UAHDataScienceO: Educational Outlier Detection Algorithms with Step-by-Step
Tutorials
Provides implementations of some of the most important outlier detection algorithms.
Includes a tutorial mode option that shows a description of each algorithm and provides
a step-by-step execution explanation of how it identifies outliers from the given data
with the specified input parameters. References include the works of Azzedine Boukerche,
Lining Zheng, and Omar Alfandi (2020) <doi:10.1145/3381028>, Abir Smiti (2020)
<doi:10.1016/j.cosrev.2020.100306>, and Xiaogang Su, Chih-Ling Tsai (2011)
<doi:10.1002/widm.19>.
Version: |
1.0.0 |
Suggests: |
knitr, rmarkdown |
Published: |
2025-02-20 |
Author: |
Andres Missiego Manjon [aut],
Juan Jose Cuadrado Gallego
[aut],
Andriy Protsak Protsak [aut, cre],
Universidad de Alcala de Henares [cph] |
Maintainer: |
Andriy Protsak Protsak <andriy.protsak at edu.uah.es> |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
Materials: |
NEWS |
CRAN checks: |
UAHDataScienceO results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=UAHDataScienceO
to link to this page.