Package 'WaveletGBM' January 20, 2025 Type Package Version 0.1.0 Title Wavelet Based Gradient Boosting Method | Author Dr. Ranjit Kumar Paul [aut, cre], Dr. Md Yeasin [aut] | |--| | Maintainer Dr. Ranjit Kumar Paul <ranjitstat@gmail.com></ranjitstat@gmail.com> | | Description Wavelet decomposition method is very useful for modelling noisy time series data. Wavelet decomposition using 'haar' algorithm has been implemented to developed hybrid Wavelet GBM (Gradient Boosting Method) model for time series forecasting using algorithm by Anjoy and Paul (2017) < DOI:10.1007/s00521-017-3289-9>. | | License GPL-3 | | Encoding UTF-8 | | Imports caret, dplyr, caretForecast, Metrics, tseries, stats, wavelets, gbm | | RoxygenNote 7.2.1 | | NeedsCompilation no | | Repository CRAN | | Date/Publication 2023-04-07 08:20:02 UTC | | | | Contents | | WaveletGBM | | Index 3 | 2 WaveletGBM | 1.1 | 1.0014 | |-------|--------| | Wavel | etGBM | Wavelet Based Gradient Boosting Method #### Description Wavelet Based Gradient Boosting Method #### Usage ``` WaveletGBM(ts, MLag = 12, split_ratio = 0.8, wlevels = 3) ``` ## **Arguments** ts Time Series Data MLag Maximum Lags split_ratio Training and Testing Split wlevels Number of Wavelet Levels ## Value • Lag: Lags used in model • Parameters: Parameters of the model • Train_actual: Actual train series • Test_actual: Actual test series • Train_fitted: Fitted train series • Test_predicted: Predicted test series · Accuracy: RMSE and MAPE of the model #### References - Aminghafari, M. and Poggi, J.M. 2012. Nonstationary time series forecasting using wavelets and kernel smoothing. Communications in Statistics-Theory and Methods, 41(3),485-499. - Paul, R.K. A and Anjoy, P. 2018. Modeling fractionally integrated maximum temperature series in India in presence of structural break. Theory and Applied Climatology 134, 241–249. ## **Examples** ``` library("WaveletGBM") data<- rnorm(100,100, 10) WG<-WaveletGBM(ts=data)</pre> ``` ## **Index** WaveletGBM, 2