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acss ACSS complexity

Description

Functions to obtain the algorithmic complexity for short strings, an approximation of the Kol-
mogorov Complexity of a short string using the coding theorem method.

Usage

acss(string, alphabet = 9)

local_complexity(string, alphabet = 9, span = 5)

likelihood_d(string, alphabet = 9)

likelihood_ratio(string, alphabet = 9)

prob_random(string, alphabet = 9, prior= 0.5)

Arguments

string character vector containing the to be analyzed strings (can contain multiple
strings).

alphabet numeric, the number of possible symbols (not necessarily actually appearing
in str). Must be one of c(2, 4, 5, 6, 9) (can also be NULL or contain multiple
values for acss()). Default is 9.

prior numeric, the prior probability that the underlying process is random.

span size of substrings to be created from string.
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Details

The algorithmic complexity is computed using the coding theorem method: For a given alphabet
size (number of different symbols in a string), all possible or a large number of random samples of
Turing machines (TM) with a given number of states (e.g., 5) and number of symbols corresponding
to the alphabet size were simulated until they reached a halting state or failed to end. The outputs of
the TMs at the halting states produces a distribution of strings known as the algorithmic probability
of the strings. The algorithmic coding theorem (Levin, 1974) establishes the connection between
the complexity of a string K(s) and its algorithmic probability D(s) as:

K(s) ≈ − log2(D(s))

This package accesses a database containing data on 4.5 million strings from length 1 to 12 simu-
lated on TMs with 2, 4, 5, 6, and 9 symbols.

For a more detailed discussion see Gauvrit, Singmann, Soler-Toscano, and Zenil (2014), https:
//complexity-calculator.com/methodology.html, or references below.

Value

"acss" A matrix in which the rows correspond to the strings entered and the columns to the
algorithmic complexity K and the algorithmic probability D of the string (see https://
complexity-calculator.com/methodology.html).

"local_complexity" A list with elements corresponding to the strings. Each list containes a named
vector of algorithmic complexities (K) of all substrings in each string with length span.

"likelihood_d" A named vector with the likelihoods for string given a detreministic process.

"likelihood_ratio" A named vector with the likelihood ratios (or Bayes factors) for string given
a random rather than detreministic process.

"prob_random" A named vector with the posterior probabilities that for a random process given
the strings and the provided prior for being produced by a random process (default is 0.5,
which correspond to a prior of 1 - 0.5 = 0.5 for a detereministic process).

Note

The first time per session one of the functions described here is used, a relatively large dataset is
loaded into memory which can take a considerable amount of time (> 10 seconds).

References

Delahaye, J.-P., & Zenil, H. (2012). Numerical evaluation of algorithmic complexity for short
strings: A glance into the innermost structure of randomness. Applied Mathematics and Computa-
tion, 219(1), 63-77. doi:10.1016/j.amc.2011.10.006

Gauvrit, N., Singmann, H., Soler-Toscano, F., & Zenil, H. (2014). Algorithmic complexity for
psychology: A user-friendly implementation of the coding theorem method. arXiv:1409.4080 [cs,
stat]. http://arxiv.org/abs/1409.4080.

Gauvrit, N., Zenil, H., Delahaye, J.-P., & Soler-Toscano, F. (2014). Algorithmic complexity for
short binary strings applied to psychology: a primer. Behavior Research Methods, 46(3), 732-744.
doi:10.3758/s13428-013-0416-0

https://complexity-calculator.com/methodology.html
https://complexity-calculator.com/methodology.html
https://complexity-calculator.com/methodology.html
https://complexity-calculator.com/methodology.html
http://arxiv.org/abs/1409.4080
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Levin, L. A. (1974). Laws of information conservation (nongrowth) and aspects of the foundation
of probability theory. Problemy Peredachi Informatsii, 10(3), 30-35.

Soler-Toscano, F., Zenil, H., Delahaye, J.-P., & Gauvrit, N. (2012). Calculating Kolmogorov Com-
plexity from the Output Frequency Distributions of Small Turing Machines. PLoS ONE, 9(5):
e96223.

Examples

# WARNING: The first call to one of the functions
# discussed on this page loads a large data set
# and usually takes > 10 seconds. Stay patient.

acss(c("HEHHEE", "GHHGGHGHH", "HSHSHHSHSS"))
## K.9 D.9
## HEHHEE 23.38852 9.106564e-08
## GHHGGHGHH 33.50168 8.222205e-11
## HSHSHHSHSS 35.15241 2.618613e-11

acss(c("HEHHEE", "GHHGGHGHH", "HSHSHHSHSS"))[,"K.9"]
## [1] 23.38852 33.50168 35.15241

acss(c("HEHHEE", "GHHGGHGHH", "HSHSHHSHSS"), alphabet = 2)
## K.2 D.2
## HEHHEE 14.96921 3.117581e-05
## GHHGGHGHH 25.60208 1.963387e-08
## HSHSHHSHSS 26.90906 7.935321e-09

acss(c("HEHHEE", "GHHGGHGHUE", "HSHSHHSHSS"), NULL)
## K.2 K.4 K.5 K.6 K.9
## HEHHEE 14.96921 18.55227 19.70361 20.75762 23.38852
## GHHGGHGHUE NA 31.75832 33.00795 34.27457 37.78935
## HSHSHHSHSS 26.90906 29.37852 30.52566 31.76229 35.15241
## D.2 D.4 D.5 D.6
## HEHHEE 3.117581e-05 2.601421e-06 1.171176e-06 5.640722e-07
## GHHGGHGHUE NA 2.752909e-10 1.157755e-10 4.812021e-11
## HSHSHHSHSS 7.935321e-09 1.432793e-09 6.469341e-10 2.745360e-10
## D.9
## HEHHEE 9.106564e-08
## GHHGGHGHUE 4.209915e-12
## HSHSHHSHSS 2.618613e-11

## Not run:
likelihood_d(c("HTHTHTHT", "HTHHTHTT"), alphabet = 2)
## HTHTHTHT HTHHTHTT
## 0.010366951 0.003102718

likelihood_ratio(c("HTHTHTHT", "HTHHTHTT"), alphabet = 2)
## HTHTHTHT HTHHTHTT
## 0.3767983 1.2589769

prob_random(c("HTHTHTHT", "HTHHTHTT"), alphabet = 2)
## HTHTHTHT HTHHTHTT
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## 0.2736772 0.5573217

## End(Not run)

local_complexity(c("01011010111" ,"GHHGGHGHUE"), alphabet = 5, span=5)
## $`01011010111`
## 01011 10110 01101 11010 10101 01011 10111
## 16.22469 16.24766 16.24766 16.22469 16.24322 16.22469 15.93927
##
## $GHHGGHGHUE
## GHHGG HHGGH HGGHG GGHGH GHGHU HGHUE
## 16.44639 16.44639 16.24766 16.22469 16.58986 16.86449

local_complexity(c("01011010111" ,"GHHGGHGHUE"), span=7)
## $`01011010111`
## 0101101 1011010 0110101 1101011 1010111
## 26.52068 26.52068 26.47782 26.62371 26.29186
##
## $GHHGGHGHUE
## GHHGGHG HHGGHGH HGGHGHU GGHGHUE
## 27.04623 26.86992 27.30871 27.84322

bdm Block Decomposition Method

Description

Obtain Complexity of Longer Strings than allowed by ACSS via the Block Decomposition Method.

Usage

bdm(
string,
blocksize = 10,
alphabet = 9,
delta = blocksize,
print_blocks = FALSE

)

Arguments

string character vector containing the to be analyzed strings (can contain multiple
strings).

blocksize size of blocks/substrings/windows to be created from string. Default is 10.
Values larger than 10 will elicit a warning as not all strings with length > 10 are
represented for all alphabets.
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alphabet numeric, the number of possible symbols (not necessarily actually appearing in
string). Must be one of c(2, 4, 5, 6, 9) (must be a scalar value in the current
implementation). Default is 9.

delta distance between two blocks. Default is delta = blocksize (the maximum) in
which the decomposition is disjoint, hence a partition (i.e., there is no overlap
between blocks). In the default setting the last block is not of length blocksize
if the length of the string is not divisible by blocksize. If delta = 1 the blocks
are all of length blocksize and maximally overlap.

print_blocks logical. Should blocks be printed to the console? Default is FALSE. Mainly for
debugging purposes.

Examples

acss("SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX") # too long

bdm("SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX") # default blocksize is 10
bdm("SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX", blocksize = 5)
bdm("SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX", blocksize = 7) # gives warning
bdm("SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX", blocksize = 7, delta = 1)

multi <- c(
"SSOOXFXFOXXOXOXFFXXXSOTTOFFFXX",
"SSODXFXDOXXOXOXFFXRRSORTOXDOXX",
"DXXXXRRXXXSSOOOXOFFFOOOOORFODD"

)

bdm(multi)
bdm(multi, delta = 1)
bdm(multi, blocksize = 5)

# binary bdm should give 57.5664 in this case
bdm("010101010101010101", alphabet = 2, blocksize = 12, delta = 1)

# show all blocks:
bdm("010101010101010101", alphabet = 2, blocksize = 12, delta = 1, print_blocks = TRUE)

# uses a block of size less than 12:
bdm("010101010101010101", alphabet = 2, blocksize = 6)

entropy Standard measures of complexity for strings

Description

Functions to compute different measures of complexity for strings: Entropy, Second-Order Entropy,
and Change Complexity



entropy 7

Usage

entropy(string)

entropy2(string)

change_complexity(string)

Arguments

string character vector containing the to be analyzed strings (can contain multiple
strings for the entropy measures).

Details

For users who need advanced functions, a comprehensive package computing various versions of
entropy estimators is available entropy. For users who just need first and second-order entropy and
which to apply them to short string, the acss package provides two functions: entropy (first-order
entropy) and entropy2 second-order entropy.

Change complexity (change_complexity) assesses cognitive complexity or the subjective percep-
tion of complexity of a binary string. It has been comprehensively defined by Aksentijevic and
Gibson (2012). Although the algorithm will work with any number of symbols up to 10, the ratio-
nale of Change Complexity only applies to binary strings.

Value

numeric, the complexity of the string. For entropy and entropy2 of the same length as string.
change_complexity currently only works with inputs of length 1.

References

Aksentijevic & Gibson (2012). Complexity equals change. Cognitive Systems Research, 15-17,
1-16.

Examples

strings1 <- c("010011010001", "0010203928837", "0000000000")
strings2 <- c("001011", "01213", "010101010101")

entropy(strings1)
entropy("XYXXYYXYXXXY") # "same" string as strings1[1]
entropy(c("HUHHEGGTE", "EGGHHU"))

entropy2(strings1)
entropy2("XYXXYYXYXXXY")

entropy2(strings2)

change_complexity(strings1)
change_complexity("XYXXYYXYXXXY")
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exp1 Data from Experiment 1 in Gauvrit, Singmann, Soler-Toscano & Zenil

Description

34 participants were asked to produce at their own pace a series of 10 symbols among "A", "B",
"C", and "D" that would "look as random as possible, so that if someone else sees the sequence, she
will believe it is a truly random one".

Usage

exp1

Format

A data.frame with 34 rows and 2 variables.

Source

Gauvrit, Singmann, Soler-Toscano & Zenil (submitted). Complexity for psychology. A user-
friendly implementation of the coding theorem method.

Examples

# load data
data(exp1)

# summary statistics
nrow(exp1)
summary(exp1$age)
mean(exp1$age)
sd(exp1$age)

## Not run:
# this uses code from likelihood_d() to calculate the mean complexity K
# for all strings of length 10 with alphabet = 4:
tmp <- acss_data[nchar(rownames(acss_data)) == 10, "K.4", drop = FALSE]
tmp <- tmp[!is.na(tmp[,"K.4"]),,drop = FALSE]
tmp$count <- count_class(rownames(tmp), alphabet = 4)
(mean_K <- with(tmp, sum(K.4*count)/sum(count)))

t.test(acss(exp1$string, 4)[,"K.4"], mu = mean_K)

## End(Not run)
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exp2 Data from Experiment 2 in Gauvrit, Singmann, Soler-Toscano & Zenil

Description

Responses of one participant (42 years old) to 200 randomly generated strings of length 10 from
an alphabet of 6 symbols. For each string, the participant was asked to indicate whther or not the
string appears random or not.

Usage

exp2

Format

A data.frame with 200 rows and 2 variables.

Source

Gauvrit, Singmann, Soler-Toscano & Zenil (submitted). Complexity for psychology. A user-
friendly implementation of the coding theorem method.

Examples

# load data
data(exp2)

exp2$K <- acss(exp2$string, 6)[,"K.6"]

m_log <- glm(response ~ K, exp2, family = binomial)
summary(m_log)

# odds ratio of K:
exp(coef(m_log)[2])

# calculate threshold of 0.5
(threshold <- -coef(m_log)[1]/coef(m_log)[2])

require(effects)
require(lattice)
plot(Effect("K", m_log), rescale.axis = FALSE, ylim = c(0, 1))
trellis.focus("panel", 1, 1)
panel.lines(rep(threshold, 2), c(0, 0.5), col = "black", lwd = 2.5, lty = 3)
panel.lines(c(33,threshold), c(0.5, 0.5), col = "black", lwd = 2.5, lty = 3)
trellis.unfocus()
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matthews2013 Data from Experiment 1 in Matthews (2013)

Description

Mean responses on a 6-point scale ("definitely random" to "definitely not random") of participants
to 216 strings of length 21.

Usage

matthews2013

Format

A data.frame with 216 rows and 3 variables.

Source

Matthews, W. (2013). Relatively random: Context effects on perceived randomness and predicted
outcomes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1642-
1648.

Examples

## Not run:
data(matthews2013)

spans <- 3:11
# note, the next loop takes more than 5 minutes.
for (i in spans) {

matthews2013[,paste0("K2_span", i)] <-
sapply(local_complexity(matthews2013$string, alphabet=2, span = i), mean)

}

lm_list <- vector("list", 8)
for (i in seq_along(spans)) {

lm_list[[i]] <- lm(as.formula(paste0("mean ~ K2_span", spans[i])), matthews2013)
}

plot(spans, sapply(lm_list, function(x) summary(x)$r.squared), type = "o")

# do more predictors increase fit?
require(MASS)
m_initial <- lm(mean ~ 1, matthews2013)
m_step <- stepAIC(m_initial,

scope = as.formula(paste("~", paste(paste0("K2_span", spans),
collapse = "+"))))

summary(m_step)
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m_initial2 <- lm(as.formula(paste("mean ~", paste(paste0("K2_span", spans),
collapse = "+"))), matthews2013)

m_step2 <- stepAIC(m_initial2)
summary(m_step2)

## End(Not run)

normalize_string Helper functions for calculating cognitive complexity.

Description

normalize_string takes a character vector and normalizes its input using the symbols 0, 1, 2...9.
count_class takes a character vector and an integer alphabet (with the restriction that the num-
ber of different symbols in the character vector doesn’t exceed alphabet) and returns the total
number of strings that are equivalent to the input when normalized and considering alphabet.
alternations returns the number of alternations of symbols in a string.

Usage

normalize_string(string)

count_class(string, alphabet)

alternations(string, proportion = FALSE)

Arguments

string character vector containing the to be analyzed strings (can contain multiple
strings).

alphabet numeric, the number of possible symbols (not necessarily actually appearing in
string).

proportion boolean, indicating if the result from alternation should be given as a pro-
portion (between 0 and 1) or the raw number of alternations (default is FALSE
correpsonding to raw values).

Details

nothing yet.

Value

normalize_string A normalized vector of strings of the same length as string.

count_class A vector of the same length as string with the number of possible equivalent strings
when string is normalized and considering alphabet.

alternations A vector with the number (or proprtion) of alternations of the same length as
string
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Examples

#normalize_string:
normalize_string(c("HUHHEGGTE", "EGGHHU"))

normalize_string("293948837163536")

# count_class
count_class("010011",2)

count_class("332120",4)

count_class(c("HUHHEGGTE", "EGGHHU"), 5)
count_class(c("HUHHEGGTE", "EGGHHU"), 6)

# alternations:
alternations("0010233")
alternations("0010233", proportion = TRUE)

alternations(c("HUHHEGGTE", "EGGHHU"))
alternations(c("HUHHEGGTE", "EGGHHU"), proportion = TRUE)
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