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Summary

An implementation of Approximate Bayesian Computation (ABC) methods in the R language is avail-
able in the package abc with associated example data sets in the abc.data package. The aim of this
vignette is to provide an extended overview of the capabilities of the package, with a detailed example
of the analysis of real data. Some general information on installation procedures and object oriented
programming in R are given in Section Introduction. The ABC methodology is briefly illustrated in
Section A brief introduction to ABC. A detailed example of an ABC analysis, where we aim to estimate
the ancestral human population size is provided in Section A walk-though example: human demographic
history. Users already familiar with the R and ABC methods may skip the first two Sections and start
with the example.

Introduction

Installation

R is a open source software project and can be freely downloaded from the CRAN website. There are
already several resources for an introduction to R . The CRAN website link to contributed documen-
tation also offers excellent introductions in several languages. Once R is running the installation of
additional packages is quite straightforward. To install the abc and abc.data packages from R simply
type:

> install.packages("abc") > install.packages("abc.data")

Once the packages are installed, thely need to be made accessible to the current R session by the
commands:

> library(abc)

> require(abc.data)

For online help facilities or the details of a particular command (such as the function abc) you can
type:

> help(package="abc")

> help(abc)

The first command gives a brief summary of the available commands in the package, the second give
more detailed information about a specific command. R help files can also be used to illustrate how
commands are executed, so they can be pasted into an R session, or run as a whole with the following
command:

> example(abc)

Methods and classes in R

This is only a brief reminder that expressions in R manipulate objects, which may be data (a scalar or
a matrix for example), but objects may also be functions, or more complex collections of objects. All
objects have a class, which enables functions to act on them appropriately. Thus, for example, when
the function summary is applied on an object of class "abc" (i.e. an object that had been generated
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by the function abc), it would act differently than on a simple matrix. In fact, the function summary

on an "abc" object calls the function summary.abc. Likewise, the plot, hist and print functions
will recognize the classes of objects generated by the various functions of the abc package and act
accordingly.

A brief introduction to ABC

This section contains a short introduction to the ABC methodology. Recall that the main steps of
an ABC analysis follow the general scheme of any Bayesian analysis: formulating a model, fitting
the model to data (parameter estimation), and improving the model by checking its fit (posterior
predictive checks) and comparing it to other models (Csilléry et al., 2010; Gelman et al., 2003). In
the following sections, we detail each of these steps and highlight the appropriate functions of the abc

package (Csilléry et al., 2012).

Parameter inference

Suppose that we want to compute the posterior probability distribution of a univariate or multivariate
parameter, θ. A parameter value θi, is sampled from its prior distribution to simulate a dataset yi,
for i = 1, . . . , n where n is the number of simulations. A set of summary statistics S(yi) is computed
from the simulated data and compared to the summary statistics obtained from the actual data S(y0)
using a distance measure d. We consider the Euclidean distance for d, where each summary statistic
is standardized by a robust estimate of the standard deviation (the median absolute deviation). If
d(S(yi), S(y0)) (i.e. the distance between S(yi) and S(y0)) is less than a given threshold, the parameter
value θi is accepted. In order to set a threshold above which simulations are rejected, the user has to
provide the tolerance rate, which is defined as the percentage of accepted simulation. The accepted θi’s
form a sample from an approximation of the posterior distribution. The estimation of the posterior
distribution can be improved by the use of regression techniques (see below).

The abc package implements three ABC algorithms for constructing the posterior distribution from
the accepted θi’s: a rejection method, and regression-based correction methods that use either local
linear regression (Beaumont et al., 2002) or neural networks (Blum and François, 2010). When the
rejection method is selected, the accepted θi’s are considered as a sample from the posterior distribution
(Pritchard et al., 1999). The two regression methods implement an additional step to correct for the
imperfect match between the accepted, S(yi), and observed summary statistics, S(y0), using the
following regression equation in the vicinity of S(y0)

θi = m(S(yi)) + ϵi,

where m is the regression function, and the ϵi’s are centered random variables with a common variance.
Simulations that closely match S(y0) are given more weight by assigning to each simulation (θi, S(yi))
the weight K[d(S(yi), S(y0))], where K is a statistical kernel. The local linear model assumes a
linear function for m ("loclinear" method in the abc function), while neural networks ("neuralnet"
method) account for the non-linearity of m and allow users to reduce the dimension of the set of
summary statistics. Once the regression is performed, a weighted sample from the posterior distribution
is obtained by correcting the θi’s as follows,

θ∗
i
= m̂(S(y0)) + ϵ̂i,

where m̂(·) is the estimated conditional mean and the ϵ̂i’s are the empirical residuals of the regression
(Beaumont et al., 2002). Additionally, a correction for heteroscedasticity is applied (by default)

θ∗
i
= m̂(S(y0)) +

σ̂(S(y0))

σ̂(S(yi))
ϵ̂i
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where σ̂(·) is the estimated conditional standard deviation (Blum and François, 2010). When using the
"loclinear" method, a warning about the collinearity of the design matrix of the regression might
be issued. In that situation, we recommend to rather use the related "ridge" method that performs
local-linear ridge regression and deals with the collinearity issue.

Finally, we note that alternative algorithms exist that sample from an updated distribution that is
closer in shape to the posterior than to the prior (Beaumont et al., 2009; Marjoram et al., 2003;
Wegmann et al., 2010). However, we do not implement these methods in R abc because they require
the repeated use of the simulation software.

Cross-validation

R abc implements a leave-one-out cross-validation to evaluate the accuracy of parameter estimates and
the robustness of the estimates to the tolerance rate. To perform cross-validation, the ith simulation is
randomly selected as a validation simulation, its summary statistic(s) S(yi) are used as pseudo-observed
summary statistics, and its parameters are estimated with the function abc using all simulations except
the ith simulation. Ideally, the process is repeated n times, where n is the number of simulations (so-
called n-fold cross-validation). However, performing an n-fold cross-validation could be very time
consuming, so the cross-validation is often performed for a subset of a few 100 randomly selected
simulations. The prediction error is calculated as

Epred =

∑
i
(θ̃i − θi)

2

V ar(θi)
,

where θi is the true parameter value of the ith simulated data set and θ̃i is the estimated parameter
value (the posterior median, mean or mode).

Model selection

Model selection is part of any Bayesian analysis, and can be performed in an ABC framework. The
aim is generally to estimate the posterior probability of a model M as Pr(M |S(y0)). Three different
methods are implemented in the abc package. With the rejection method, the posterior probability
of a given model is approximated by the proportion of accepted simulations given this model. The
two other methods are based on multinomial logistic regression or neural networks. In these two
approaches, the model indicator is treated as the response variable of a polychotomous regression,
where the summary statistics are the independent variables (Beaumont, 2008; Fagundes et al., 2007).
Using neural networks can be efficient when highly dimensional statistics are used. Any of these
methods are valid when the different models to be compared are, a priori, equally likely, and the same
number of simulations are performed under each model.

A further function, expected.deviance, is implemented to guide the model selection procedure. The
function computes an approximate expected deviance from the posterior predictive distribution. Thus,
in order to use the function, users have to re-use the simulation tool and to simulate data from the
posterior parameter values. The method is particularly advantageous when it is used with one of the
regression methods. Further details on the method can be found in (François and Laval, 2011) and
fully worked out examples are provided in the package manual.

Model misclassification

A cross-validation tool is available for model selection as well. The objective is to evaluate if model
selection with ABC is able to distinguish between the proposed models by making use of the existing
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simulations. The summary statistics from one of the simulations are considered as pseudo-observed
summary statistics and classified using all the remaining simulations. Then, one expects that a large
posterior probability should be assigned to the model that generated the pseudo-observed summary
statistics. Two versions of the cross-validation are implemented. The first version is a “hard” model
classification. We consider a given simulation as the pseudo-observed data and assign it to the model
with the highest posterior model probability. This procedure is repeated for a given number of sim-
ulations for each model. The results are summarized in a so-called confusion matrix (Hastie et al.,
2009). Each row of the confusion matrix represents the number of simulations under a true model,
while each column represents the number of simulations under a model assigned by postpr. If all
simulations had been correctly classified, only the diagonal elements of the matrix are non-zero. The
second version is called “soft” classification. Here we do not assign a simulation to the model with the
highest posterior probability, but average the posterior probabilities over many simulations for a given
model. This procedure is again summarized as a matrix, which is similar to the confusion matrix.
However, the elements of the matrix do not give model counts, but the average posterior probabilities
across simulations for a given model.

Goodness-of-fit

A formal hypothesis testing procedure for goodness-of-fit is available since the version 2.0 of the
package abc. The test statistic is the median of the distance between accepted summary statistics and
observed ones. Instead of the mean, other choices are possible including mean or maximum values.
To obtain the null distribution of the test statistic, we consider a given number of pseudo-observed
summary statistics as in the cross-validation experiments. Ideally, simulations should be performed
with the posterior distributions but it is more convenient to use the prior distribution because it does
not require an additional use of the simulation software.

In addition to the hypothesis-testing procedure, we provide a graphical method to check the Goodness-
of-fit. Our advocated approach is based on Principal Component Analysis, which is useful for graphical
display when there are many summary statistics.

A walk-though example: human demographic history

Getting started

In following sections we show how the abc package can be used for the inference and model comparison
steps, and we indicate how generic tools of the R package can be used for model checking. The package is
a so-called “post-processing tool”, so the simulations and the calculation of the summary statistics have
to be performed by the user’s preferred software. Alternatively, simulation software might be called in
an R session, which opens up the possibility for a highly interactive ABC analysis. For example, for
coalescent models, users might want to use one of the many existing software for simulating genetic data
such as ms (Hudson, 2002) or simcoal2 (Laval and Excoffier, 2004). Note that the package’s data set
human, for example, has been generated using ms. The exact code can be found in inst/doc/runms.R

and may be re-run or modified by interested users. Since the release of the phyclust package, a function
called ms is also available, which allows users to call ms directly from an R session. The calculation of
summary statistics for could either be done using our own R code or, for ms outputs, one could use the
software msABC (Pavlidis et al., 2010) (http://www.bio.lmu.de/~pavlidis/home/?Software:msABC).

In order to use the package certain R objects always have to be prepared. These are a vector of the
observed summary statistics, a matrix of the simulated summary statistics, where each row corresponds
to a simulation and each column corresponds to a summary statistic, and a matrix of the simulated
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parameter values, where each row corresponds to a simulation and each column corresponds to a
parameter. If users want to perform model selection, an additional vector with the model indices has
to be ready.

The abc package contains two examples: musigma2 and human. The musigma2 data is very simple, so
users might prefer to try this first. The example is motivated by Anderson, Edgar’s iris data, so the
observed statistics are the mean and variance of the sepal of Iris setosa, estimated from part of the
iris data. The aim is to estimate two parameters: µ and σ2. The advantage of this simple example is
that the true posterior distributions are known, so the accuracy of parameter inference can be easily
checked. The data set can be loaded using the following code:

> library(abc)

> require(abc.data)

> data(musigma2)

Tha data set contains five R objects. The manual page of these R objects can be accessed by typing
the name of one of the five objects, such as stat.obs, which contains the observed summary statistics
(?stat.obs). At the end of the manual page of the function abc, several examples can be found using
the musigma2 data set, so we leave the user to discover this simple example on their own. This example
can be accessed by typing ?abc.

The human data

The human data set is more realistic. Our aim is to estimate the human ancestral population size and
to discriminate between different demographic models. We discuss this example in detail.

Background

Several population genetic studies have found evidence that African human populations have been
expanding, while human populations outside of Africa went through a out-of-Africa population bottle-
neck and then expanded. We re-examined this problem by re-analyzing published data of 50 unlinked
autosomal non-coding regions from a Hausa (Africa), a Chinese (Asia), and an Italian (Europe) popu-
lation (Voight et al., 2005). Data is summarized using three summary statistics: the average nucleotide
diversity (π̄), and the mean and the variance of Tajima’s D (Table 1 in Voight et al. (2005)). Both
Tajima’s D and π̄ have been classically used to detect historical changes in population size. The
observed summary statistics (our data!) can be accessed with the following code:

> require(abc.data)

> data(human)

> stat.voight

pi TajD.m TajD.v

hausa 0.00110 -0.20 0.55

italian 0.00085 0.28 1.19

chinese 0.00079 0.18 1.08

A negative Tajima’s D signifies an excess of low frequency polymorphisms, indicating population
size expansion. While a positive Tajima’s D indicates low levels of both low and high frequency
polymorphisms, thus a sign of a population bottleneck. In constant size populations, Tajima’s D is
expected to be zero.
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Figure 1: Summary statistics under the three demographic models: population bottleneck, constant
population size, exponential growth

The data set human contains four objects, and stat.voight is just one of them. The manual page of all
objects can be accessed by referring to one of its objects that we can achieved by typing for example,
?stat.voight. Other objects of human contain the simulated summary statistics (stat.3pops.sim)
and the model indices (models). Using these three objects, we can estimate the posterior probabilities
of different demographic scenarios (see below) in the three human populations: Hausa, Italian, and
Chinese. The fourth object, par.italy.sim may be used to estimate the ancestral population size of
the European population (represented by an Italian sample).

The demographic models

Since we do not know which demographic model would be the most appropriate to estimate the
ancestral human population size, first, we propose three different models to see which model is the
most supported by the data. The three models of demographic history are: constant population size,
exponential growth after a period of constant population size, and population bottleneck, where, after
the bottleneck, the population recovers to its original size. All three models can be defined by a number
of demographic parameters, such as population sizes, rates and timings of changes in population size,
which we do not detail here. The data has been generated for the users, however, can easily be re-
generated and the demographic parameters may be altered. We simulated 50, 000 data sets under
each of the three demographic models using the software ms (Hudson, 2002), and calculated the three
summary statistics in each model. The exact R code to simulate the human data can be found in
/inst/doc/runms.R, thus can be viewed, modified and re-run by interested users, given that ms and
its sister package sample_stats are installed and configured.

To illustrate the informativeness of our summary statistics we can plot them as a function of the model
(Figure 1).

> par(mfcol = c(1,3), mar=c(5,3,4,.5))

> boxplot(stat.3pops.sim[,"pi"]~models, main="Mean nucleotide diversity")

> boxplot(stat.3pops.sim[,"TajD.m"]~models, main="Mean Tajima's D")

> boxplot(stat.3pops.sim[,"TajD.v"]~models, main="Var in Tajima's D")

Model selection

The main model selection function is called postpr. However, before applying this function on the
real data, we perform a cross-validation for model selection (cv4postpr) to evaluate if ABC can, at
all, distinguish between the three models. The cross-validation might take a long time to run. At this
point, we might just want just a quick result to illustrate the use of the function, so we run only 10
cross-validation simulations, and summarize and the results using the following commands:

> cv.modsel <- cv4postpr(models, stat.3pops.sim, nval=5, tol=.01, method="mnlogistic")

> s <- summary(cv.modsel)

Confusion matrix based on 5 samples for each model.
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Figure 2: Misclassification proportions for the tree models. If all tree models were classified correctly
100% of the times, all three bars would have a single colour.

$tol0.01

bott const exp

bott 2 3 0

const 0 3 2

exp 0 0 5

Mean model posterior probabilities (mnlogistic)

$tol0.01

bott const exp

bott 0.4903 0.4100 0.0997

const 0.1097 0.4830 0.4073

exp 0.0385 0.0829 0.8786

The resulting confusion matrix may also be plotted using the following command:

> plot(cv.modsel, names.arg=c("Bottleneck", "Constant", "Exponential"))

Both the confusion matrix and the barplot (Figure 2) illustrate that ABC is able to distinguish between
these three models. Notably, the exponential expansion model can be classified correctly the most
frequently: 5 times out of 5. However, the total misclassification rate of 0.33 prompts us to be cautious
about the results obtained with model selection and suggests that additional data or summary statistics
are required to better discriminate between the models. Remember that simulations are randomly
selected, so every user will get slightly different figures for the misclassification rates, especially if nval
is small.

Now, we may calculate the posterior probabilities of each demographic scenario using the rejection
("rejection") and the multinomial logistic regression method ("mnlogistic") of the function postpr

with a tolerance rate of 0.05%. The function summary prints out posterior model probabilities and
ratios of model probabilities (the Bayes factors) in a user-friendly way:

> modsel.ha <- postpr(stat.voight["hausa",], models, stat.3pops.sim, tol=.05, method="mnlogistic")

> modsel.it <- postpr(stat.voight["italian",], models, stat.3pops.sim, tol=.05, method="mnlogistic")

> modsel.ch <- postpr(stat.voight["chinese",], models, stat.3pops.sim, tol=.05, method="mnlogistic")

> summary(modsel.ha)

Call:

postpr(target = stat.voight["hausa", ], index = models, sumstat = stat.3pops.sim,

tol = 0.05, method = "mnlogistic")

Data:

postpr.out$values (7500 posterior samples)

Models a priori:

bott, const, exp

Models a posteriori:

bott, const, exp
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Proportion of accepted simulations (rejection):

bott const exp

0.0199 0.3132 0.6669

Bayes factors:

bott const exp

bott 1.0000 0.0634 0.0298

const 15.7651 1.0000 0.4696

exp 33.5705 2.1294 1.0000

Posterior model probabilities (mnlogistic):

bott const exp

0.0164 0.3591 0.6245

Bayes factors:

bott const exp

bott 1.0000 0.0456 0.0262

const 21.9360 1.0000 0.5751

exp 38.1446 1.7389 1.0000

> summary(modsel.it)

Call:

postpr(target = stat.voight["italian", ], index = models, sumstat = stat.3pops.sim,

tol = 0.05, method = "mnlogistic")

Data:

postpr.out$values (7500 posterior samples)

Models a priori:

bott, const, exp

Models a posteriori:

bott, const, exp

Proportion of accepted simulations (rejection):

bott const exp

0.8487 0.1509 0.0004

Bayes factors:

bott const exp

bott 1.0000 5.6228 2121.6667

const 0.1778 1.0000 377.3333

exp 0.0005 0.0027 1.0000

Posterior model probabilities (mnlogistic):

bott const exp

0.9369 0.0628 0.0004

Bayes factors:

bott const exp
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bott 1.0000 14.9246 2508.9790

const 0.0670 1.0000 168.1105

exp 0.0004 0.0059 1.0000

> summary(modsel.ch)

Call:

postpr(target = stat.voight["chinese", ], index = models, sumstat = stat.3pops.sim,

tol = 0.05, method = "mnlogistic")

Data:

postpr.out$values (7500 posterior samples)

Models a priori:

bott, const, exp

Models a posteriori:

bott, const, exp

Proportion of accepted simulations (rejection):

bott const exp

0.6837 0.3159 0.0004

Bayes factors:

bott const exp

bott 1.0000 2.1646 1709.3333

const 0.4620 1.0000 789.6667

exp 0.0006 0.0013 1.0000

Posterior model probabilities (mnlogistic):

bott const exp

0.7610 0.2389 0.0001

Bayes factors:

bott const exp

bott 1.0000 3.1853 10840.7807

const 0.3139 1.0000 3403.3749

exp 0.0001 0.0003 1.0000

These results show that Hausa data supports best the model of exponential growth model, while the
Italian and Chinoise data supports best the population bottleneck model.

In the following, we only focus on the data set from Italy.

Goodness-of-fit

Before turning to parameter inference, it is important to check that the preferred model provides a
good fit to the data.

For the Italian data, we can plot the histogram of the null distribution under a bottleneck model on
which we superimpose the observed value (Figure 3).

> res.gfit.bott=gfit(target=stat.voight["italian",], sumstat=stat.3pops.sim[models=="bott",],
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Figure 3: Histogram of the null distribution of the test statistic for goodness of fit assuming a bottleneck
model.

statistic=mean, nb.replicate=100)

> plot(res.gfit.bott, main="Histogram under H0")

We can compute a P-value to test the fit to the bottleneck model. We can additionally check that
the other demographic models do not provide a good fit to the Italian data, which would confirm the
results obtained with model selection.

> res.gfit.exp=gfit(target=stat.voight["italian",], sumstat=stat.3pops.sim[models=="exp",],

statistic=mean, nb.replicate=100)

> res.gfit.const=gfit(target=stat.voight["italian",], sumstat=stat.3pops.sim[models=="const",],

statistic=mean, nb.replicate=100)

> summary(res.gfit.bott)

$pvalue

[1] 0.57

$s.dist.sim

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.599 1.818 2.041 2.197 2.355 5.090

$dist.obs

[1] 1.997769

> summary(res.gfit.exp)

$pvalue

[1] 0

$s.dist.sim

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.564 1.838 2.031 2.225 2.315 4.897

$dist.obs

[1] 5.181088

> summary(res.gfit.const)

$pvalue

[1] 0.01

$s.dist.sim

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.529 1.785 2.014 2.213 2.282 12.353

$dist.obs

[1] 3.610239
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Figure 4: 90% enveloppe of the 2 Principal Components obtained with each demographic model.

Figure 5: Posterior predictive checks for the Italian data under the bottleneck model

Alternative graphical procedures are also possible to perform Goodness-of-fit. We can perform Prin-
cipal Component Analysis (PCA) with 2 components to make new summary statistics. We can then
display the 90% (or something else equal to 1-cprob) enveloppe of the 2 PCs obtained with each demo-
graphic model (Figure 4). Simulations are performed a priori to avoid additional use of the simulation
software but similar procedures can be used with posterior simulations.

> gfitpca(target=stat.voight["italian",], sumstat=stat.3pops.sim, index=models, cprob=.1)

Posterior predictive checks

To further confirm that the bottleneck model provided the best fit to the Italian data, we can also
consider posterior predictive checks Gelman et al. (2003). Note that there is no specific function in
abc for posterior predictive checks, nevertheless the task can be easily carried out. First, we estimate
the posterior distributions of the parameters of the three models using the function abc (see details
in the following section). Then, we sample a set of 1,000 multivariate parameters from their posterior
distribution. Last, we obtain a sample from the distribution of the three summary statistics a posteriori
by simulating data sets with the 1,000 sampled multivariate parameters using ms. The exact code to
run ms again can be found in \inst\doc\runms4ppc.R. By running this code one can re-generate the
package’s data set ppc.

The results of the posterior predictive checks could best be dispayed as histograms:

> require(abc.data)

> data(ppc)

> mylabels <- c("Mean nucleotide diversity","Mean Tajima's D", "Var Tajima's D")

> par(mfrow = c(1,3), mar=c(5,2,4,0))

> for (i in c(1:3)){

hist(post.bott[,i],breaks=40, xlab=mylabels[i], main="")

abline(v = stat.voight["italian", i], col = 2)

}

The Figure 5 illustrates the posterior predictive checks under the bottleneck model. We can see that
the bottleneck model is able to reproduce the observed values of the summary statistics in the Italian
data. Note that the constant population size model is also able to reproduce the observed summary
statistics of the Italian data. However, the model of exponential growth is unable to account for the
observed level of heterozygosity when accounting for the remaining two summary statistics in the
Italian sample (results not shown, but maybe generated by the user).

Finally, note that such posterior predictive checks use the summary statistics twice; once for sam-
pling from the posterior and once for comparing the marginal posterior predictive distributions to the
observed values of the summary statistics. To avoid this circularity, we might consider using differ-
ent summary statistics for posterior predictive checks than for parameter estimation. Nevertheless,
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this could be difficult in many applications, since we already used our “best” summary statistics for
inference.

Now we can move to our original objective, which is to estimate the ancestral population size.

Cross-validation

Now, we are almost ready to infer the ancestral population size under the bottleneck model for the
Italian data. So, we select the simulated parameter values that correspond to the bottleneck model:

> stat.italy.sim <- subset(stat.3pops.sim, subset=models=="bott")

> head(stat.italy.sim)

pi TajD.m TajD.v

110002 0.0010531112 0.057649360 1.3024486

210000 0.0012026666 0.342608757 1.1042096

310000 0.0008920002 0.247601809 0.9147642

410002 0.0015328889 0.470767633 1.5339313

51002 0.0008988888 0.008920568 1.0751214

61002 0.0019851108 0.208063980 0.8684532

The bottleneck model can be described with four parameters, which can be found in the four columns
of par.italy.sim: the ancestral population size Na, the ratio of the population sizes before and
during the bottleneck (a), the duration of the bottleneck (duration), and the time since the beginning
of the bottleneck (start).

> head(par.italy.sim)

Ne a duration start

1 14621.380 28.58894 5428.309 40421.04

2 13098.281 18.65774 5081.701 43255.28

3 7936.504 12.00553 3369.698 50781.08

4 17823.659 42.57813 7857.355 46397.16

5 12294.555 23.60331 6633.745 58208.44

6 25626.369 40.09893 7067.745 50385.51

Before moving to the inference step, we first assess if ABC is able to estimate the parameter Na at
all. We use the function cv4abc to determine the accuracy of ABC and the sensitivity of estimates to
the tolerance rate. The following code evaluates the accuracy of estimates of Na under three tolerance
rates using the rejection and the local linear regression method. The "neuralnet" method is not
recommended for cross-validation, as it takes considerably longer to run than the other methods.
Since the cross-validation may take a long time to run, we might prefer to run first a code with a
smaller value of nval to compare different tolerance rates, and also different estimation methods.

> cv.res.rej <- cv4abc(data.frame(Na=par.italy.sim[,"Ne"]), stat.italy.sim, nval=10,

tols=c(.005,.01, 0.05), method="rejection")

> cv.res.reg <- cv4abc(data.frame(Na=par.italy.sim[,"Ne"]), stat.italy.sim, nval=10,

tols=c(.005,.01, 0.05), method="loclinear")

> summary(cv.res.rej)
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Figure 6: Cross-validation for parameter inference. The colors correspond to different levels of the
tolerance rate in an increasing order from red to yellow.

Prediction error based on a cross-validation sample of 10

Na

0.005 0.04813809

0.01 0.04976841

0.05 0.05877969

> summary(cv.res.reg)

Prediction error based on a cross-validation sample of 10

Na

0.005 0.05112983

0.01 0.05573403

0.05 0.06181485

We can also plot the results using the following code:

> par(mfrow=c(1,2), mar=c(5,3,4,.5), cex=.8)

> plot(cv.res.rej, caption="Rejection")

> plot(cv.res.reg, caption="Local linear regression")

The function summary shows the prediction error under the three different tolerance rates. plot

compares the two methods ("rejection" and "loclinear") under three different tolerance rates.
Users can choose how they want to summarize the posterior distribution by setting the argument
statistic in of the function cv4abc. By default, the posterior distribution of summarized by its
median. Thus, the plots shows the posterior distribution medians of Na for each cross-validation
sample. Points of the cross-validation plot are scattered around the identity line indicating that Na

can be well estimated using the three summary statistics (Figure 6). Further, estimates were not only
accurate for Na, but also insensitive to the tolerance rate (Figure 6). Accordingly, the prediction error
is relatively low and independent of the tolerance rate.

Parameter inference

Now, we finaly estimate the posterior distribution of Na using the main function of the package: abc.
The following code shows how to use abc with the method "neuralnet". We chose to use a "log"

transformation of the parameter. The correction for heteroscedasticity of performed by default.

> res <- abc(target=stat.voight["italian",], param=data.frame(Na=par.italy.sim[, "Ne"]),

sumstat=stat.italy.sim, tol=0.05, transf=c("log"), method="neuralnet")

12345678910

12345678910

> res
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Call:

abc(target = stat.voight["italian", ], param = data.frame(Na = par.italy.sim[,

"Ne"]), sumstat = stat.italy.sim, tol = 0.05, method = "neuralnet",

transf = c("log"))

Method:

Non-linear regression via neural networks

with correction for heteroscedasticity

Parameters:

Na

Statistics:

pi, TajD.m, TajD.v

Total number of simulations 50000

Number of accepted simulations: 2500

The function abc returns an object of class "abc". The function print returns a simple summary
of the object (see above). Using the function summary we can calculate summaries of the posterior
distributions, such as the mode, mean, median, and credible intervals, taking into account the posterior
weights, when appropriate. We obtain the following summary of the posterior distribution using the
function summary:

> summary(res)

Call:

abc(target = stat.voight["italian", ], param = data.frame(Na = par.italy.sim[,

"Ne"]), sumstat = stat.italy.sim, tol = 0.05, method = "neuralnet",

transf = c("log"))

Data:

abc.out$adj.values (2500 posterior samples)

Weights:

abc.out$weights

Na

Min.: 7407.199

Weighted 2.5 % Perc.: 8722.343

Weighted Median: 11534.063

Weighted Mean: 11828.112

Weighted Mode: 11087.692

Weighted 97.5 % Perc.: 16288.863

Max.: 20960.027

Two functions are available to visualize the results, hist and plot. hist simply displays a histogram
of the weighted posterior sample (Figure 7).

> hist(res)

The function plot can be used as a diagnostic tool when one of the regression methods is applied.
We can run the following code to generate the diagnostic plots of the estimation of the posterior
distribution of Na:
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Figure 7: Histogram of the weighted posterior sample of Na

Figure 8: ABC regression diagnostics for the estimation of the posterior distribution of Na

> par(cex=.8)

> plot(res, param=par.italy.sim[, "Ne"])

Figure 8 shows that plot returns various plots that allow the evaluation of the quality of estimation
when one of the regression methods is used. The following four plots are generated: a density plot of the
prior distribution, a density plot of the posterior distribution estimated with and without regression-
based correction, a scatter plot of the Euclidean distances as a function of the parameter values, and
a normal Q-Q plot of the residuals from the regression. When the heteroscedastic regression model is
used, a normal Q-Q plot of the standardized residuals is displayed.

Figure 8 shows that the posterior distribution is very different from the prior distribution, confirming
that the three summary statistics convey information about the ancestral population size (Figure 8,
lower left panel). The upper right panel of Figure 8 shows the distance between the simulated and
observed summary statistics as a function of the prior values of Na. Again, this plot confirms that the
summary statistics convey information about Na, because the distances corresponding to the accepted
values are clustered and not spread around the prior range of Na. The lower right panel displays a
standard Q-Q plot of the residuals of the regression, ϵ̂i. This plot serves as a regression diagnostic of
the linear or non-linear regression when the method is "loclinear" or "neuralnet".

Conclusions

A few of the capabilities of the abc package have been described. Inevitably, new applications will
demand new features and might reveal unforeseen bugs. Please send comments or suggestions and
report bugs to kati.csillery@gmail.com and/or michael.blum@imag.fr.
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