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Abstract Multinomial processing tree (MPT) models are a

class of measurement models that account for categorical data

by assuming a finite number of underlying cognitive process-

es. Traditionally, data are aggregated across participants and

analyzed under the assumption of independently and identi-

cally distributed observations. Hierarchical Bayesian exten-

sions ofMPTmodels explicitly account for participant hetero-

geneity by assuming that the individual parameters follow a

continuous hierarchical distribution. We provide an accessible

introduction to hierarchical MPT modeling and present the

user-friendly and comprehensive R package TreeBUGS,

which implements the two most important hierarchical MPT

approaches for participant heterogeneity—the beta-MPT ap-

proach (Smith & Batchelder, Journal of Mathematical

Psychology 54:167-183, 2010) and the latent-trait MPT ap-

proach (Klauer, Psychometrika 75:70-98, 2010). TreeBUGS

reads standard MPT model files and obtains Markov-chain

Monte Carlo samples that approximate the posterior distribu-

tion. The functionality and output are tailored to the specific

needs ofMPTmodelers and provide tests for the homogeneity

of items and participants, individual and group parameter

estimates, fit statistics, and within- and between-subjects com-

parisons, as well as goodness-of-fit and summary plots. We

also propose and implement novel statistical extensions to

include continuous and discrete predictors (as either fixed or

random effects) in the latent-trait MPT model.
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Multinomial processing tree (MPT) models are a class of mea-

surement models that estimate the probability of underlying

latent cognitive processes on the basis of categorical data

(Batchelder & Riefer, 1999). MPT models make the underly-

ing assumptions of a psychological theory explicit, are statis-

tically tractable and well understood, and are easily tailored to

specific research paradigms (for reviews, see Batchelder &

Riefer, 1999; Erdfelder et al., 2009). Moreover, recent devel-

opments have allowed for modeling the relative speed of cog-

nitive processes in addition to discrete responses within the

MPT framework (Heck & Erdfelder, 2016; Hu, 2001).

Traditionally, MPT models are fitted using data aggregated

across participants (i.e., summed response frequencies) to ob-

tain a sufficiently large number of observations for parameter

estimation and for a high statistical power of goodness-of-fit

tests. However, the aggregation of data is only justified under

the assumption that observations are identically and indepen-

dently distributed (i.i.d.) for all participants and items. In case

of heterogeneity of participants or items, these conditions are

violated, which might result in biased parameter estimates and

incorrect confidence intervals (e.g., Klauer, 2006; Smith &

Batchelder, 2008, 2010). Moreover, fitting separate models

per participant is often not possible due to insufficient num-

bers of individual responses, which prevents a reliable estima-

tion of model parameters. In recent years, several approaches
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have been developed to account for heterogeneity in MPT

models. Here, we focus on hierarchical BayesianMPTmodels

that explicitly assume separate parameters for each partici-

pant, which follow some continuous, hierarchical distribution

on the group level (Klauer, 2010; Smith & Batchelder, 2010).

MPTmodels are very popular and widely used in many areas

of psychology (Batchelder &Riefer, 1999; Erdfelder et al., 2009;

Hütter & Klauer, 2016). Partly, this success may be due to the

availability of easy-to-use software packages for parameter esti-

mation and testing goodness-of-fit such as AppleTree

(Rothkegel, 1999), GPT (Hu & Phillips, 1999), HMMTree

(Stahl & Klauer, 2007), multiTree (Moshagen, 2010), and

MPTinR (Singmann & Kellen, 2013). For psychologists who

are primarily interested in substantive research questions, these

programs greatly facilitate the analysis of either individual or

aggregated data. They allow researchers to focus on the psycho-

logical theory, the design of experiments, and the interpretation

of results instead of programming, debugging, and testing fitting

routines. However, flexible and user-friendly software is not yet

available to analyze MPT models with continuous hierarchical

distributions.

To fit hierarchicalMPTmodels, it is currently necessary either

to implement an estimation routine from scratch (Klauer, 2010;

Smith & Batchelder, 2010) or to build on model code for the

software WinBUGS (Matzke, Dolan, Batchelder, &

Wagenmakers, 2015; Smith&Batchelder, 2010). However, both

of these previous hierarchical implementations are tailored to a

specific MPT model (i.e., the pair-clustering model; Batchelder

& Riefer, 1986) and require substantial knowledge and program-

ming skills to fit, test, summarize, and plot the results of a hier-

archicalMPTanalysis.Moreover, substantial parts of the analysis

need to be adapted anew for each MPT model, which requires

considerable effort and time and is prone to errors relative to

relying on tested and standardized software.

As a remedy, we provide an accessible introduction to hier-

archical MPT modeling and present the user-friendly and flex-

ible software TreeBUGS to facilitate analyses within the statis-

tical programming language R (R Core Team, 2016). Besides

fitting models, TreeBUGS also includes tests for homogeneity

of participants and/or items (Smith & Batchelder, 2008), poste-

rior predictive checks to assess model fit (Gelman & Rubin,

1992; Klauer, 2010), within- and between-subjects compari-

sons, and MPT-tailored summaries and plots. TreeBUGS also

provides novel statistical extensions that allow including both

continuous and discrete predictors for the individual parameters.

In the following, we shortly describe the statistical class of

MPT models and two hierarchical extensions: the beta-MPT

and the latent-trait approach. We introduce the extensive func-

tionality of TreeBUGS using the two-high threshold model of

source monitoring (Bayen, Murnane, & Erdfelder, 1996). The

online supplementary material (available at the Open Science

Framework: https://osf.io/s82bw/) contains complete data and

R code to reproduce our results. Note that we focus on an

accessible introduction to hierarchical MPT modeling using

TreeBUGS and refer the reader to Klauer (2010),Matzke et al.

(2015), and Smith and Batchelder (2010) for mathematical

details.

Multinomial processing tree models

Example: the two-high-threshold model of source

monitoring (2HSTM)

Before describing the statistical details of the MPT model

class in general, we introduce the source-monitoring model,

which serves as a running example. In a typical source-

monitoring experiment (Johnson, Hashtroudi, & Lindsay,

1993), participants first learn a list of items that are presented

by two different sources. After study, they are asked whether

the test items were presented by one of the sources (Source A

or Source B) or whether they were not presented in the learn-

ing list (New). The substantive interest lies in disentangling

recognition memory for the item from memory for the source

while taking response and guessing tendencies into account.

The two-high-threshold model of source monitoring

(2HTSM; Bayen, et al., 1996), shown in Fig. 1, explicitly

models these latent processes. Given an old item was present-

ed by Source A, participants recognize it as old with proba-

bility DA, a parameter measuring item recognition memory.

Conditionally on item recognition, the source memory param-

eter dA gives the probability of correctly remembering the

item’s source, which results in a correct response (i.e., A). If

one of these two memory processes fails, participants are as-

sumed to guess. If the test item itself is not recognized (with

probability 1− DA), participants correctly guess that the item

was old with probability b. Similarly, conditionally on guess-

ing old, the parameter g gives the probability of guessing A.

On the other hand, if the item is recognized with certainty as

being old but the source is not remembered, participants only

have to guess the source (with probability a for guessing A).

An identical structure of latent processes is assumed for

items from Source B, using separate memory parameters DB

and dB. Regarding new items, detection directly results in a

New response with probability DN, whereas the guessing

probabilities are identical to those for the learned items. The

expected probabilities for each of the nine possible response

categories (three item types times three possible responses) are

simply given by (a) multiplying the transition probabilities

within each processing path in Fig. 1 (e.g.,DA � dA for answer-

ing “A” to a statement presented by Source A, due to recog-

nition and source memory), and (b) summing these branch

probabilities separately for each observable category [e.g., P

“A” jSourceAð Þ ¼ DA � dA þ DA � 1� dAð Þ �aþ 1� DAð Þ �
b � g ]. To obtain the expected frequencies, the total number of

responses per tree (e.g., the number of trials per item type) is
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multiplied by the expected probabilities. Note that the 2HTSM

has eight parameters and only six free response categories, and

is thus not identifiable. To render the model identifiable and

obtain unique parameter estimates, we restricted some of the

model parameters to be identical, on the basis of theoretical

assumptions detailed below.

As an empirical example, we reanalyze data by Arnold,

Bayen, Kuhlmann, and Vaterrodt (2013). Eighty-four partici-

pants had to learn statements that were presented by either a

doctor or a lawyer (Source) and were either typical for doctors,

typical for lawyers, or neutral (Expectancy). These two types

of statements were completely crossed in a balanced way,

resulting in a true contingency of zero between Source and

Expectancy. Whereas the profession schemata were activated

at the time of encoding for half of the participants (encoding

condition), the other half were told about the professions of

the sources just before the test (retrieval condition). Overall,

this resulted in a 2 (Source; within subjects) × 3 (Expectancy;

within subjects) × 2 (Time of Schema Activation; between

subjects) mixed factorial design. After the test, participants

were asked to judge the contingency between item type and

source (perceived contingency pc). On the basis of the latent-

trait approach, we (a) first analyze data from the retrieval

condition; (b) show how to check for convergence and model

fit, and perform within-subjects comparisons; (c) compare the

parameter estimates to those from the beta-MPTapproach; (d)

include perceived contingency as a continuous predictor for

the source-guessing parameter a; and (e) discuss two ap-

proaches for modeling a between-subjects factor (i.e., Time

of Schema Activation).

Likelihood function for the MPT model class

As is implied by their name, MPT models assume a product-

multinomial distribution on a set of K ≥2 mutually exclusive

categories C ¼ C1; : : :; CKf g (Batchelder & Riefer, 1999).

The expected category probabilities of this product-

multinomial distribution are given by nonlinear functions

(i.e., polynomials) of the parameters, which are defined as

unconditional or conditional transition probabilities of enter-

ing the latent cognitive states (Hu & Batchelder, 1994). The

parameters are collected in a vector θ ¼ θ1; : : :;θSð Þ, where
each of the S functionally independent components is a prob-

ability with values in [0, 1].

Given a parameter vector θ, the expected probability for a

branchBik (i.e., the ith branch that terminates in categoryCk) is

given by the product of the transition probabilities,

P Bik

�

�

�θ

� �

¼ cik∏
S

s¼1θ
aiks
s 1−θsð Þbiks ; ð1Þ

Fig. 1 Two-high-threshold model of source monitoring (2HTSM).

Participants are presented with learned items by two sources A and B

along with new items, and they have to judge each item as belonging to

either Source A or Source B, or being New. DA = probability of detecting

that an item presented by Source A is old; DB = probability of detecting

that an item presented by Source B is old; DN = probability of detecting

that an item is new; dA = probability of correctly remembering that an

item was presented by Source A; dB = probability of correctly

remembering that an item was presented by Source B; a = probability

of guessing that an item that has been recognized as old is from Source A;

g = probability of guessing that an item is from Source A if it was not

recognized as old; b = probability of guessing that an item is old. Adapted

from “Source Discrimination, Item Detection, and Multinomial Models

of Source Monitoring,” by U. J. Bayen, K. Murnane, and E. Erdfelder,

1996, Journal of Experimental Psychology: Learning, Memory, and

Cognition, 22, p. 202. Copyright 1996 by the American Psychological

Association
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where aiks and biks count the occurrences of the parameters θs
and (1� θs ) in the branch Bik, respectively, and cik is the

product of all constant parameters in this branch.

Assuming independent branches, the expected probability

for a category Ck is then given by sum of the Ik branch prob-

abilities terminating in this category,

P Ck

�

�

�θ

� �

¼
X I k

i¼1
cik∏

S

s¼1θ
aiks
s 1−θsð Þbiks : ð2Þ

The model’s likelihood is obtained by plugging these cat-

egory probabilities into the density function of the product-

multinomial distribution. For parameter estimation, this like-

lihood function is maximized either by general-purpose opti-

mization methods (e.g., gradient descent) or by means of an

MPT-tailored expectation-maximization algorithm (Hu &

Batchelder, 1994; Moshagen, 2010), later improved by You,

Hu, and Qi (2011).

Hierarchical MPT models

As we outlined above, a violation of the i.i.d. assump-

tion can result in biased parameter estimates. More spe-

cifically, heterogeneity can result in an underestimation

or an overestimation of the standard errors for the pa-

rameter estimates and thus in confidence intervals that

are too narrow or too wide, respectively (Klauer, 2006).

Moreover, goodness-of-fit tests might reject a model

based on aggregated data even though the model holds

on the individual level. Smith and Batchelder (2008)

showed that—even for a relatively homogeneous group

of participants—the assumption of homogeneity of par-

ticipants was violated whereas items in middle serial

positions were homogeneous. Most importantly, partici-

pant heterogeneity is at the core of research questions

that aim at explaining individual differences and thus

require the estimation of individual parameters (e.g., in

cognitive psychometrics; Riefer, Knapp, Batchelder,

Bamber, & Manifold, 2002).

To address these issues, Bayesian hierarchical models

explicitly account for the heterogeneity of participants

(Lee, 2011). Essentially, hierarchical MPT models as-

sume that the individual response frequencies follow

the same MPT likelihood function as derived in the

previous section, but with a separate parameter vector

θp for each participant p. Instead of estimating a single

set of parameters for all participants (often called “com-

plete pooling”) or assuming independent sets of param-

eters per participant (“no pooling”), individual parame-

ters are modeled as random effects. According to this

idea, the individual parameters are treated as random

variables that follow some well-specified hierarchical

distribution (in the present case, a transformed

multivariate normal distribution or independent beta dis-

tributions). Importantly, this approach combines infor-

mation from the individual and the group level (“partial

pooling”) and thereby provides more robust parameter

estimates than does fitting data for each participant sep-

arately (Rouder & Lu, 2005), because the collective

error of the hierarchical estimates is expected to be

smaller than the sum of the errors from individual pa-

rameter estimation.

The two hierarchical MPT approaches we consider here

differ with respect to the assumed continuous hierarchical dis-

tributions of the individual parameters. In the latent-trait ap-

proach, the probit-transformed individual parameters are as-

sumed to follow a multivariate normal distribution. In con-

trast, the beta-MPT assumes that individual parameters follow

independent beta distributions.

Hierarchical models often rely on Bayesian inference with

a focus on the posterior distribution of the parameters (Lee &

Wagenmakers, 2014). Given the likelihood function of a mod-

el and some prior beliefs about the parameters, the posterior

distribution describes the updated knowledge about the pa-

rameters after consideration of the data. Since analytical solu-

tions and summary statistics of the posterior distribution (e.g.,

posterior means for each parameter) are often not available

analytically, Bayesian inference employs Markov-chain

Monte Carlo (MCMC) methods to draw samples from the

posterior distribution. Based on a sufficient number of poste-

rior samples, summary statistics such as the mean, the median,

or quantiles can be easily computed to obtain parameter esti-

mates, credibility intervals, and goodness-of-fit statistics.

Beta-MPT approach

The beta-MPT approach (Smith & Batchelder, 2010) assumes

that the individual parameters of participants are drawn from

independent beta distributions. The beta distribution has a

positive density on the interval [0, 1], which is the range of

possible values for MPT parameters (i.e., probabilities). The

density of the beta distribution for the sth MPT parameter θps
of person p depends on two positive parameters αs and βs that

determine the shape of the distribution,

g θps

�

�

�αs;βs

� �

¼
Γ αs þ βsð Þ

Γ αsð ÞΓ βsð Þ
θαs−1
ps 1−θps

� �βs−1; ð3Þ

where Γ(x) is the gamma function, which ensures that the

density integrates to one.

Figure 2 shows that the beta distribution covers a wide range

of shapes to model individual differences inMPT parameters. If

α or β is greater than one, the distribution is unimodal; if both

parameters are equal to one, it is uniform; if both are smaller

than one, the distribution is u-shaped; and if α > 1 and β < 1 (or

v i c e ve r sa ) , t he d i s t r i bu t ion i s mono ton i ca l l y
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increasing (or decreasing). To obtain summaries for the location

and spread of the MPT parameters on the group level, the mean

and variance of the beta distribution are computed as

E θsð Þ ¼
αs

αs þ βs

ð4Þ

and

Var θsð Þ ¼
αsβs

αs þ βs þ 1ð Þ αs þ βsð Þ2
: ð5Þ

Note that the hierarchical distribution of the beta-MPT as-

sumes independent MPT parameters across participants. Even

though it is possible to estimate the correlation of parameters

on the basis of posterior samples, the validity of the results is

questionable, since it is not clear how influential the prior of

independent parameters is. In extreme cases, the prior that the

individual MPT parameters are independent may be so infor-

mative that very large sample sizes are required in order to

obtain correlated posterior samples.

Latent-trait approach

Cognitive abilities not only vary on an absolute level between

participants, but also are often correlated (Matzke et al., 2015).

For instance, two parameters that reflect different aspects of

memory retrieval are likely to be similar within participants.

For both statistical and substantive reasons, it might therefore

be important to include parameter correlations in the hierar-

chical model explicitly. In the latent-trait model (Klauer,

2010), this is achieved by assuming that the transformed, in-

dividual parameter vector Ф�1 θp

� �

of a person p follows a

multivariate normal distribution with group mean μ and a

variance–covariance matrix Σ. The correlations between pa-

rameters are modeled explicitly by assuming a multivariate

prior for the full vector of parameters θp (instead of using

independent univariate priors for each vector components θps

as in the beta-MPT). The probit transformation Ф
�1 θp

� �

is

defined component-wise by the inverse of the standard-

normal cumulative density Φ and monotonically maps an

MPT parameter θps from the range (0, 1) to the real line.

This is necessary in order to ensure that the transformed

MPT parameters match the possible realizations of the normal

distribution.

The model can equivalently be formulated as an additive

decomposition of the probit-transformed parameters into a

group mean μ and a participant random effect δp that follows

a centered multivariate normal distribution (Matzke et al.,

2015),

Φ−1 θp

� �

¼ μþ δp: ð6Þ

Note that this structure is similar to standard linear multi-

level models with random intercepts for participants (Pinheiro

& Bates, 2000) and will provide the starting point for includ-

ing continuous predictors and discrete factors, as we describe

below.

TreeBUGS

TreeBUGS requires the statistical programing language R (R

Core Team, 2016), the MCMC sampler JAGS (Plummer,

2003), and the R package runjags (Denwood, 2016). All pro-

grams are open-source software and available for free. The

integration of TreeBUGS within R facilitates the overall work

flow by enabling data preparation, analysis, plotting, and sum-

marizing the results within a single programing environment.

Moreover, the data generation and fitting functions of

TreeBUGS can easily be wrapped into loops to run Monte

Carlo simulations—for instance, to assess the precision of

the parameter estimates for a given sample size.

However, for users less familiar with R, TreeBUGS also

allows to import data, specify models, and export results using

simple text files, which reduces the use of R to a few functions

for model fitting only. Complete R code that serves as a user-

friendly introduction for TreeBUGS is provided in the supple-

mentary material (https://osf.io/s82bw).

TreeBUGS and the documentation are available via CRAN

(https://CRAN.R-project.org/package=TreeBUGS) and can be

installed by typing install.packages("TreeBUGS")

into the R console.1 Once the package is installed, it needs to

be loaded in each session via library(TreeBUGS).

Note that TreeBUGS searches for data, model, and restric-

tion files within the current working directory, which needs to

Fig. 2 Density functions of the beta distribution for different shape

parameters α and β

1
The most recent developer version of TreeBUGS is available at https://

github.com/denis-arnold/TreeBUGS.
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be adjusted to the correct path once (e.g., using the command

setwd("C:/mpt/")).

Format of models, restrictions, and data

To specify an MPT model, TreeBUGS requires a text file in

the .eqn standard, which is also used by other software such as

multiTree (Moshagen, 2010). The first line of the model file is

ignored by TreeBUGS and reserved for comments (similarly

to multiTree).2 Each of the remaining lines defines a single

branch probability of the MPT model and includes three en-

tries separated by white space: the tree label, the category

label, and the branch equation. For instance, the first lines of

the .eqn-file for the 2HTSM (i.e., model/2htsm.eqn in the

Online Appendix) are

where E describes schematically the expected sources (e.g.,

medical statements presented by a doctor), U describes sche-

matically unexpected sources (e.g., medical statements pre-

sented by a lawyer), and N describes new items not previously

learned.

Often, some of the MPT parameters are constrained to be

identical or constant based on theoretical reasons or to ensure

the identifiability of the model. Within TreeBUGS, such con-

straints are added by a list and may contain equality con-

straints and constants,

restrictions = list("D1 = D2 = D3", "d1 =

d2", "a = g")

Alternatively, one can specify the path to a text file that

includes one constraint per row. In the present example (in-

cluded in model/restrictions.txt), we assume that the probabil-

ity of remembering a learned item is identical for both sources

and also identical to the probability of recognizing an item as

New (i.e., DA ¼ DB ¼ DN ). Similarly, source memory is as-

sumed to be equal for the two sources (dA ¼ dB ), and source

guessing is assumed to be independent of whether participants

recognized the item (a ¼ g ).

To fit a hierarchical model, TreeBUGS requires a table of

individual frequencies with participants in rows and observed

categories in columns. These data can either be provided in a

comma-separated .csv file (with category labels in the first

row) or as a matrix or data frame within R (with column

names matching the observable categories in the model file).

For our example, the f irs t l ines of the data f i le

data/data_retrieval.csv, which provides the response frequen-

cies in the retrieval condition, are

Testing the homogeneity of participants

Before fitting a hierarchical model to individual data instead

of fitting a standard MPT model to aggregated data, it is im-

portant to check whether participants are actually heteroge-

neous (Smith & Batchelder, 2008). If this test does not reject

the null hypothesis that individual frequencies are identically

distributed, the simpler standard MPT model should be used,

since it reduces the possibility of overfitting (Smith &

Batchelder, 2008).3

To test for heterogeneity among participants or items,

TreeBUGS implements the asymptotic χ2 test and the permu-

tation test proposed by Smith and Batchelder (2008). The

former allows testing for participant heterogeneity under the

assumption that items are homogeneous and requires the same

table of individual frequencies as described in the previous

section. In our example, the χ2 test for participant heterogene-

ity is run as

The argument tree indicates which columns of the fre-

quency table freq belong to separate multinomial distribu-

tions (here, the nine observed categories belong to the three

trees of the 2HTSM). As is indicated by the small p value

[χ2(138) = 325.1, p = 3.9 · 10−17], there is substantial hetero-

geneity between participants.

"EE","EU","EN","UE","UU","UN","NE","NU","NN"

3,   5,   8,   1,   8,   7,   4,   6,  22

7,   5,   4,   8,   7,   1,  11,  14,   7

# 2-high threshold model of source monitoring

E     EE     D1*d1

E     EE     D1*(1-d1)*a

E     EU     D1*(1-d1)*(1-a)

E     EE     (1-D1)*b*g

E     EU     (1-D1)*b*(1-g)

2
The original file format as used by AppleTree or GPT required the number of

equations in the first line.

3
TreeBUGS also provides the function simpleMPT for fitting nonhierarchical,

Bayesian MPT models to aggregated or individual data (using conjugate beta

distributions as priors for the parameters).

testHetChi(freq = "data_retrieval.csv", 

tree = c("E","E","E", "U","U","U",

"N","N","N") )
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In contrast to the χ2 test, the permutation test allows to test

person homogeneity even if items are heterogeneous. To do

so, the data need to be provided in the long format with the

participant code in the first column, the item label or number

in the second column, and the observed response in the third

column. Using 10,000 permutations, we can run this test via

In contrast to the χ2 test, the argument tree is now a list in

which the elements are vectors with category labels for each

multinomial distribution (i.e., for each MPT tree). In our ex-

ample, this test also indicates a significant deviance from the

null hypothesis that persons are homogeneous (p < .001).

Moreover, TreeBUGS also provides a graphical assessment

of participant heterogeneity by plotting the individual against

the mean (absolute or relative) frequencies via the function

plotFreq, illustrated in Fig. 3.

Fitting a latent-trait MPT model

In the simplest scenario, the user only needs to specify the paths

to the files with the model equations, the parameter restrictions,

and the individual frequencies to fit a latent-trait MPT model,

fittedModel <−

traitMPT(eqnfile="eqnfile.eqn",

data="data.csv",

restrictions="restrictions.txt")

However, this approach relies on several defaults regarding

the hyperpriors on the group-level parameters μ and Σ and

details about the MCMC sampling scheme. We strongly ad-

vice the user to adjust these defaults depending on theoretical

considerations and on the convergence of a model, respective-

ly. Based on the .eqn model file and the restrictions,

TreeBUGS creates a JAGS file that is then used to obtain

MCMC samples. By default, this file is only saved temporar-

ily, but it can be saved to the working directory for a closer

inspection using the argument modelfilename

="2htsm.jags”. This file can also be used when working

with JAGS directly.

By default, TreeBUGS samples 20,000 iterations of the

MCMC sampler of which the first 2,000 iterations are dropped

to avoid dependencies on the starting points (the so-called

burn-in period). More complex MPT models might require

more iterations to achieve convergence of the MCMC

sampler and thus an adjustment of n.iter and

n.burnin to sample more iterations and remove more

burn-in samples, respectively. To reduce the load on the

computer’s memory, TreeBUGS only retains every fifth

iteration of the MCMC samples to compute summary sta-

tistics. In the case of highly auto-correlated MCMC sam-

ples, this so-called thinning results only in a minor loss of

information since the dropped samples are very similar to

the retained ones. The user can change the thinning rate

using n.thin.

By default, TreeBUGS obtains posterior samples from three

MCMC chains in parallel using different starting values

(n.chains=3). The sampling from multiple MCMC chains

allows checking convergence by assessing whether the discrep-

ancy between chains is sufficiently small. Note that TreeBUGS

offers the option autojags to run JAGS until some conver-

gence criterion is reached, for instance, until the variance of

parameters between chains is sufficiently small (Gelman &

Rubin, 1992). However, note that this might require substantial

computing time. Convergence issues can also be due to

nonidentifiableMPT parameters; this highlights the importance

of checking the identifiability of a model using either numerical

testHetPerm(data = "data_retrieval_long.csv",

rep = 10000,

tree = list(c("EE","EU","EN"),

c("UE","UU","UN"),

c("NE","NU","NN") )

Fig. 3 Plot of the observed frequencies using the function plotFreq("data_retrieval.csv"). Boxplots show the distributions of individual

frequencies per response category and MPT tree, whereas the solid red line shows the mean frequencies
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(Moshagen, 2010) or analytical (Schmittmann, Dolan,

Raijmakers, & Batchelder, 2010) methods.

After fitting the model, TreeBUGS returns an object that in-

cludes the MCMC samples and summary statistics tailored to

MPT models. By default, the output is only saved temporarily

within R. Alternatively, TreeBUGS allows to export summary

statistics of the posterior to a text file (e.g., parEstFile =

"results.txt") or the fitted model with all posterior sam-

ples to an R data file (e.g., posteriorFile = "posterior

.RData").

Often, one is interested in differences, ratios, or other function

of the core MPT parameters based on the posterior distribution.

To test such transformations on a within-subjects level,

TreeBUGS provides the argument transformed

Parameters = list ("deltaDd = D1-d1"), which com-

putes the difference inmemory parameters using the group-mean

posterior samples (see below for corresponding individual-level

and between-subjects analyses).

When combining all of these arguments, a possible call to

TreeBUGS could be

On a notebook with an Intel i5-3320M processing unit,

drawing posterior samples for this model requires approx-

imately two minutes. In the following, we refer to this

fitted model when showing plots and summaries of em-

pirical results.

Monitoring convergence

As we mentioned above, it is important to ensure that the

posterior distribution is approximated sufficiently well when

relying on MCMC sampling (Gelman & Hill, 2007).

m.retrieval <-

traitMPT(eqnfile="2htsm.eqn", 

data="data_retrieval.csv", 

restrictions = "restrictions.txt", 

modelfilename = "2htsm.jags", 

transformedParameters =list("deltaDd=D1-d1"),

parEstFile = "results_retrieval.txt",

n.chain = 4, n.iter = 50000, 

n.burnin = 10000, n.thin = 10)

Fig. 4 Visual check of convergence using the function plot(m.retrieval, parameter = "mean")
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Mathematical proofs only ensure that the MCMC sampler

approximates the posterior as the number of iterations goes

to infinity, but this approximation might be insufficient and

biased for finite numbers of iterations. Therefore, it is impor-

tant to check a model’s convergence graphically—for in-

stance, by using autocorrelation or time series plots.

TreeBUGS provides these plots tailored to the MPT parame-

ters of interest based on the R package coda (Plummer, Best,

Cowles, & Vines, 2006). For instance, a time-series and den-

sity plot of the group-mean parameters is obtained by typing

plot(m.retrieval, parameter = "mean"),-

resulting in the plot in Fig. 4, which indicates good conver-

gence (i.e., the MCMC chains look like “fat, hairy caterpil-

lars”). To obtain autocorrelation plots for theMCMC samples,

it is sufficient to add the argument type = "acf".

Besides these graphical tests, the summary output of

TreeBUGS provides an estimate for the effective sample size

(i.e., the estimated number of iterations corrected for autocor-

relation) and the convergence statistic R for each parameter,

which quantifies the ratio of between-chain and within-chain

variance and should be close to one (e.g., R < 1:05; Gelman

& Rubin, 1992). If there are any indications that the model has

not converged, it is necessary to fit the model using more

iterations. To reuse posterior samples and save computing

time, TreeBUGS allows retaining previously sampled poste-

rior values using the function extendMPT.

Priors on the group-level parameters

To fit the latent-trait model, prior distributions are required on

the group-level parameters μ and Σ. The defaults of

TreeBUGS use weakly informative priors following the pro-

posals of Klauer (2010) and Matzke et al. (2015). The priors

for the group means μs are standard normal distributions that

imply uniform distributions on the group means in probability

space (Rouder & Lu, 2005). Regarding the covariance matrix

Σ, a scaled inverse Wishart prior is used, similar as in many

other hierarchical models (Gelman & Hill, 2007). A weakly

informative parameterization of the inverse Wishart prior is

given by an identity scale matrix of size S � S with S þ 1

degrees of freedom. Since the standard inverse Wishart prior

informs the parameter variances to a substantial degree, the

standard deviations of the parameter are multiplied by the

scaling parameters ξs to obtain a less informative prior (for

details, see Klauer, 2010). Moreover, the scaling parameters

often improve convergence of the MCMC sampler (Gelman

& Hill, 2007). For the scaling parameters ξs, TreeBUGS as-

sumes a uniform distribution on the interval [0, 10] by default.

In certain scenarios, it might be desirable to change these

default priors for the group-level parameters—for instance, in

order to perform prior sensitivity analyses, to implement the-

oretically informed priors (Vanpaemel, 2010), or to adjust the

priors to account for reparameterized order constraints (Heck

& Wagenmakers, 2016). For these purposes, TreeBUGS al-

lows the user to modify the default priors for the group-level

parameters. Regarding the covariance matrix Σ, TreeBUGS

allows the user to change the scale matrix and the degrees of

freedom of the inverse Wishart prior using the arguments V

and df, respectively, and the prior for the scale parameters ξ

by the argument xi.

As an example regarding the group means μ, more-

informative priors might be placed on the guessing parameters

if the guessing rates are theoretically predicted to be around

.50 for all participants (Vanpaemel, 2010). To implement this

idea, one can change the priors on the latent, probit-scaled

group means by adding to the call:

Note that the input is directly passed to JAGS, which pa-

rameterizes the normal distribution dnorm by the mean and

the precision (i.e., the inverse of the variance, τ ¼ 1=σ2 ).

Accordingly, the term "dnorm(0,4)" defines slightly more

precise priors for a and b on the probit scale (i.e., normal

distributions with mean zero and standard deviation 0.5, im-

plying a mean of .50 on the probability scale) than for the

default, standard-normal priors for the group means of d and

D. For a complete overview of possible distributions, we refer

the reader to the JAGS manual (Plummer, 2003).

To get an intuition about the effects of different priors on

the parameter means, SDs, and correlations, TreeBUGS pro-

vides a function that draws samples and plots histograms for a

given set of priors:

This example defines separate priors for the latent means μs

of two MPT parameters (i.e., the standard-normal and the

more precise prior "dnorm(0,4)" discussed above). The

remaining arguments represent the default priors of

TreeBUGS for the latent-trait MPT—that is, a uniform distri-

bution on the interval [0, 10] for the scaling parameters ξs (the

argument xi is used for both parameters) and the Wishart

prior with scale-matrix V (the two-dimensional identity matrix

diag(2)) and three degrees of freedom. Figure 5 shows that

these priors imply a uniform prior and a more-informative,

centered prior for the inverse-probit-transformed means

plotPrior(prior = list(mu = c("dnorm(0,1)", "dnorm(0,4)"),

xi = "dunif(0, 10)", V = diag(2), df = 3)

mu = c(a="dnorm(0,4)", b="dnorm(0,4)",

d1="dnorm(0,1)", D1="dnorm(0,1)")
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Ф μð Þ, respectively. Moreover, the prior distribution on the

latent-probit SD is weakly informative, whereas the prior on

the correlation is uniform. Note, however, that the use of in-

formative priors is still a controversial topic (e.g.,

Wagenmakers, 2007). In any case, the possibility to change

priors in TreeBUGS allows researchers to run prior sensitivity

analyses by repeatedly fitting the same model with different

priors.

Assessing goodness of fit

Before interpreting the parameters of an MPT model, it is

necessary to check whether the model actually fits the data.

Within the maximum-likelihood framework, researchers usu-

ally rely on the likelihood-ratio statistic G2 to test goodness of

fit, which quantifies the discrepancy between observed and

expected frequencies and is asymptoticallyχ2 distributed with

known degrees of freedom (Read & Cressie, 1988; Riefer &

Batchelder, 1988). For hierarchical Bayesian models, concep-

tually similar methods exist to compare the observed frequen-

cies against the frequencies predicted by the model’s posterior.

These posterior predictive checks can be performed graphi-

cally by plotting the observed mean frequencies against the dis-

tribution of mean frequencies that are sampled from the hierar-

chical model, using the posterior samples as data-generating pa-

rameters. Within TreeBUGS, such a plot of mean frequencies is

obtained by plotFit(fittedModel). Similarly, the ob-

served covariance of the individual frequencies can be plotted

against that of the posterior predicted frequencies by adding the

argument stat = "cov". Figure 6 shows the resulting plots,

which indicate a satisfactory model fit because the observed and

predicted values differ only slightly.

A quantitative assessment of model fit is provided by poste-

rior predictive tests (Meng, 1994). On the basis of the posterior

samples, these tests rely on a statistic that quantifies the discrep-

ancy between the expected data (conditional on the posterior)

and the observed (Tobs) and the posterior-predicted data (Tpred),

respectively. Based on these two distributions of the test statistic,

the proportion of samples is computed for which Tobs < Tpred, the

so-called posterior predictive p value (PPP). Whereas small

PPP values close to zero indicate insufficient model

fit, larger values indicate satisfactory model fit (e.g.,

PPP > .05). Note, however, that the exact distribution

of these PPP values for the case that the model gener-

ated the data is not uniform contrary to goodness-of-fit

p values in a frequentist framework (Meng, 1994).

For hierarchical MPT models, Klauer (2010) proposed the

test statistics T1 and T2, which focus on the mean and covari-

ance of the individual frequencies, respectively. The T1 statis-

tic computes distance between observed (predicted) and ex-

pected mean frequencies using the formula for Pearson’s χ2

statistic. Similarly, T2 computes the summed differences be-

tween observed (predicted) and expected covariances, stan-

dardized by the expected standard deviations. Using the

individual-level MPT parameters, TreeBUGS computes both

test statistics either directly when fitting a model by adding the

argument ppp = 1000 to the function traitMPT (which

resamples 1,000 posterior samples) or by calling the function

PPP(fittedModel, M = 1000) separately after model

fitting. Besides the PPP values for T1 and T2, testing the mean

frequencies and covariances, respectively, the output also pro-

vides PPP values for all participants separately by applying

the T1 statistic to individual response frequencies. Note that

the underlying TreeBUGS function posterior

Predictive draws posterior-predictive samples using

Fig. 5 Prior distributions for the MPT group-level parameters of the latent-trait MPT model
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either the participant- or group-level parameters, which facil-

itates the computation of any other test statistic of interest.

Besides these tests for absolute goodness of fit, TreeBUGS

also allows to compute the deviance information criterion (DIC)

to select between competing models (Spiegelhalter, Best, Carlin,

& van der Linde, 2002) by adding the argument dic=TRUE.

Similar to the AIC or BIC information criteria, the DIC trades off

model fit and model complexity. After fitting each of the com-

peting hierarchical MPT models, the model with the smallest

DIC value performs best in this trade-off. Note, however, that

the DIC has been criticized for being “not fully Bayesian” and

having undesirable properties (e.g., Gelman, Hwang, & Vehtari,

2014; Plummer, 2008; Vehtari & Ojanen, 2012).

Summarizing and plotting results

There are several convenient ways to summarize and visualize

the posterior distribution of the parameters. A full summary,

including group-parameter estimates, transformed parameters,

posterior predictive checks, and DIC (if any of these were com-

puted), is provided either by summary(fittedModel) or

in the output file specified via parEstFile, as described

above. Note that individual parameter estimates are

provided by default only in the latter case. Within R,

the function

getParam(m.retrieval,

parameter = "theta", stat = "summary")

Fig. 6 To assess model fit, the function plotFit shows the observed (red triangles) against the posterior-predicted (box plots) data in terms of (top)

mean frequencies and (bottom) covariances

Fig. 7 The function plotParam shows the posterior-mean estimates of the individual and mean parameters (including 95% credibility intervals for the

latter)
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allows the user to extract individual parameter estimates in

R (as well as estimated group means and correlations) for a

closer inspection and further processing.

To summarize the results graphically, the function

plotParam in Fig. 7 shows posterior-mean parameter esti-

mates on the group level (including 95% Bayesian credibility

intervals) and on the individual level (alternatively, the argu-

ment estimate="median" allows the user to plot poste-

rior medians). For a closer inspection of the distribution of

individual parameter estimates, Fig. 8 shows the output of

the function plotDistribution, which compares histo-

grams of the posterior means per participant with the expected

density based on the estimated group-level parameters μ and

Σ (on either the latent probit or the probability scale). To

assess the amount of information provided by the data,

plotPriorPost compares the prior densities of the param-

eters against the estimated posterior densities, as is shown in

Fig. 9. If the posterior is markedly peaked as compared to the

prior, the data are highly informative.

Within-subjects comparisons

In psychological studies, participants often perform identical

tasks in different experimental conditions. Such within-

subjects factorial designs are often implemented in MPT

models by using a separate set of parameters for each of the

conditions. In an .eqn file, this requires the repetition of an

MPTmodel structure with separate labels for trees, categories,

and parameters per condition. To facilitate within-subjects

comparisons, TreeBUGS therefore provides a function that

replicates the MPT model equations multiple times with dif-

ferent labels per condition and returns the corresponding .eqn

file. For instance, the call

replicates the 2HTSM model equations for two memory

strength conditions with invariant labels for the parameters a

and g across conditions, but separate labels “high” and “low”

for all trees, categories, and remaining parameters.

When fitting an MPT model, within-subjects comparisons

can be tested with respect to the group-level mean parameters

by using the argument transformedParameters, as

shown above. Additionally, to perform tests on the individual

withinSubjectEQN("2htsm.eqn", labels=c("high", "low"), 

constant=c("a", "g"), save="2htsm 2.eqn")

Fig. 8 The functionplotDistribution compares the distributions of individual posterior-mean estimates (gray histograms) against the group-level

distributions assumed by the posterior means of the hierarchical latent-trait parameters (red density curves)

Fig. 9 Plot of the prior distributions (dashed blue lines) versus the posterior distributions (solid black lines) of the group-level mean and SD of the MPT

parameter D. The 95% credibility interval is shown by the pairs of vertical red lines
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parameters, transformations of parameters (e.g., differences or

ratios) can be estimated after fitting a model using the function

which returns posterior samples for the differences in the

memory parameters D and d for each participant.

Between-subjects comparisons

If a factor is manipulated between subjects in an experiment, two

or more separate hierarchical models can be fitted for the condi-

tions similarly as shown above. Statistically, this implies that the

participant random effects follow different hierarchical distribu-

tions across conditions. On the basis of these fitted models, the

posterior samples can be used to compute differences, ratios, or

other functions of the mean parameters μ between conditions to

assess the effect of an experimental manipulation on the MPT

parameters. Note that this procedure does not provide a

strict hypothesis test for the difference in means, it rath-

er allows to compute a credibility interval of the differ-

ence (Smith & Batchelder, 2010, p. 175).

In our empirical example, we can obtain an estimate for the

difference in recognition memory between the retrieval and

encoding conditions as measured by the parameter D by

b e t w e e n S u b j e c t M P T ( m . r e t r i e v a l ,

m.encoding, par1 = "D1"),where m.retrieval and

m.encoding are the latent-trait MPT models fitted to the

two conditions separately. By default, TreeBUGS computes

(a) the difference in the mean parameters and (b) the propor-

tion of samples for which μDr < μDe (user-specified functions

such as the ratio of parameters can be estimated by the argu-

ment stat="x/y"). TreeBUGS returns a summary that in-

dicated no substantial effect in our example (ΔD ¼ :07 with

the 95% credibility interval �:03; :18½ �; pB ¼ :069 ).

Fitting a hierarchical beta MPT model

The TreeBUGS function betaMPT fits a hierarchical beta-

MPTmodel (Smith & Batchelder, 2010) with mostly identical

arguments as for traitMPT. The most important difference

concerns the specification of the priors for the group-level

parameters, that is, the priors for the shape parameters α and

β of the hierarchical beta distributions. Similar to the

component-wise priors on the group means μ in the latent-

trait MPT, the defaults can be changed by the arguments

alpha and beta either simultaneously for all MPT

parameters (by using a single input argument) or separately

for each MPT parameter (by using named vectors).

Regarding default priors, Smith and Batchelder (2010, p.

182) proposed relying on weakly informative priors on the

shape parameters. Specifically, their WinBUGS code used

the “zeros-trick,” which results in approximately uniform

priors on the group-level mean and SD on the probability

scale.4 This prior is available in the TreeBUGS function

betaMPT via the arguments alpha="zero" or

beta="zero", but it often causes JAGS to crash (similar

as for WinBUGS; Smith & Batchelder, 2010, p. 182).

Therefore, TreeBUGS uses a different default for the prior

distribution on the shape parameters α and β (i.e., a gamma

distribution with shape 1 and rate 0.1).

To compare different priors for the beta-MPT model,

TreeBUGS plots the implied prior distributions for the group

mean and standard deviation of the MPT parameters by

Figure 10 shows that both the “zeros-trick” and the gamma

prior are uniform on the mean (panels A and C, respectively),

whereas the former is less informative than the latter with respect

to the group-level SD (panels B and D, respectively). However,

the gamma prior used by default in TreeBUGS matches the

theoretical expectation that individual MPT parameters actually

differ (i.e., SDs close to zero are less likely) but are still similar to

some degree (i.e., large SDs are less likely). Moreover, when

choosing priors on a probability scale, it is important to consider

that large SDs are only possible if the group-level mean is around

θ ¼ :50 (due to the constraint SD θð Þ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ 1� θð Þ
p

) and if the

individual MPT parameters follow a uniform or even bimodal

distribution (i.e., parameters are close to zero for some partici-

pants but close to one for others). To test whether different priors

actually impact parameter estimation, or whether the data over-

whelm the prior, TreeBUGS facilitates sensitivity analyses for a

given model and sample size by changing the default prior.

In previous analyses, parameter estimates for the beta-MPT

model were often similar to those for the latent-trait MPT

model (e.g., Arnold, Bayen, & Smith, 2015). Table 1 shows

the results of both analyses for the retrieval condition from

Arnold et al. (2013). To facilitate the comparison, we trans-

formed the probit mean μ and variance σ2 in the latent-trait

MPT to the probability scale using the TreeBUGS function

probitInverse. This function computes the implied

mean and SD of individualMPT parameters on the probability

transformedParameters(fittedModel = m.retrieval,

transformedParameters=

list("deltaDd=D1-d1"),

level = "individual")

plotPrior(prior = list(alpha = "dgamma(1, .1)",

beta = "dgamma(1, .1)") )

4
Technically, this bivariate prior is defined by the probability density function

π α;βð Þ∝ αþ βð Þ�5=2
for α and β in the interval [0.01, 5,000].
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scale given a normal distribution on the latent probit scale.5

Note that the resulting group-level mean differs from Ф μð Þ
(i.e., the inverse-probit transformed parameter μ) because the

variance σ2 on the probit scale shifts the probability mean

toward .50. However, we used the bivariate transformation

probitInverse only for the present comparison with the

beta-MPT model, but report Ф μð Þ and σ in the remainder of

the article (in line with most previous applications).

Table 1 shows that the estimates based on the beta-MPT and

the latent-trait MPT model were similar for the group-level

means and SDs. Moreover, correlations and mean absolute dif-

ferences between individual posterior-mean estimates across

models were high. The largest discrepancy was observed for

the parameter d, which is also the parameter estimated with most

uncertainty. Moreover, the small sample size of N = 24 might

have contributed to the diverging mean estimates. In line with

general Bayesian principles, this illustrates that the type of prior

distribution on the group level (beta vs. latent-trait) has a stronger

impact on those parameters that are informed less by the data.

Including covariates and predictors for MPT

parameters

Correlations of MPT parameters and covariates

When testing hypotheses regarding individual differences,

substantive questions often concern the correlation of

covariates such as age or test scores with the cognitive pro-

cesses of interest as measured by the individual MPT param-

eters (Arnold, Bayen, & Böhm, 2015; Arnold et al., 2013;

Michalkiewicz & Erdfelder, 2016). Hierarchical MPT models

are ideally suited to assess such hypotheses, since they natu-

rally provide separate parameter estimates per participant.

Moreover, instead of computing a single correlation coeffi-

cient using fixed parameter estimates, the correlation of inter-

est can be computed repeatedly for all posterior samples,

which allows for quantifying the uncertainty due to parameter

estimation. Importantly, however, this approach does not take

the sampling error of the population correlation into account,

which depends on the number of participants (Ly et al., in

press). As a remedy, Ly et al. (in press) proposed to estimate

the posterior distribution of the population correlation by (1)

computing correlations for all posterior samples separately, (2)

approximating the sampling-error-corrected posterior distri-

bution of the population correlation for each replication (Ly,

Marsman, &Wagenmakers, 2017), and (3) averaging over the

resulting posterior densities.

TreeBUGS implements this method in two steps. First, the

functions traitMPT and betaMPT compute correlations

between MPT parameters and covariates if a data set with

individual values on the external variables is provided. In

the case of our empirical example, the sample correlation of

age with the MPT parameters is estimated by adding the ar-

gument covData = "age_retrieval.csv"—that is,

the path to a .csv file that includes the variable age. Besides

external data files, TreeBUGS also accepts matrices or data

frames via covData. In both cases, the order of participants

must be identical to that of the data with individual frequen-

cies. For both the latent-trait MPT and the beta-MPT,

Fig. 10 Implied prior distributions on the group means and SDs of individual MPT parameters based on the “zeros-trick” (panels A and B; Smith &

Batchelder, 2010) and Gamma(1, 0.1) priors (panels C and D), for the parameters α and β of the hierarchical beta distribution

5
Given the parameters μ and σ2, TreeBUGS uses numerical integration to

c ompu t e E Ф Xð Þ½ � and Var Ф Xð Þ½ � f o r a r a ndom va r i a b l e

X∼Normal μ;σ2ð Þ.
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TreeBUGS computes the correlations of all continuous vari-

ables with the posterior values of the individual MPT param-

eters. If the argument corProbit = TRUE is added, corre-

lations are instead computed using the individual parameters

on the probit-transformed scale.

In a second step, the function correlationPoste

rior reuses these posterior samples of the sample correlation

to estimate the population correlation, thereby accounting for

the number of participants (Ly et al., in press). Besides mean

estimates and credibility intervals, this function plots the pos-

terior samples of the sample correlation (gray histograms)

against the posterior distribution of the population correlation

(black density curves, including 95% credibility intervals in-

dicated by vertical lines). Figure 11 shows that the posterior of

the population correlation is wider, which indicates the addi-

tional uncertainty due to sampling error.

Continuous predictors for MPT parameters

In cognitive psychometrics, it might be of interest to test

whether some variable affects the probability that a specific

cognitive process occurs—that is, to regress the individual

MPT parameters on external covariates. In our example, the

probability-matching account predicts that the source-

guessing parameter a is driven by the perceived source

contingency (Arnold et al., 2013). To implement such a theo-

retical hypothesis statistically, we expanded the latent-trait

MPT approach in Eq. 6 by a linear regression on the probit

scale, as suggested by Klauer (2010, p. 92),

Φ−1 θps
� �

¼ μs þ Xsβs þ δps; ð7Þ

whereXs is a design matrix with covariates, andβs a vector of

regression coefficients for the sth MPT parameter (for a

similar, frequentist approach, cf. Coolin, Erdfelder,

Bernstein, Thornton, & Thornton, 2015).

Substantively, positive regression weights βsk imply a

higher probability that the cognitive process s occurs as the

covariate increases. Moreover, the inclusion of predictors is

likely to result in a reduction of the variance of individual

MPT parameters, and thus sheds light on possible sources of

parameter variability.

Obviously, priors are required for the regression coeffi-

cients βs. Given that covariates can substantially differ in

location and range, we assume scale-invariant default priors

for the regression coefficients. Specifically, the columns of Xs

are z-standardized to have a mean of zero and a variance of

one. Based on this standardization, we assume weakly

informative, multivariate Cauchy priors for each of the

standardized regression coefficients βs similar to the priors

used by Rouder and Morey (2012) for standard linear

Table 1 Comparison of parameter estimates of a latent-trait MPT model and a beta-MPT model

Parameter Latent-Trait MPT Beta-MPT Participant Estimates

Mean SD Mean SD Correlation Mean Abs. Difference

a .714 (.056) .270 (.040) .766 (.047) .223 (.035) .999 .011

b .523 (.036) .155 (.028) .524 (.034) .140 (.023) .999 .005

d .378 (.095) .394 (.064) .191 (.080) .181 (.086) .916 .166

D .329 (.041) .159 (.038) .328 (.036) .135 (.028) .996 .011

Analysis of the retrieval condition of Arnold et al. (2013). For the group-level mean and SD parameters, posterior means (and SDs) are shown. Participant

estimates refer to posterior means of the individual MPT parameters

Fig. 11 Comparison of the posterior distribution of the sample

correlation, which only accounts for the uncertainty of the parameter

estimates (gray histograms), with the posterior of the population

correlation, which also accounts for the number of participants (black

density curves, with 95% credibility intervals indicated by vertical red

lines)
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regression modeling. For each MPT parameter s, this is

achieved by independent univariate normal priors on the re-

gression coefficients for the predictors k ¼ 1; :::;Ks,

βsk∼Normal 0; gsð Þ; ð8Þ

and an inverse gamma prior on the variance gs,

gs∼Inverse Gamma 1
.

2; v2
.

2
� �

; ð9Þ

with a fixed scale parameter v ¼ 1 [which reduces Eq. 9 to an

inverse χ2(1) prior].6 By defining a single variance parameter gs
for all slopes βs1; :::;βsKs

of anMPT parameter s, a multivariate

Cauchy prior is defined for βs (Rouder & Morey, 2012). To

change these defaults, other priors on gs can be specified via

the argument IVprec. For instance, different scale parameters

v are specified by IVprec = "dgamma(1/2,v^2/2)" (with

v being replaced by a fixed number), and standard-normal dis-

tributions on βsk are realized by IVprec = "dcat(1)"

(which implies a fixed variance gs ¼ 1 ).

Note that our default priors differ slightly from those pro-

posed by Rouder and Morey (2012). First, TreeBUGS imple-

ments the multivariate Cauchy prior for multiple predictors of

an MPT parameter under the additional assumption that the

covariates are independent. Technically, this is due to the con-

straint that the predictors are normalized with respect only to

their variance, but not to their covariance (cf. Rouder &

Morey, 2012). Nevertheless, the default prior of TreeBUGS

allows for parameter estimation of hierarchical MPT models,

especially if the predictors are nearly uncorrelated, since the

data overwhelm the prior if sample size increases (in contrast

to model selection, as in Rouder & Morey, 2012). Second,

Rouder and Morey also standardized the regression coeffi-

cients with respect to the scale of the dependent variable.

Since the dependent variables are probit-transformed parame-

ters in our case, we only standardize the coefficients with

respect to the external covariates. Below, we provide a simu-

lation study to show that these default priors are well calibrat-

ed from a frequentist view (e.g., result in unbiased estimates).

In TreeBUGS, covariates are easily included as predictors

when fitting a latent-trait MPT model via traitMPT. First,

the argument covData that refers to the covariate data

needs to be provided, similarly as in the previous section.

Second, the argument predStructure determines which

regression coefficients are included for which MPT parame-

ters, predStructure = list("a ; pc", "D1 d1 ;

age").

Each element of this list starts with one or more MPT

parameters and states one or more variables in covData

that should be included as predictors after the semicolon.

T h e r e b y, p r e d i c t o r s a r e o n l y i n c l u d e d f o r

those combinations of MPT parameters and covariates that

are of substantive interest. Note that this structure is suf-

ficiently flexible to include predictors that differ within-

subjects (e.g., if a covariate changes across two conditions

of a source-memory task). For this purpose, repeated mea-

sures of the covariate are included as separate columns in

covData and can then be assigned to the corresponding

MPT pa r ame t e r s ( e . g . , u s i n g t h e a r g umen t

predStructure = list("a1;pc1", "a2;pc2",

"a3;pc3")).

In our empirical example, we expected the source-

guessing parameter to depend on the perceived contin-

gency pc in the retrieval condition. In line with this

prediction, the credibility interval for the unstandardized

regression coefficient did not overlap zero (β ¼ 4:56;

95% CI ¼ 2:74; 6:44½ � ). Substantively, this regression

coefficient is interpreted as an increase of 0.456 in the

latent-probit value of an MPT parameter as perceived

contingency pc increases by .10.

Discrete predictors for MPT parameters

In MPT modeling, it is common to test the effect of

between-subjects manipulations on the parameters that

measure the cognitive processes of interest. Above, we

showed that separate latent-trait MPT models can be

fitted for each condition in order to compare the

group-level means in a second step. However, this pro-

cedure results in a rather complex model with separate

covariance matrices Σ1, . . . , ΣI for the I conditions.

Even though this statistical assumption might be appro-

priate in some cases, the interest is often only in differ-

ences of the group-level means (i.e., differences in the

parameter vectors μ1, . . . , μI), whereas the covariance

matrix is assumed to be identical across conditions.

Substantively, this means that the hypothesized cogni-

tive states are entered more or less often depending on

the condition whereas the parameter correlations across

participants remain identical. This nested model with a

single covariance matrix Σ results in a more parsimo-

nious and specific comparison of mean differences.

To implement this constrained model statistically, we add a

linear term on the latent probit scale that shifts the individual

parameters depending on the condition. More specifically, we

use a design matrix Xs that indicates the group membership of

participantsandavectorηsofeffects for the sthMPTparameter,

Φ−1 θps
� �

¼ μs þ X sηs þ δps: ð10Þ

Here, the first summand represents the intercept whereas the

second term determines the group-specific deviations from the

overall mean. Note that this approach is identical to the standard

6
Usually, the scale parameter is referred to by the letter s, which is already

used for the index of MPT parameters in the present article.
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way of implementing an analysis of variance (ANOVA) within

the general linear model (Rouder, Morey, Speckman, &

Province, 2012). This model structure results in different means

of the MPT parameters across conditions if ηs differs from the

null vector, whereas the covariance matrixΣ associated with the

participant random effects δps remains unaffected.

Without further constraints, the parameter vector ηs is not

identifiable. Moreover, sensible priors for ηs are required. With

respect to both of these issues, we follow the approach of Rouder

et al. (2012), who developed default priors for ANOVA. On the

one hand, if the factor has a small number of well-defined levels,

a fixed-effects model is assumed by adding the linear constraint

that each of the columns of the design matrixXs sums up to zero

(i.e., sum-to-zero coding), which reduces the dimension of the

vector ηs by one.7 On the other hand, if there are many ex-

changeable factor levels, a random-effects model is more appro-

priate, which assumes that the elements of the vector ηs are

drawn from independent normal distributions with variance g.

Similar as for continuous predictors above, the variance param-

eter g has an inverse χ2(1) prior. Note that our priors differ

slightly from those of Rouder et al. (2012, p. 363), who standard-

ized the effects ηs with respect to the error variance of the de-

pendent variable.

In TreeBUGS, discrete factors are added using the argument

predStructure similarly as for continuous predictors above.

If any of the included covariates is recognized as a factor (as

indicated by character values), this covariate is automatically

added as a discrete fixed-effects predictor. To change this default,

the argument predType = c("c","f","r") (using the

same order of variables as in covData) allows to define each

covariate either as a continuous ("c"), a discrete fixed-effects

("f"), or a discrete random-effects ("r") predictor. Once pos-

terior samples for the model have been obtained by a call to

traitMPT, estimates for the group means of the MPT param-

eters are provided by the function getGroupMeans (including

credibility intervals and convergence statistics).

Data generation and simulations for hierarchical MPT

models

The integration of TreeBUGS within R allows the user to

easily run Monte Carlo simulations to assess the expected

precision of the parameter estimates for a given sample size

or to test the influence of different priors. For this purpose,

TreeBUGS provides three functions to generate responses for

a given set of MPT parameters. Whereas the function

genMPT allows to generate response frequencies for any

matrix theta of individual MPT parameter values, the func-

tions genBetaMPT and genTraitMPT assume specific hi-

erarchical structures (beta-MPT and latent-trait, respectively)

and generate values for the individual MPT parameters based

on information about the mean and standard deviations on the

group-level. Whereas the latter functions are tailored to stan-

dard hierarchical MPT models, the former function allows

generating more complex data structures, for instance, for sce-

narios involving predictors.

As an example of how to run simulations, we provide an R

script in the Online Appendix to estimate the precision of the

regression coefficients for the memory parameters d andD of the

2HTSM on the basis of the latent-trait approach. In 500 replica-

tions, we generated responses of 50 participants that responded to

the same number of items as in our example (i.e., 16 items per

source and 32 new items).With the exception of a slightly higher

value for recognitionmemoryD, we chose data-generating latent

probit means (and probit SDs) that were similar to the results in

the empirical example [i.e., a = 0.3 (0.6), b = −0.1 (0.5), d = 0.6

(1.0), D = 0.3 (0.2)]. Data were generated under the assumption

that a normally distributed predictor enters the linear probit re-

gression in Eq. 7 with standardized regression coefficients of βD

¼ �0:3 and βd ¼ 0:5.

Table 2 shows the results of this simulation, based on sam-

pling eight MCMC chains with 10,000 iterations each, of which

the first 5,000 samples were discarded, which resulted in good

convergence, as indicated by R < 1:05 for all replications and

selective graphical checks. For all parameters, the means of the

posterior-mean estimates across simulations were close to the

true, data-generating values, resulting in a small absolute bias.

Moreover, the data-generating parameters were in the 95% cred-

ibility intervals in more than 89% of the replications for all pa-

rameters except the mean of D, for which this proportion was

only 85%. Nevertheless, these results are satisfactory, given that

the resulting CIs were relatively small and precise, and consider-

ing their nonfrequentist definition as the posterior belief of plau-

sible parameter values (whereas for frequentist confidence inter-

vals, these simulated percentages of overlaps should be equal to

95% by definition; Morey, Hoekstra, Rouder, Lee, &

Wagenmakers, 2016).

Of most interest, the slope-parameter estimates were approx-

imately unbiased and sufficiently precise, although βD was esti-

mated more precisely than βd . This was due to the 2HTSM, in

which less information is available about the source-memory

parameter d, because it is defined conditionally on recognition

memory D. The last column of Table 2 shows that in most

replications, the 95% Bayesian credibility intervals did not over-

lap zero. This indicates the sensitivity of the hierarchical MPT

model to detect nonzero regression coefficients using Bayesian

p values, similar to statistical power in the frequentist framework.

Overall, this simulation shows that the proposed default priors on

the regression coefficients in the latent-trait MPT model result in

7
By using sum-to-zero coding, TreeBUGS ensures that the priors on the

effects are symmetric (for details, see Rouder et al., 2012, p. 363), which is

not necessarily the case if simple dummy-coding is used. Currently, this de-

fault cannot be adjusted to add custom design matrices.
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desirable frequentist properties of the Bayesian estimates (i.e.,

unbiasedness and sufficient precision to detect an effect).

Note that our simulation results are only valid for the

2HTSM given a specific set of parameters, and therefore do

not generalize to other MPT models, a limitation inherent in

any simulation. As a remedy, TreeBUGS provides the user

with the necessary methods to run simulations that are tailored

to specific MPT models and scenarios of interest.

General discussion

We provided a nontechnical introduction to the analysis of

hierarchical MPT models, which assume that the MPT struc-

ture holds for each participant with different parameters.

Moreover, we presented the user-friendly R package

TreeBUGS that allows researchers to focus on running exper-

iments and analyzing data instead of programming and testing

fitting routines. TreeBUGS includes MPT-tailored functions

to fit, summarize, and plot parameters and predictions of

latent-trait MPT (Klauer, 2010) and beta-MPT models

(Smith & Batchelder, 2010). Whereas the former approach

explicitly models the covariance of individual MPT parame-

ters by a multivariate normal distribution on the latent probit

scale, the latter assumes independent beta distributions.

Hence, the latent-trait approach is more appropriate for MPT

models including cognitive processes that might be correlated

(e.g., item recognition and source memory). Other functions

of TreeBUGS include tests for homogeneity of participants or

items (Smith & Batchelder, 2008), data generation for simu-

lations, and comparisons of parameter estimates for within-

and between-subjects designs.

Moreover, we developed and implemented statistical ex-

tensions of the latent-trait MPT approach to include continu-

ous and discrete predictors for the individualMPT parameters.

Similar to the generalized linear model (Pinheiro & Bates,

2000), TreeBUGS adds linear terms on the latent probit

scale to model the effect of external covariates on the

MPT parameters. For continuous predictors, we adapted

the weakly informative, scale-invariant priors by Rouder

and Morey (2012). In addition to the regression ap-

proach, TreeBUGS allows for estimating the population

correlation of continuous covariates with the MPT pa-

rameters (both in latent-trait and beta-MPT models).

This method might be preferable when the parameters

are not assumed to be affected by the external covari-

ates, and when many variables are included as with

neuro-physiological data (cf. Ly et al., in press).

Regarding discrete predictors, TreeBUGS allows for in-

cluding between-subjects factors as either fixed or random

effects, based on the default priors for ANOVA by Rouder

et al. (2012). Note that this approach differs from the standard

MPT modeling approach of defining a set of new parameters

for each condition (e.g., Di, di, ai, and bi for conditions i = 1,

2). For hierarchical MPT models, the latter approach

requires to fit two or more latent-trait MPT models with

separate covariance matrices Σi. This more complex

model structure might not provide sufficient information

to estimate to covariance matrix and be prone to

overfitting. In contrast, TreeBUGS allows adding a var-

iable that encodes the condition as a fixed or random

effect, thereby assuming different group-means of the

MPT parameters across conditions but the same covari-

ance structure within each condition. Given that this

assumption is valid, the latter approach provides a more

Table 2 Parameter recovery simulation of the latent-trait 2HTSM with two predictors

Parameter Data-Generatin Means Across Replications Percentage of Replications

Posterior Mean 2.5% 97.5% Absolute Bias True in 95% CI 0 Not in 95% CI

Mean a 0.62 0.61 0.53 0.69 0.62 95

Mean b 0.46 0.46 0.39 0.53 0.46 95

Mean d 0.73 0.73 0.57 0.88 0.73 95

Mean D 0.62 0.62 0.58 0.65 0.62 85

SD σa 0.60 0.63 0.45 0.85 0.08 94

SD σb 0.50 0.52 0.37 0.71 0.07 94

SD σd 1.00 1.26 0.68 2.23 0.37 89

SD σD 0.20 0.19 0.07 0.31 0.05 95

Slope βd 0.50 0.58 0.08 1.25 0.23 95 63

Slope βD −0.30 −0.29 −0.39 −0.20 0.05 89 100

Based on 500 replications. Group-level means Ф μð Þ are on the probability scale whereas the group-level SDs σ and slopes β are on the latent probit

scale. 95% credibility intervals (i.e., 2.5% and 97.5% posterior quantiles) are computed per replication and then averaged. The absolute bias is computed

as the difference between data-generating parameter and posterior mean. The percentage “0 not in 95% CI” is only relevant for the slope parameters to

estimate the sensitivity of the hierarchical model to detect a nonzero regression effect.
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precise test of between-subjects manipulations on group-

mean parameters.

Limitations

Currently, TreeBUGS is limited to hierarchical MPT models

that either account for participant or item heterogeneity. Given

that items can usually be selected to be sufficiently homoge-

neous (for an example and test, see Smith & Batchelder,

2008), we think that hierarchical models for participant het-

erogeneity as provided by TreeBUGS are often appropriate.

Note that the χ2 and permutation test implemented in

TreeBUGS can be used to test for item homogeneity (Smith

& Batchelder, 2008). If both sources are heterogeneous, it

might be necessary to rely on the crossed-random effects ap-

proach by Matzke et al. (2015), in which the participant item

random effects combine additively on the probit scale (e.g.,

Rouder & Lu, 2005; Rouder et al., 2007).

Other limitations concern the methodology of hierarchical

Bayesian models in general (Lee & Wagenmakers, 2014).

First, it is often difficult to judge the relative influence of the

prior and the data on the posterior estimate for a given sample

size. Ideally, the parameter estimates are mainly informed by

the data and not by the prior. Indeed, it is well known that the

data overwhelm the prior for large sample sizes (e.g., Rouder

et al., 2007). However, it depends on the model structure what

a “large” sample size is. Moreover, whereas a large number of

participants allows to estimate the group-level parameters pre-

cisely, many responses per participant allow to estimate indi-

vidual parameters precisely. As a remedy for these complex

interactions, TreeBUGS facilitates prior-sensitivity simula-

tions for specific models and scenarios.

Second, regarding goodness of fit, the asymptotic distribu-

tion of posterior-predictive p values (PPP) is neither precisely

defined nor known in general (Meng, 1994). Therefore, a cri-

terion indicating a satisfactory goodness of fit such as p > :05

needs to be differently interpreted than frequentist p values,

which underscores the heuristic value of PPP values and con-

trasts with the precise definition of goodness-of-fit tests in a

frequentist framework. As a remedy, model fit can and should

also be assessed qualitatively, which is easily done within

TreeBUGS by plotting the observed versus the predicted mean

frequencies and covariances.

A third limitation concerns the methods to test parameter

constraints and select between competing models. To test pa-

rameter constraints in between- or within-subjects designs,

TreeBUGS only computes credibility intervals of parameter

differences and Bayesian p values (i.e., the proportion of pos-

terior samples not adhering to the null hypothesis). To select

between models, TreeBUGS provides posterior predictive

checks of absolute model fit and DIC values. Given that the

DIC has been criticized for several shortcomings (e.g.,

Gelman et al., 2014), it might often be preferable to compute

Bayes factors, which quantify the relative evidence in favor of

a constraint or in favor of one versus another model (Kass &

Raftery, 1995). However, general-purpose methods to com-

pute Bayes factors for hierarchical models are currently not

available due to computational limitations.
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