 0,
suffix_amt = FALSE,
show_total = FALSE,
...

)

S3 method for class 'trx_df'
autotable(
object,

14 autotable

fontsize = 100,
decimals = 1,
colorful = TRUE,
color_util = "RColorBrewer::GnBu",
color_pct_of = "RColorBrewer::RdBu",
rename_cols = rlang::list2(...),
show_conf_int = FALSE,
decimals_amt = 0,
suffix_amt = FALSE,
show_total = FALSE,
...

)

Arguments

object An object of class exp_df usually created by the function exp_stats() or an
object of class trx_df created by the trx_stats() function.

... Additional arguments passed to gt::gt().

fontsize Font size percentage multiplier.

decimals Number of decimals to display for percentages

colorful If TRUE, color will be added to the the observed termination rate and actual-to-
expected columns for termination studies, and the utilization rate and "percent-
age of" columns for transaction studies.

color_q_obs Color palette used for the observed termination rate.

color_ae_ Color palette used for actual-to-expected rates.

rename_cols An optional list consisting of key-value pairs. This can be used to relabel
columns on the output table. This parameter is most useful for renaming group-
ing variables that will appear under their original variable names if left un-
changed. See gt::cols_label() for more information.

show_conf_int If TRUE confidence intervals will be displayed assuming they are available on
object.

show_cred_adj If TRUE credibility-weighted termination rates will be displayed assuming they
are available on object.

decimals_amt Number of decimals to display for amount columns (number of claims, claim
amounts, exposures, transaction counts, total transactions, and average transac-
tions)

suffix_amt This argument has the same meaning as the suffixing argument in gt::fmt_number()
for amount columns. If FALSE (the default), no scaling or suffixing are applied
to amount columns. If TRUE, all amount columns are automatically scaled and
suffixed by "K" (thousands), "M" (millions), "B" (billions), or "T" (trillions).
See gt::fmt_number() for more information.

show_total If TRUE the table will include grand total row(s).

color_util Color palette used for utilization rates.

color_pct_of Color palette used for "percentage of" columns.

expose 15

Details

The color_q_obs, color_ae_, color_util, and color_pct_of arguments must be strings refer-
encing a discrete color palette available in the paletteer package. Palettes must be in the form
"package::palette". For a full list of available palettes, see paletteer::palettes_d_names.

Value

a gt object

Examples

if (interactive()) {
study_py <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")
expected_table <- c(seq(0.005, 0.03, length.out = 10), 0.2, 0.15, rep(0.05, 3))

study_py <- study_py |>
mutate(expected_1 = expected_table[pol_yr],

expected_2 = ifelse(inc_guar, 0.015, 0.03)) |>
add_transactions(withdrawals) |>
left_join(account_vals, by = c("pol_num", "pol_date_yr"))

exp_res <- study_py |> group_by(pol_yr) |>
exp_stats(expected = c("expected_1", "expected_2"), credibility = TRUE,

conf_int = TRUE)
autotable(exp_res)

trx_res <- study_py |> group_by(pol_yr) |>
trx_stats(percent_of = "av_anniv", conf_int = TRUE)

autotable(trx_res)
}

expose Create exposure records from census records

Description

Convert a data frame of census-level records to exposure-level records.

Usage

expose(
.data,
end_date,
start_date = as.Date("1900-01-01"),
target_status = NULL,
cal_expo = FALSE,
expo_length = c("year", "quarter", "month", "week"),

16 expose

col_pol_num = "pol_num",
col_status = "status",
col_issue_date = "issue_date",
col_term_date = "term_date",
default_status

)

expose_py(...)

expose_pq(...)

expose_pm(...)

expose_pw(...)

expose_cy(...)

expose_cq(...)

expose_cm(...)

expose_cw(...)

Arguments

.data A data frame with census-level records

end_date Experience study end date

start_date Experience study start date. Default value = 1900-01-01.

target_status Character vector of target status values. Default value = NULL.

cal_expo Set to TRUE for calendar year exposures. Otherwise policy year exposures are
assumed.

expo_length Exposure period length

col_pol_num Name of the column in .data containing the policy number

col_status Name of the column in .data containing the policy status

col_issue_date Name of the column in .data containing the issue date

col_term_date Name of the column in .data containing the termination date

default_status Optional scalar character representing the default active status code. If not pro-
vided, the most common status is assumed.

... Arguments passed to expose()

Details

Census-level data refers to a data set wherein there is one row per unique policy. Exposure-level
data expands census-level data such that there is one record per policy per observation period.
Observation periods could be any meaningful period of time such as a policy year, policy month,
calendar year, calendar quarter, calendar month, etc.

expose 17

target_status is used in the calculation of exposures. The annual exposure method is applied,
which allocates a full period of exposure for any statuses in target_status. For all other statuses,
new entrants and exits are partially exposed based on the time elapsed in the observation period.
This method is consistent with the Balducci Hypothesis, which assumes that the probability of
termination is proportionate to the time elapsed in the observation period. If the annual exposure
method isn’t desired, target_status can be ignored. In this case, partial exposures are always
applied regardless of status.

default_status is used to indicate the default active status that should be used when exposure
records are created.

Value

A tibble with class exposed_df, tbl_df, tbl, and data.frame. The results include all existing
columns in .data plus new columns for exposures and observation periods. Observation periods
include counters for policy exposures, start dates, and end dates. Both start dates and end dates are
inclusive bounds.

For policy year exposures, two observation period columns are returned. Columns beginning with
(pol_) are integer policy periods. Columns beginning with (pol_date_) are calendar dates repre-
senting anniversary dates, monthiversary dates, etc.

Policy period and calendar period variations

The functions expose_py(), expose_pq(), expose_pm(), expose_pw(), expose_cy(), expose_cq(),
expose_cm(), expose_cw() are convenience functions for specific implementations of expose().
The two characters after the underscore describe the exposure type and exposure period, respec-
tively.

For exposures types:

• p refers to policy years

• c refers to calendar years

For exposure periods:

• y = years

• q = quarters

• m = months

• w = weeks

All columns containing dates must be in YYYY-MM-DD format.

References

Atkinson and McGarry (2016). Experience Study Calculations. https://www.soa.org/49378a/
globalassets/assets/files/research/experience-study-calculations.pdf

See Also

expose_split() for information on splitting calendar year exposures by policy year.

https://www.soa.org/49378a/globalassets/assets/files/research/experience-study-calculations.pdf
https://www.soa.org/49378a/globalassets/assets/files/research/experience-study-calculations.pdf

18 expose_split

Examples

toy_census |> expose("2020-12-31")

census_dat |> expose_py("2019-12-31", target_status = "Surrender")

expose_split Split calendar exposures by policy year

Description

Split calendar period exposures that cross a policy anniversary into a pre-anniversary record and a
post-anniversary record.

After splitting the data, the resulting data frame will contain both calendar exposures and policy
year exposures. These columns will be named exposure_cal and exposure_pol, respectively.
Calendar exposures will be in the original units passed to expose_split(). Policy exposures will
always be expressed in years.

After splitting exposures, downstream functions like exp_stats() and exp_shiny() will require
clarification as to which exposure basis should be used to summarize results.

is_split_exposed_df() will return TRUE if x is a split_exposed_df object.

Usage

expose_split(.data)

is_split_exposed_df(x)

Arguments

.data An exposed_df object with calendar period exposures.
x Any object

Details

.data must be an exposed_df with calendar year, quarter, month, or week exposure records. Cal-
endar year exposures are created by the functions expose_cy(), expose_cq(), expose_cm(), or
expose_cw(), (or expose() when cal_expo = TRUE).

Value

For expose_split(), a tibble with class split_exposed_df, exposed_df, tbl_df, tbl, and
data.frame. The results include all columns in .data except that exposure has been renamed
to exposure_cal. Additional columns include:

• exposure_pol - policy year exposures
• pol_yr - policy year

For is_split_exposed_df(), a length-1 logical vector.

exp_shiny 19

See Also

expose() for information on creating exposure records from census data.

Examples

toy_census |> expose_cy("2022-12-31") |> expose_split()

exp_shiny Interactively explore experience data

Description

Launch a Shiny application to interactively explore drivers of experience.

dat must be an exposed_df object. An error will be thrown is any other object type is passed.
If dat has transactions attached, the app will contain features for both termination and transaction
studies. Otherwise, the app will only support termination studies.

If nothing is passed to predictors, all columns names in dat will be used (excluding the policy
number, status, termination date, exposure, transaction counts, and transaction amounts columns).

The expected argument is optional. As a default, any column names containing the word "ex-
pected" are used.

Usage

exp_shiny(
dat,
predictors = names(dat),
expected = names(dat)[grepl("expected", names(dat))],
distinct_max = 25L,
title,
credibility = TRUE,
conf_level = 0.95,
cred_r = 0.05,
theme = "shiny",
col_exposure = "exposure"

)

Arguments

dat An exposed_df object.

predictors A character vector of independent variables in dat to include in the Shiny app.

expected A character vector of expected values in dat to include in the Shiny app.

distinct_max Maximum number of distinct values allowed for predictors to be included as
"Color" and "Facets" grouping variables. This input prevents the drawing of
overly complex plots. Default value = 25.

20 exp_shiny

title Optional. Title of the Shiny app. If no title is provided, a descriptive title will be
generated based on attributes of dat.

credibility If TRUE, the output will include partial credibility weights and credibility-weighted
termination rates.

conf_level Confidence level used for the Limited Fluctuation credibility method and confi-
dence intervals

cred_r Error tolerance under the Limited Fluctuation credibility method

theme The name of a theme passed to the preset argument of bslib::bs_theme().
Alternatively, a complete Bootstrap theme created using bslib::bs_theme().

col_exposure Name of the column in dat containing exposures. This input is only used to
clarify the exposure basis when dat is a split_exposed_df object. For more
information on split exposures, see expose_split().

Value

No return value. This function is called for the side effect of launching a Shiny application.

Layout

Filters:
The sidebar contains filtering widgets organized by data type for all variables passed to the
predictors argument.
At the top of the sidebar, information is shown on the percentage of records remaining after
applying filters. A description of all active filters is also provided.
The top of the sidebar also includes a "play / pause" switch that can pause reactivity of the appli-
cation. Pausing is a good option when multiple changes are made in quick succession, especially
when the underlying data set is large.

Grouping variables:
This box includes widgets to select grouping variables for summarizing experience. The "x"
widget determines the x variable in the plot output. Similarly, the "Color" and "Facets" widgets
are used for color and facets. Multiple faceting variable selections are allowed. For the table
output, "x", "Color", and "Facets" have no particular meaning beyond the order in which grouping
variables are displayed.

Study type:
This box includes a toggle to switch between termination studies and transaction studies (if avail-
able). Different options are available for each study type.

Termination studies:
The expected values checkboxes are used to activate and deactivate expected values passed to
the expected argument. These checkboxes also include a a "control" item for expected values
derived using control variables. These boxes impact the table output directly and the available
"y" variables for the plot. The "Weight by" widget is used to specify which column, if any,
contains weights for summarizing experience. The "Control variables" widget is used to specify
which columns, if any, are used as control variables (see exp_stats() for more information).

exp_shiny 21

Transaction studies:
The transaction types checkboxes are used to activate and deactivate transaction types that ap-
pear in the plot and table outputs. The available transaction types are taken from the trx_types
attribute of dat. In the plot output, transaction type will always appear as a faceting variable.
The "Transactions as % of" selector will expand the list of available "y" variables for the plot
and impact the table output directly. Lastly, a toggle exists that allows for all transaction types
to be aggregated into a single group.

Output:
Plot:
This tab includes a plot and various options for customization:

• y: y variable
• Geometry: plotting geometry
• Second y-axis: activate to enable a second y-axis
• Second axis y: y variable to plot on the second axis
• Add Smoothing: activate to plot loess curves
• Confidence intervals: If available, add error bars for confidence intervals around the selected

y variable
• Free y Scales: activate to enable separate y scales in each plot
• Log y-axis: activate to plot all y-axes on a log-10 scale

The gear icon above the plot contains a pop-up menu that can be used to change the size of the
plot for exporting.

Table:
This tab includes a data table.
The gear icon above the table contains a pop-up menu that can be used to change the appearance
of the table:

• The "Total row", "Confidence intervals", and "Credibility-weighted termination rates" switches
add these outputs to the table. These values are hidden as a default to prevent over-crowding.

• The "Include color scales" switch disables or re-enables conditional color formatting.
• The "Decimals" slider controls the number of decimals displayed for percentage fields.
• The "Font size multiple" slider impacts the table’s font size

Export:
This pop-up menu contains options for saving summarized experience data, the plot, or the table.
Data is saved as a CSV file. The plot and table are saved as png files.

Examples

if (interactive()) {
study_py <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")
expected_table <- c(seq(0.005, 0.03, length.out = 10),

0.2, 0.15, rep(0.05, 3))

study_py <- study_py |>
mutate(expected_1 = expected_table[pol_yr],

expected_2 = ifelse(inc_guar, 0.015, 0.03)) |>
add_transactions(withdrawals) |>
left_join(account_vals, by = c("pol_num", "pol_date_yr"))

22 exp_stats

exp_shiny(study_py)
}

exp_stats Summarize experience study records

Description

Create a summary data frame of termination experience for a given target status.

Usage

exp_stats(
.data,
target_status = attr(.data, "target_status"),
expected,
col_exposure = "exposure",
col_status = "status",
wt = NULL,
credibility = FALSE,
conf_level = 0.95,
cred_r = 0.05,
conf_int = FALSE,
control_vars,
control_distinct_max = 25L

)

S3 method for class 'exp_df'
summary(object, ...)

Arguments

.data A data frame with exposure-level records, ideally of type exposed_df

target_status A character vector of target status values

expected A character vector containing column names in .data with expected values

col_exposure Name of the column in .data containing exposures

col_status Name of the column in .data containing the policy status

wt Optional. Length 1 character vector. Name of the column in .data containing
weights to use in the calculation of claims, exposures, partial credibility, and
confidence intervals.

credibility If TRUE, the output will include partial credibility weights and credibility-weighted
termination rates.

conf_level Confidence level used for the Limited Fluctuation credibility method and confi-
dence intervals

exp_stats 23

cred_r Error tolerance under the Limited Fluctuation credibility method

conf_int If TRUE, the output will include confidence intervals around the observed termi-
nation rates and any actual-to-expected ratios.

control_vars ".none" or a character vector containing column names in .data to use as con-
trol variables

control_distinct_max

Maximum number of unique values allowed for control variables

object An exp_df object

... Groups to retain after summary() is called

Details

If .data is grouped, the resulting data frame will contain one row per group.

If target_status isn’t provided, exp_stats() will use the same target status from .data if it has
the class exposed_df. Otherwise, all status values except the first level will be assumed. This will
produce a warning message.

Value

A tibble with class exp_df, tbl_df, tbl, and data.frame. The results include columns for any
grouping variables, claims, exposures, and observed termination rates (q_obs).

• If any values are passed to expected or control_vars, additional columns are added for
expected termination rates and actual-to-expected (A/E) ratios. A/E ratios are prefixed by
ae_.

• If credibility is set to TRUE, additional columns are added for partial credibility and credibility-
weighted termination rates (assuming values are passed to expected). Credibility-weighted
termination rates are prefixed by adj_.

• If conf_int is set to TRUE, additional columns are added for lower and upper confidence
interval limits around the observed termination rates and any actual-to-expected ratios. Ad-
ditionally, if credibility is TRUE and expected values are passed to expected, the output
will contain confidence intervals around credibility-weighted termination rates. Confidence
interval columns include the name of the original output column suffixed by either _lower or
_upper.

• If a value is passed to wt, additional columns are created containing the the sum of weights
(.weight), the sum of squared weights (.weight_qs), and the number of records (.weight_n).

Expected values

The expected argument is optional. If provided, this argument must be a character vector with
values corresponding to column names in .data containing expected experience. More than one
expected basis can be provided.

24 exp_stats

Control variables

The control_vars argument is optional. If provided, this argument must be ".none" (more on
this below) or a character vector with values corresponding to column names in .data. Control
variables are used to estimate the impact of any grouping variables on observed experience after
accounting for the impact of control variables.

Mechanically, when values are passed to control_vars, a separate call is made to exp_stats()
using the control variables as grouping variables. This is used to derive a new expected values basis
called control, which is both added to .data and appended to the expected argument. In the
final output, a column called ae_control shows the relative impact of any grouping variables after
accounting for the control variables.

About ".none": If ".none" is passed to control_vars, a single aggregate termination rate is
calculated for the entire data set and used to compute control and ae_control.

The control_distinct_max argument places an upper limit on the number of unique values that
a control variable is allowed to have. This limit exists to prevent an excessive number of groups on
continuous or high-cardinality features.

It should be noted that usage of control variables is a rough approximation and not a substitute
for rigorous statistical models. The impact of control variables is calculated in isolation and does
consider other features or possible confounding variables. As such, control variables are most useful
for exploratory data analysis.

Credibility

If credibility is set to TRUE, the output will contain a credibility column equal to the par-
tial credibility estimate under the Limited Fluctuation credibility method (also known as Classical
Credibility) assuming a binomial distribution of claims.

Confidence intervals

If conf_int is set to TRUE, the output will contain lower and upper confidence interval limits for
the observed termination rate and any actual-to-expected ratios. The confidence level is dictated
by conf_level. If no weighting variable is passed to wt, confidence intervals will be constructed
assuming a binomial distribution of claims. Otherwise, confidence intervals will be calculated
assuming that the aggregate claims distribution is normal with a mean equal to observed claims and
a variance equal to:

Var(S) = E(N) * Var(X) + E(X)^2 * Var(N),

Where S is the aggregate claim random variable, X is the weighting variable assumed to follow a
normal distribution, and N is a binomial random variable for the number of claims.

If credibility is TRUE and expected values are passed to expected, the output will also contain
confidence intervals for any credibility-weighted termination rates.

summary() Method

Applying summary() to a exp_df object will re-summarize the data while retaining any grouping
variables passed to the "dots" (...).

is_exposed_df 25

References

Herzog, Thomas (1999). Introduction to Credibility Theory

Examples

toy_census |> expose("2022-12-31", target_status = "Surrender") |>
exp_stats()

exp_res <- census_dat |>
expose("2019-12-31", target_status = "Surrender") |>
group_by(pol_yr, inc_guar) |>
exp_stats(control_vars = "product")

exp_res
summary(exp_res)
summary(exp_res, inc_guar)

is_exposed_df Exposed data frame helper functions

Description

Test for and coerce to the exposed_df class.

Usage

is_exposed_df(x)

as_exposed_df(
x,
end_date,
start_date = as.Date("1900-01-01"),
target_status = NULL,
cal_expo = FALSE,
expo_length = c("year", "quarter", "month", "week"),
trx_types = NULL,
col_pol_num,
col_status,
col_exposure,
col_pol_per,
cols_dates,
col_trx_n_ = "trx_n_",
col_trx_amt_ = "trx_amt_",
default_status

)

26 is_exposed_df

Arguments

x An object. For as_exposed_df(), x must be a data frame.

end_date Experience study end date

start_date Experience study start date. Default value = 1900-01-01.

target_status Character vector of target status values. Default value = NULL.

cal_expo Set to TRUE for calendar year exposures. Otherwise policy year exposures are
assumed.

expo_length Exposure period length

trx_types Optional. Character vector containing unique transaction types that have been
attached to x. For each value in trx_types, as_exposed_df requires that
columns exist in x named trx_n_{*} and trx_amt_{*} containing transaction
counts and amounts, respectively. The prefixes "trx_n_" and "trx_amt_" can be
overridden using the col_trx_n_ and col_trx_amt_ arguments.

col_pol_num Optional. Name of the column in x containing the policy number. The assumed
default is "pol_num".

col_status Optional. Name of the column in x containing the policy status. The assumed
default is "status".

col_exposure Optional. Name of the column in x containing exposures. The assumed default
is "exposure".

col_pol_per Optional. Name of the column in x containing policy exposure periods. Only
necessary if cal_expo is FALSE. The assumed default is either "pol_yr", "pol_qtr",
"pol_mth", or "pol_wk" depending on the value of expo_length.

cols_dates Optional. Names of the columns in x containing exposure start and end dates.
Both date ranges are assumed to be exclusive. The assumed default is of the
form A_B. A is "cal" if cal_expo is TRUE or "pol" otherwise. B is either "yr",
"qtr", "mth", or "wk" depending on the value of expo_length.

col_trx_n_ Optional. Prefix to use for columns containing transaction counts.

col_trx_amt_ Optional. Prefix to use for columns containing transaction amounts.

default_status Optional scalar character representing the default active status code. If not pro-
vided, the most common status is assumed.

Details

is_exposed_df() will return TRUE if x is an exposed_df object.

as_exposed_df() will coerce a data frame to an exposed_df object if that data frame has columns
for policy numbers, statuses, exposures, policy periods (for policy exposures only), and exposure
start / end dates. Optionally, if x has transaction counts and amounts by type, these can be specified
without calling add_transactions().

Value

For is_exposed_df(), a length-1 logical vector. For as_exposed_df(), an exposed_df object.

plot_special 27

See Also

expose() for information on how exposed_df objects are typically created from census data.

plot_special Additional plotting functions for termination studies

Description

These functions create additional experience study plots that are not available or difficult to produce
using the autoplot.exp_df() function.

Usage

plot_termination_rates(object, ..., include_cred_adj = FALSE)

plot_actual_to_expected(object, ..., add_hline = TRUE)

Arguments

object An object of class exp_df created by the function exp_stats().

... Additional arguments passed to autoplot.exp_df().

include_cred_adj

If TRUE, credibility-weighted termination rates will be plotted as well.

add_hline If TRUE, a blue dashed horizontal line will be drawn at 100%.

Details

plot_termination_rates() - Create a plot of observed termination rates and any expected termi-
nation rates attached to an exp_df object.

plot_actual_to_expected() - Create a plot of actual-to-expected termination rates attached to
an exp_df object.

Value

a ggplot object

See Also

autoplot.exp_df()

28 plot_special_trx

Examples

study_py <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")
expected_table <- c(seq(0.005, 0.03, length.out = 10), 0.2, 0.15, rep(0.05, 3))

study_py <- study_py |>
mutate(expected_1 = expected_table[pol_yr],

expected_2 = ifelse(inc_guar, 0.015, 0.03))

exp_res <- study_py |> group_by(pol_yr) |>
exp_stats(expected = c("expected_1", "expected_2"))

plot_termination_rates(exp_res)

plot_actual_to_expected(exp_res)

plot_special_trx Additional plotting functions for transaction studies

Description

These functions create additional experience study plots that are not available or difficult to produce
using the autoplot.trx_df() function.

Usage

plot_utilization_rates(object, ...)

Arguments

object An object of class trx_df created by the function trx_stats().

... Additional arguments passed to autoplot.trx_df().

Details

plot_utilization_rates() - Create a plot of transaction frequency and severity. Frequency is
represented by utilization rates (trx_util). Severity is represented by transaction amounts as a
percentage of one or more other columns in the data ({*}_w_trx). All severity series begin with the
prefix "pct_of_" and end with the suffix "_w_trx". The suffix refers to the fact that the denominator
only includes records with non-zero transactions. Severity series are based on column names passed
to the percent_of argument in trx_stats(). If no "percentage of" columns exist in object, this
function will only plot utilization rates.

Value

a ggplot object

pol_yr 29

See Also

autoplot.trx_df()

Examples

study_py <- expose_py(census_dat, "2019-12-31",
target_status = "Surrender") |>

add_transactions(withdrawals) |>
left_join(account_vals, by = c("pol_num", "pol_date_yr"))

trx_res <- study_py |> group_by(pol_yr) |>
trx_stats(percent_of = "av_anniv", combine_trx = TRUE)

plot_utilization_rates(trx_res)

pol_yr Calculate policy duration

Description

Given a vector of dates and a vector of issue dates, calculate policy years, quarters, months, or
weeks.

Usage

pol_yr(x, issue_date)

pol_qtr(x, issue_date)

pol_mth(x, issue_date)

pol_wk(x, issue_date)

Arguments

x A vector of dates

issue_date A vector of issue dates

Details

These functions assume the first day of each policy year is the anniversary date (or issue date in the
first year). The last day of each policy year is the day before the next anniversary date. Analogous
rules are used for policy quarters, policy months, and policy weeks.

Value

An integer vector

30 qx_iamb

Examples

pol_yr(as.Date("2021-02-28") + 0:2, "2020-02-29")

pol_mth(as.Date("2021-02-28") + 0:2, "2020-02-29")

qx_iamb 2012 Individual Annuity Mortality Table and Projection Scale G2

Description

Mortality rates and mortality improvement rates from the 2012 Individual Annuity Mortality Basic
(IAMB) Table and Projection Scale G2.

Usage

qx_iamb

scale_g2

Format

For the 2012 IAMB table, a data frame with 242 rows and 3 columns:

age Attained age

qx Mortality rate

gender Female or Male

For the Projection Scale G2 table, a data frame with 242 rows and 3 columns:

age Attained age

mi Mortality improvement rate

gender Female or Male

Source

• https://mort.soa.org/

• https://www.actuary.org/sites/default/files/files/publications/Payout_Annuity_
Report_09-28-11.pdf

https://mort.soa.org/
https://www.actuary.org/sites/default/files/files/publications/Payout_Annuity_Report_09-28-11.pdf
https://www.actuary.org/sites/default/files/files/publications/Payout_Annuity_Report_09-28-11.pdf

sim_data 31

sim_data Simulated annuity data

Description

Simulated data for a theoretical deferred annuity product with an optional guaranteed income rider.
This data is theoretical only and does not represent the experience on any specific product.

Usage

census_dat

withdrawals

account_vals

Format

Three data frames containing census records (census_dat), withdrawal transactions (withdrawals),
and historical account values (account_vals).

An object of class tbl_df (inherits from tbl, data.frame) with 20000 rows and 11 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 160130 rows and 4 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 141252 rows and 3 columns.

Census data (census_dat)

pol_num Policy number
status Policy status: Active, Surrender, or Death
issue_date Issue date
inc_guar Indicates whether the policy was issued with an income guarantee
qual Indicates whether the policy was purchased with tax-qualified funds
age Issue age
product Product: a, b, or c
gender M (Male) or F (Female)
wd_age Age that withdrawals commence
premium Single premium deposit
term_date Termination date upon death or surrender

Withdrawal data (withdrawals)

pol_num Policy number
trx_date Withdrawal transaction date
trx_type Withdrawal transaction type, either Base or Rider
trx_amt Withdrawal transaction amount

32 step_expose

Account values data (account_vals)

pol_num Policy number

pol_date_yr Policy anniversary date (beginning of year)

av_anniv Account value on the policy anniversary date

See Also

census_dat

step_expose Create exposure records in a recipes step

Description

step_expose() creates a specification of a recipe step that will convert a data frame of census-level
records to exposure-level records.

Usage

step_expose(
recipe,
...,
role = NA,
trained = FALSE,
end_date,
start_date = as.Date("1900-01-01"),
target_status = NULL,
options = list(cal_expo = FALSE, expo_length = "year"),
drop_pol_num = TRUE,
skip = TRUE,
id = recipes::rand_id("expose")

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables for this step. See selections()
for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

end_date Experience study end date

start_date Experience study start date. Default value = 1900-01-01.

target_status Character vector of target status values. Default value = NULL.

summary.exposed_df 33

options A named list of additional arguments passed to expose().

drop_pol_num Whether the pol_num column produced by expose() should be dropped. De-
faults to TRUE.

skip A logical. Should the step be skipped when the recipe is baked by bake()?
While all operations are baked when prep() is run, some operations may not
be able to be conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using skip = TRUE as it may affect the computations
for subsequent operations.

id A character string that is unique to this step to identify it.

Details

Policy year exposures are calculated as a default. To switch to calendar exposures or another expo-
sure length, use pass the appropriate arguments to the options parameter.

Policy numbers are dropped as a default whenever the recipe is baked. This is done to prevent
unintentional errors when the model formula includes all variables (y ~ .). If policy numbers are
required for any reason (mixed effect models, identification, etc.), set drop_pol_num to FALSE.

Value

An updated version of recipe with the new expose step added to the sequence of any existing
operations. For the tidy method, a tibble with the columns exposure_type, target_status,
start_date, and end_date.

See Also

expose()

Examples

expo_rec <- recipes::recipe(status ~ ., toy_census) |>
step_expose(end_date = "2022-12-31", target_status = "Surrender",

options = list(expo_length = "month")) |>
prep()

recipes::juice(expo_rec)

summary.exposed_df Summarize experience study records

Description

Create a summary data frame of termination experience for a given target status.

34 toy_census

Usage

S3 method for class 'exposed_df'
summary(object, ...)

Arguments

object A data frame with exposure-level records
... Additional arguments passed to exp_stats()

Details

Calling summary() on an exposed_df object will summarize results using exp_stats(). See
exp_stats() for more information.

Value

A tibble with class exp_df, tbl_df, tbl, and data.frame.

See Also

exp_stats()

Examples

toy_census |> expose("2022-12-31", target_status = "Surrender") |>
summary()

toy_census Toy policy census data

Description

A tiny dataset containing 3 policies: one active, one terminated due to death, and one terminated
due to surrender.

Usage

toy_census

Format

A data frame with 3 rows and 4 columns:

pol_num Policy number
status Policy status
issue_date Issue date
term_date Termination date

trx_stats 35

trx_stats Summarize transactions and utilization rates

Description

Create a summary data frame of transaction counts, amounts, and utilization rates.

Usage

trx_stats(
.data,
trx_types,
percent_of = NULL,
combine_trx = FALSE,
col_exposure = "exposure",
full_exposures_only = TRUE,
conf_int = FALSE,
conf_level = 0.95

)

S3 method for class 'trx_df'
summary(object, ...)

Arguments

.data A data frame with exposure-level records of type exposed_df with transaction
data attached. If necessary, use as_exposed_df() to convert a data frame to an
exposed_df object, and use add_transactions() to attach transactions to an
exposed_df object.

trx_types A character vector of transaction types to include in the output. If none is pro-
vided, all available transaction types in .data will be used.

percent_of A optional character vector containing column names in .data to use as denom-
inators in the calculation of utilization rates or actual-to-expected ratios.

combine_trx If FALSE (default), the results will contain output rows for each transaction type.
If TRUE, the results will contains aggregated experience across all transaction
types.

col_exposure Name of the column in .data containing exposures
full_exposures_only

If TRUE (default), partially exposed records will be excluded from data.

conf_int If TRUE, the output will include confidence intervals around the observed utiliza-
tion rate and any percent_of output columns.

conf_level Confidence level for confidence intervals

object A trx_df object

... Groups to retain after summary() is called

36 trx_stats

Details

Unlike exp_stats(), this function requires data to be an exposed_df object.

If .data is grouped, the resulting data frame will contain one row per transaction type per group.

Any number of transaction types can be passed to the trx_types argument, however each trans-
action type must appear in the trx_types attribute of .data. In addition, trx_stats() ex-
pects to see columns named trx_n_{*} (for transaction counts) and trx_amt_{*} for (transaction
amounts) for each transaction type. To ensure .data is in the appropriate format, use the functions
as_exposed_df() to convert an existing data frame with transactions or add_transactions() to
attach transactions to an existing exposed_df object.

Value

A tibble with class trx_df, tbl_df, tbl, and data.frame. The results include columns for any
grouping variables and transaction types, plus the following:

• trx_n: the number of unique transactions.

• trx_amt: total transaction amount

• trx_flag: the number of observation periods with non-zero transaction amounts.

• exposure: total exposures

• avg_trx: mean transaction amount (trx_amt / trx_flag)

• avg_all: mean transaction amount over all records (trx_amt / exposure)

• trx_freq: transaction frequency when a transaction occurs (trx_n / trx_flag)

• trx_util: transaction utilization per observation period (trx_flag / exposure)

If percent_of is provided, the results will also include:

• The sum of any columns passed to percent_of with non-zero transactions. These columns
include the suffix _w_trx.

• The sum of any columns passed to percent_of

• pct_of_{*}_w_trx: total transactions as a percentage of column {*}_w_trx. In other words,
total transactions divided by the sum of a column including only records utilizing transactions.

• pct_of_{*}_all: total transactions as a percentage of column {*}. In other words, total
transactions divided by the sum of a column regardless of whether or not transactions were
utilized.

If conf_int is set to TRUE, additional columns are added for lower and upper confidence interval
limits around the observed utilization rate and any percent_of output columns. Confidence interval
columns include the name of the original output column suffixed by either _lower or _upper.

• If values are passed to percent_of, an additional column is created containing the the sum of
squared transaction amounts (trx_amt_sq).

trx_stats 37

"Percentage of" calculations

The percent_of argument is optional. If provided, this argument must be a character vector with
values corresponding to columns in .data containing values to use as denominators in the calcula-
tion of utilization rates or actual-to-expected ratios. Example usage:

• In a study of partial withdrawal transactions, if percent_of refers to account values, observed
withdrawal rates can be determined.

• In a study of recurring claims, if percent_of refers to a column containing a maximum benefit
amount, utilization rates can be determined.

Confidence intervals

If conf_int is set to TRUE, the output will contain lower and upper confidence interval limits for
the observed utilization rate and any percent_of output columns. The confidence level is dictated
by conf_level.

• Intervals for the utilization rate (trx_util) assume a binomial distribution.

• Intervals for transactions as a percentage of another column with non-zero transactions (pct_of_{*}_w_trx)
are constructed using a normal distribution

• Intervals for transactions as a percentage of another column regardless of transaction utiliza-
tion (pct_of_{*}_all) are calculated assuming that the aggregate distribution is normal with
a mean equal to observed transactions and a variance equal to:
Var(S) = E(N) * Var(X) + E(X)^2 * Var(N),
Where S is the aggregate transactions random variable, X is an individual transaction amount
assumed to follow a normal distribution, and N is a binomial random variable for transaction
utilization.

Default removal of partial exposures

As a default, partial exposures are removed from .data before summarizing results. This is done
to avoid complexity associated with a lopsided skew in the timing of transactions. For example, if
transactions can occur on a monthly basis or annually at the beginning of each policy year, partial
exposures may not be appropriate. If a policy had an exposure of 0.5 years and was taking with-
drawals annually at the beginning of the year, an argument could be made that the exposure should
instead be 1 complete year. If the same policy was expected to take withdrawals 9 months into the
year, it’s not clear if the exposure should be 0.5 years or 0.5 / 0.75 years. To override this treatment,
set full_exposures_only to FALSE.

summary() Method

Applying summary() to a trx_df object will re-summarize the data while retaining any grouping
variables passed to the "dots" (...).

Examples

expo <- expose_py(census_dat, "2019-12-31", target_status = "Surrender") |>
add_transactions(withdrawals)

res <- expo |> group_by(inc_guar) |> trx_stats(percent_of = "premium")

38 trx_stats

res

summary(res)

expo |> group_by(inc_guar) |>
trx_stats(percent_of = "premium", combine_trx = TRUE, conf_int = TRUE)

Index

∗ datasets
agg_sim_dat, 4
qx_iamb, 30
sim_data, 31
toy_census, 34

account_vals (sim_data), 31
add_predictions, 2
add_transactions, 3
add_transactions(), 26, 35, 36
agg_sim_dat, 4
as_exp_df, 5
as_exposed_df (is_exposed_df), 25
as_exposed_df(), 4, 35, 36
as_trx_df, 8
autoplot(), 7, 9
autoplot.exp_df (autoplot_exp), 11
autoplot.exp_df(), 27
autoplot.trx_df (autoplot_exp), 11
autoplot.trx_df(), 28, 29
autoplot_exp, 11
autotable, 13
autotable(), 7, 9

bake(), 33

census_dat, 5, 32
census_dat (sim_data), 31

exp_shiny, 19
exp_stats, 22
exp_stats(), 7, 12, 14, 20, 23, 24, 27, 34, 36
expose, 15
expose(), 4, 18, 19, 27, 33
expose_cm (expose), 15
expose_cm(), 18
expose_cq (expose), 15
expose_cq(), 18
expose_cw (expose), 15
expose_cw(), 18

expose_cy (expose), 15
expose_cy(), 18
expose_pm (expose), 15
expose_pq (expose), 15
expose_pw (expose), 15
expose_py (expose), 15
expose_split, 18
expose_split(), 17, 20

ggplot2::facet_wrap(), 12
ggplot2::ggplot(), 12
ggplot2::scale_y_continuous(), 12
gt::cols_label(), 14
gt::fmt_number(), 14
gt::gt(), 14

is_exp_df (as_exp_df), 5
is_exposed_df, 25
is_split_exposed_df (expose_split), 18
is_trx_df (as_trx_df), 8

paletteer::palettes_d_names, 15
plot_actual_to_expected (plot_special),

27
plot_actual_to_expected(), 12, 27
plot_special, 27
plot_special_trx, 28
plot_termination_rates (plot_special),

27
plot_termination_rates(), 12, 27
plot_utilization_rates

(plot_special_trx), 28
plot_utilization_rates(), 28
pol_mth (pol_yr), 29
pol_qtr (pol_yr), 29
pol_wk (pol_yr), 29
pol_yr, 29
predict(), 3
prep(), 33

qx_iamb, 30

39

40 INDEX

scale_g2 (qx_iamb), 30
selections(), 32
sim_data, 31
step_expose, 32
summary(), 6, 7, 9, 34
summary.exp_df (exp_stats), 22
summary.exposed_df, 33
summary.trx_df (trx_stats), 35

toy_census, 34
trx_stats, 35
trx_stats(), 10, 12, 14, 28

withdrawals (sim_data), 31

	add_predictions
	add_transactions
	agg_sim_dat
	as_exp_df
	as_trx_df
	autoplot_exp
	autotable
	expose
	expose_split
	exp_shiny
	exp_stats
	is_exposed_df
	plot_special
	plot_special_trx
	pol_yr
	qx_iamb
	sim_data
	step_expose
	summary.exposed_df
	toy_census
	trx_stats
	Index

