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Introduction

This package provides functions for implementing the variable selection approach in high-dimensional linear
models called WLogit described in Zhu et al. (2022). This method is designed for taking into account the
correlations that may exist between the predictors (columns of the design matrix). It consists in rewriting the
initial high-dimensional logistic regression model to remove the correlation existing between the predictors
and in applying the generalized Lasso criterion. We refer the reader to [1] for further details.

Given a design matrix X of size n × p, X
(i)
j corresponds to the measurement of the jth biomarker on sample

i, and β = (β1, . . . , βp)T is the vector of effect size for each biomarker, with most components equal to
zero. We assume that the binary response y1, y2, ..., yn are independent random variables having a Bernoulli
distribution with parameter πβ(X(i)) (yi ∼ Bernoulli(πβ(X(i)))), where for all i in {1, . . . , n},

πβ(X(i)) =
exp

(∑p
j=1 βjX

(i)
j

)
1 + exp

(∑p
j=1 βjX

(i)
j

) . (1)

The rows of X are assumed to be the realizations of independent centered Gaussian random vectors having
a covariance matrix equal to Σ. The vector β is assumed to be sparse, i.e. a majority of its components is
equal to zero. The goal of the WLoigt approach is to retrieve the indices of the nonzero components of β,
also called active variables.

Installation

To obtain WLogit, the simplest approach is to install it directly from the CRAN (Comprehensive R Archive
Network) using the following command:

install.packages("WLogit", repos = "http://cran.us.r-project.org")

Alternatively, users can download the package source at http://cran.r-project.org/web/packages/WLogit/
and download the WLogit_2.0.tar.gz file.

Data generation

Correlation matrix Σ

We consider a correlation matrix having the following block structure:

Σ =
[
Σ11 Σ12
ΣT

12 Σ22

]
(2)
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where Σ11 is the correlation matrix of active variables with off-diagonal entries equal to α1, Σ22 is the one
of non active variables with off-diagonal entries equal to α3 and Σ12 is the correlation matrix between active
and non active variables with entries equal to α2. In the following example: (α1, α2, α3) = (0.3, 0.5, 0.7).

The first 10 variables are active variables among the p = 500 variables and n = 100.

p <- 500 # number of variables
d <- 10 # number of actives
n <- 100 # number of samples
actives <- c(1:d)
nonacts <- c(1:p)[-actives]
Sigma <- matrix(0, p, p)
Sigma[actives, actives] <- 0.3
Sigma[-actives, actives] <- 0.5
Sigma[actives, -actives] <- 0.5
Sigma[-actives, -actives] <- 0.7
diag(Sigma) <- rep(1,p)

Generation of X and y

The design matrix is then generated with the correlation matrix Σ previously defined by using the function
mvrnorm and the response variable y is generated according to model (1) where the non null components of
β are equal to 1.

X <- MASS::mvrnorm(n = n, mu=rep(0,p), Sigma, tol = 1e-6, empirical = FALSE)
beta <- rep(0,p)
beta[actives] <- 1
pr <- CalculPx(X,beta=beta)
y <- rbinom(n,1,pr)

Variable selection with the package

With the previous X and y, the function WhiteningLogit of the package can be used to select the active
variables.

First, we load the WLogit package:

library(WLogit)

We fit the model using the most basic call to WhiteningLogit

mod <- WhiteningLogit(X = X, y = y)

“mod” is a list that contains all the relevant information of the fitted model for future use. Note that the
argument y needs to be binary and only contains 0 or 1.

Additional arguments:

• nlambda: number of lambda to be considered, the default value is 50.
• gamma: parameter described in the paper. Its default value is 0.999.
• maxit: integer specifying the maximum number of steps for the iteration in the Iterative Re-weighted

Least Square algorithm. Its default value is 100.
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Outputs:

• beta: matrix of the estimations of β for all the λ considered.
• beta.min: estimation of β which maximizes the log-likelihood.
• log.likelihood: Log-likelihood for all the λ considered.
• lambda: All λ considered.

Estimation of β by β̂(λ) which maximizes the log-likelihood

We show the first elements in estimated coefficients:

beta_min <- mod$beta.min
head(beta_min)

## [1] 0.01936466 0.03482722 0.02587475 0.02869973 0.03849732 0.03735274

Focusing on selected variables, we show which of them are truly active ones (red) and which are false positives
(blue).

beta_min <- mod$beta.min
df_beta <- data.frame(beta_est=beta_min, Status = ifelse(beta==0, "non-active", "active"))
df_plot <- df_beta[which(beta_min!=0), ]
df_plot$index <- which(beta_min!=0)
ggplot2::ggplot(data=df_plot, mapping=aes(y=beta_est, x=index, color=Status))+geom_point()+

theme_bw()+ylab("Estimated coefficients")+xlab("Indices of selected variables")
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True Positive Rate: 1 (all active variables identified)

False Positive Rate: 28/490 = 0.0571429

In this example, we have successfully selected all the true positives and only included 28 false positives out
of the 490, which resulted in FPR equal to 0.057.
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Compare to Lasso

Next we compare to Lasso by using the glmnet package with logistic regression. Glmnet is a package that
fits a generalized linear model via penalized maximum likelihood. The regularization path is computed for
the lasso or elastic-net penalty at a grid of values for the regularization parameter lambda. To select the
optimized parameter, cross-validation is used and implemented by the function cv.glmnet. More details
about this package can be found in its vignette (Friedman et al. (2010)).

library(glmnet)
cvfit = cv.glmnet(X, y, family = "binomial", type.measure = "class", intercept=FALSE)

lambda.min is the value of lambda that gives minimum mean cross-validated error.

beta_lasso <- coef(cvfit, s = "lambda.min")
head(beta_lasso)

## 6 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) .
## V1 .
## V2 .
## V3 0.3869045
## V4 .
## V5 -0.1879081

Finally we evaluate on variables selected by Lasso.

beta_lasso <- as.vector(beta_lasso)[-1]
df_beta <- data.frame(beta_est=beta_lasso, Status = ifelse(beta==0, "non-active", "active"))
df_plot <- df_beta[which(beta_lasso!=0), ]
df_plot$index <- which(beta_lasso!=0)
ggplot2::ggplot(data=df_plot, mapping=aes(y=beta_est, x=index, color=Status))+geom_point()+

theme_bw()+ylab("Estimated coefficients by glmnet")+xlab("Indices of selected variables")
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The selection accuracy of Lasso:

True Positive Rate: 5/10 = 0.5

False Positive Rate: 20/490 = 0.0408163

Lasso selected only five true positives including one with wrong sign.

We provide a compelling demonstration with this example, showcasing the effectiveness of our method
(implemented in the WLogit package) in scenarios where the covariables exhibit high correlation and the
irrepresentable condition is violated. In such challenging situations, our method outperforms the Lasso
approach by successfully identifying all the true active cases with the correct sign. This outcome highlights
the robustness and superiority of our method, even when faced with complex correlation patterns and
violations of the irrepresentable condition.
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