
Package ‘ThurMod’
September 19, 2023

Type Package

Title Thurstonian CFA and Thurstonian IRT Modeling

Version 1.1.11

Date 2023-09-019

Description Fit Thurstonian forced-choice models (CFA (simple and factor) and IRT) in R. This pack-
age allows for the analysis of item response modeling (IRT) as well as confirmatory factor analy-
sis (CFA) in the Thurstonian framework. Currently, estimation can be per-
formed by 'Mplus' and 'lavaan'. References:
Brown & Maydeu-Olivares (2011) <doi:10.1177/0013164410375112>;
Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improv-
ing Thurstonian modeling for paired comparison and ranking data.;
Maydeu-Olivares & Böckenholt (2005) <doi:10.1037/1082-989X.10.3.285>.

VignetteBuilder knitr

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports stats, utils, mvtnorm, MASS, matrixStats, lavaan

Suggests rmarkdown, knitr

URL https://github.com/MarkusTJansen/ThurMod

BugReports https://github.com/MarkusTJansen/ThurMod/issues

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.2.3

LazyData true

Author Markus Thomas Jansen [aut, cre]
(<https://orcid.org/0000-0002-5162-4409>)

Maintainer Markus Thomas Jansen <mjansen@uni-wuppertal.de>

Repository CRAN

Date/Publication 2023-09-19 16:50:02 UTC

1

https://doi.org/10.1177/0013164410375112
https://doi.org/10.1037/1082-989X.10.3.285
https://github.com/MarkusTJansen/ThurMod
https://github.com/MarkusTJansen/ThurMod/issues
https://orcid.org/0000-0002-5162-4409

2 blocksort

R topics documented:
blocksort . 2
count.combn . 3
count.xblocks . 4
designA . 5
FC . 6
FC12 . 6
FC_raw . 7
FC_scores . 7
fit.correct . 8
fit.lavaan . 9
fit.mplus . 11
get.scores . 13
get.xblocks . 15
get.xblocks.any . 16
i.name . 17
metablock . 18
mod.matrices . 19
pair.combn . 20
rankA . 20
read.mplus . 21
recode . 22
redundancies . 24
reliabiltyFS . 25
sim.data . 26
syntax.lavaan . 27
syntax.mplus . 29

Index 32

blocksort Sorts the blocks in ascending numbering

Description

This function sorts all items in a block into ascending order.

Usage

blocksort(blocks)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns represent the number of items per block.

count.combn 3

Value

Returns a matrix consisting of the blocks where all items per blocks are sorted in ascending order.

Examples

Define 30 items divided by ten triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

sort the blocks
blocksort(blocks)

count.combn Count paired comparisons

Description

This function calculates the number of paired comparisons needed to compare a set of N items.

Usage

count.combn(nitem)

Arguments

nitem Number of items.

Details

This function is only useful, if the number of paired comparisons of a full design, that is all possible
paired comparisons, is of interest. Then the number is

N × (N − 1)

2

Value

An integer corresponding to the number of paired comparisons.

Examples

Number if paired comparisons for a set of 15 items = 105.
count.combn(15)

4 count.xblocks

count.xblocks Determine the number of extra blocks

Description

This function determines the minimal number of extra blocks needed in order to link all blocks.

Usage

count.xblocks(blocks)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

Details

The matrix of blocks must be constructed so that the number of columns corresponds to the number
of items per block. The number of rows corresponds to the number of blocks for the specific
measure. If p is the number of blocks, and k is the number of items per block (e.g. $k=3$ for
triplets), then the number of extra blocks can be determined by (see also Jansen & Schulze, 2023)

dp− 1

k − 1
e

Value

An integer corresponding to the number of extra blocks needed.

References

Jansen, M. T., & Schulze, R. (2023). The Thurstonian linked block design: Improving Thurstonian
modeling for paired comparison and ranking data. Manuscript submitted.

Examples

Define a matrix of blocks
blocks <- matrix(1:15,ncol=3, byrow=TRUE)

Determine the number of extra blocks needed
count.xblocks(blocks)

designA 5

designA Create the Thurstonian design matrix for paired comparison and rank-
ing data.

Description

Creates the Thurstonian design matrix for paired comparison and ranking data, given by blocks or
the number of items.

Usage

designA(blocks = NULL, nitems = max(unique(blocks)))

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

nitems The number of items that are included in the design.

Details

Each Thurstonian design can be defined by blocks of at least two items. The function determines the
fundamental design matrix A of the Thurstonian design, including all possible paired comparisons
that can be derived by the blocks. For further information of the importance of the design matrix,
see Jansen and Schulze (2023a,2023b).

Value

Returns a design matrix which includes all paired comparisons derivable from the blocks.

References

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Manuscript submitted.

Jansen, M. T., & Schulze, R. (2023b). The Thurstonian linked block design: Improving Thurstonian
modeling for paired comparison and ranking data. Manuscript submitted.

Examples

Define a matrix of blocks
blocks <- matrix(1:15,ncol=3, byrow=TRUE)

Get the design matrix
loading_Matrix <- designA(blocks)

6 FC12

FC Paired comparisons of $N=15$ items from one factor/trait (Thursto-
nian modeling)

Description

This data set contains synthetic data of 1000 participants on all binary indicators of 15 items. For
each paired comparison, participants had to rank the two alternative items according to their prefer-
ence. It is assumed that transitivity holds (that is, the data comes from a ranking task). More details
can be found in Brown and Maydeu-Olivares (2011), Jansen and Schulze (2023) and Maydeu-
Olivares and Böckenholt (2005).

Usage

data(FC)

Format

A data frame with 1000 observations on 105 variables. For a variable ixiy, the result is the response
preferences between item x and item y. It is coded a 1, if item x is preferred over item y, and 0
otherwise.

References

Brown, A, & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires.
Educational and Psychological Measurement, 71(3), 460-502. doi:10.1177/0013164410375112

Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thursto-
nian modeling for paired comparison and ranking data.

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285.

FC12 Paired comparisons of $N=12$ items from one factor/trait (Thursto-
nian modeling)

Description

This data set contains synthetic data of 1000 participants on all binary indicators of 12 items. For
each paired comparison, participants had to rank the two alternative items according to their prefer-
ence. It is assumed that transitivity holds (that is, the data comes from a ranking task). More details
can be found in Brown and Maydeu-Olivares (2011), Jansen and Schulze (2023) and Maydeu-
Olivares and Böckenholt (2005).

Usage

data(FC12)

https://doi.org/10.1177/0013164410375112
https://doi.org/10.1037/1082-989X.10.3.285

FC_raw 7

Format

A data frame with 1000 observations on 66 variables. For a variable ixiy, the result is the response
preferences between item x and item y. It is coded a 1, if item x is preferred over item y, and 0
otherwise.

References

Brown, A, & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires.
Educational and Psychological Measurement, 71(3), 460-502. doi:10.1177/0013164410375112

Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thursto-
nian modeling for paired comparison and ranking data.

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285.

FC_raw Raw ranking data of $N=15$ items from three factors/traits (Thursto-
nian modeling)

Description

This data set contains synthetic raw data of 1000 participants on a ranking task on 15 items.

Usage

data(FC_raw)

Format

A data frame with 1000 observations on 15 variables.

FC_scores Scores of the data set ’FC’ from Mplus.

Description

This data set contains synthetic data of 1000 participants on all binary indicators of 15 items and
their factor scores. For each paired comparison, participants had to rank the two alternative items
according to their preference. It is assumed that transitivity holds (that is, the data comes from
a ranking task). More details can be found in Brown and Maydeu-Olivares (2011), Jansen and
Schulze (2023) and Maydeu-Olivares and Böckenholt (2005).

Usage

data(FC_scores)

https://doi.org/10.1177/0013164410375112
https://doi.org/10.1037/1082-989X.10.3.285

8 fit.correct

Format

A data frame with 1000 observations on 111 variables. For a variable ixiy, the result is the response
preferences between item x and item y. It is coded a 1, if item x is preferred over item y, and
0 otherwise. The last six variables are the resulting factor scores and the standard error of factor
scores for three factors.

References

Brown, A, & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires.
Educational and Psychological Measurement, 71(3), 460-502. doi:10.1177/0013164410375112

Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thursto-
nian modeling for paired comparison and ranking data.

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285.

fit.correct Correct degree of freedom and fit indices in Thurstonian block models

Description

Correct fit indices (RMSEA and CFI) by correcting the degrees of freedom after estimation a
Thurstonian model.

Usage

fit.correct(n, blocks, chi2_mod, df_mod, chi2_base, df_base)

Arguments

n The number of respondents.

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

chi2_mod The χ2 value of the estimated model.

df_mod The degrees of freedom of the estimated model.

chi2_base The χ2 value of the baseline model.

df_base The degrees of freedom of the baseline model.

Details

If a ranking design is used (variances of binary indicators is zero) there are redundancies among
the thresholds and tetrachoric correlations to be estimated. This is the case, whenever the number
of items per block is larger than two. In these cases the degrees of freedom must be corrected by
subtracting the redundancies. For more details see Jansen and Schulze (2023) and Maydeu-Olivares
(1999).

https://doi.org/10.1177/0013164410375112
https://doi.org/10.1037/1082-989X.10.3.285

fit.lavaan 9

Value

Returns a vector containing corrected degrees of freedom, and the corrected RMSEA and CFI val-
ues.

References

Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thursto-
nian modeling for paired comparison and ranking data.

Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean and covariance struc-
ture analysis. Psychometrika, 64(3), 325-340. doi:10.1007/BF02294299

Examples

Define 30 items divided by ten triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

Assume the model yield the following fit, with 426 respondents
chi2_mod = 224.456, df_mod = 59, chi2_base = 1056.566, df_base = 90

fit.correct(426,blocks,224.456,59,1056.566,90)

The corrected values are rmsea = 0.0917892; cfi = 0.8184749

fit.lavaan Performs lavaan estimation of the given model.

Description

This function writes a lavaan syntax given the specifications of the Thurstonian forced choice model.
Additionally it runs the code (given lavaan is installed) and returns the results.

Usage

fit.lavaan(blocks, itf, model, data = NULL, estimator = "ULSMV",
rename_list = NULL)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

https://doi.org/10.1007/BF02294299

10 fit.lavaan

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

data A matrix or data frame including the binary indicators as columns and respon-
dents as rows.

estimator Which estimator should be used? All estimators that are available in ‘lavaan‘
can be used. Defaults to ‘’ULSMV’‘.

rename_list A list with two vectors to rename the objects in the syntax. Vector one is the
original names, vector two the new names. Defaults to ‘NULL‘.

Details

The syntax currently is able to perform model analysis for the latent utility model (‘’simple’‘ and
‘’lmean’‘; Maydeu-Olivares & Böckenholt, 2005) the unconstrained factor model (‘’uc’‘; Maydeu-
Olivares & Böckenholt, 2005) and the IRT model(‘’irt’‘; Maydeu-Olivares & Brown, 2010). Ad-
ditionally, all model types can be performed with all types of forced choice designs (full, block, par-
tially linked block, linked block). For an overview and review see Jansen and Schulze (2023a,2023b).

The standard naming procedure ixiy, for the comparison of items x and y, can be changed by spec-
ifying the ‘rename_list‘ argument. The first vector of the schould be the vector of original names,
for example ‘c(’i1i2’,’i1i3’,’i2i3’,’Trait1’,’Trait2’,’Trait3’)‘ the second vector should contain the
new names, for example ‘c(’A01E12’,’A01C13’,’E01C23’,’Agree’,’Extra’,’Consc’)‘.

Value

Returns a lavaan object containing the specified results, after model analysis.

References

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285

Maydeu-Olivares, A., & Brown, A. (2010). Item response modeling of paired comparison and rank-
ing data. Multivariate Behavioural Research, 45(6), 935-974. doi:10.1080/00273171.2010.531231

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Educational and Psychological Measurement.

Jansen, M. T., & Schulze, R. (2023b, in review). The Thurstonian linked block design: Improving
Thurstonian modeling for paired comparison and ranking data.

Examples

read and save data set FC
data(FC12)

set seed and define blocks
blocks <- matrix(c(5,2,1,4,7,6,3,8,10,12,9,11), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,4)

https://doi.org/10.1037/1082-989X.10.3.285
https://doi.org/10.1080/00273171.2010.531231

fit.mplus 11

Create and run syntax
fit <- fit.lavaan(blocks, itf, 'irt', FC, estimator = 'ULSMV')

fit.mplus Performs Mplus estimation of the given model.

Description

This function writes the Mplus syntax given the specifications of a Thurstonian forced choice de-
sign. Additionally it runs the code (given Mplus is installed) and returns the results.

Usage

fit.mplus(blocks, itf, model, input_path, output_path = NULL,
data_path = "myDataFile.dat", fscore_path = "myFactorScores.dat",
title = "myFC_model", ID = FALSE, byblock = TRUE,
estimator = "ULSMV", data_full = FALSE, standardized = TRUE,
rename_list = NULL, ...)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

input_path Path to save the Mplus input file. Defaults to ‘’myFC_model.inp’‘.

output_path Path to the Mplus output file. Defaults to ‘’myFC_model.out’‘.

data_path Path of the data file for Mplus. Defaults to ‘’myDataFile.dat’‘.

fscore_path Path to save the file of factor scores. Defaults to ‘’myFactorScores.dat’‘.

title Title of the Mplus model. Defaults to ‘’myFC_model’‘.

ID Logical. Should a ID variable be included? The ID must be the first variable in
the data set. Defaults to ‘FALSE‘.

byblock Logical. Should the order in Mplus variable statement be the same as in the
blocks. Defaults to ‘TRUE‘.

estimator Which estimator should be used? All Estimators that are available in Mplus can
be used. Defaults to ‘’ULSMV’‘.

data_full Logical. Are the data considered to be from a full design? Defaults to ‘FALSE‘.

12 fit.mplus

standardized Logical. Should standardized values be computed? Defaults to ‘TRUE‘.

rename_list A list with two vectors to rename the objects in the syntax. Vector one is the
original names, vector two the new names. Defaults to ‘NULL‘.

... Further arguments passed to function ‘read.mplus‘.

Details

The syntax currently is able to perform model analysis for the latent utility models (‘’simple’‘ and
‘’lmean’‘; Maydeu-Olivares & Böckenholt, 2005) the unconstrained factor model (‘’uc’‘; Maydeu-
Olivares & Böckenholt, 2005) and the IRT model(‘’irt’‘; Maydeu-Olivares & Brown, 2010). Ad-
ditionally, all model types can be performed with all types of forced choice designs (full, block, par-
tially linked block, linked block). For an overview and review see Jansen and Schulze (2023a,2023b).

The function writes and saves the Mplus input files, keeps the output files and reads the results
specified for the function ‘read.mplus‘.

The standard naming procedure ixiy, for the comparison of items x and y, can be changed by spec-
ifying the ‘rename_list‘ argument. The first vector of the schould be the vector of original names,
for example ‘c(’i1i2’,’i1i3’,’i2i3’,’Trait1’,’Trait2’,’Trait3’)‘ the second vector should contain the
new names, for example ‘c(’A01E12’,’A01C13’,’E01C23’,’Agree’,’Extra’,’Consc’)‘.

Value

Returns a list containing the specified results, after model analysis.

References

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285

Maydeu-Olivares, A., & Brown, A. (2010). Item response modeling of paired comparison and rank-
ing data. Multivariate Behavioural Research, 45(6), 935-974. doi:10.1080/00273171.2010.531231

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Educational and Psychological Measurement.

Jansen, M. T., & Schulze, R. (2023b, in review). The Thurstonian linked block design: Improving
Thurstonian modeling for paired comparison and ranking data.

Examples

read and save data set FC
data(FC)
write.table(FC,paste0(tempdir(),'/','my_data.dat'),quote=FALSE, sep=" ",
col.names = FALSE, row.names = FALSE)

set seed and define blocks
set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,5)

https://doi.org/10.1037/1082-989X.10.3.285
https://doi.org/10.1080/00273171.2010.531231

get.scores 13

perform analysis
Not run:
fit.mplus(blocksort(blocks),itf,'irt',data_path = 'mydata.dat', data_full = TRUE,
input_path = paste0(tempdir(),'/','myFC_model'))

End(Not run)

get.scores Estimate factor scores based on Genuine Likelihood

Description

This function estimates factor scores based on genuine likelihood (Yousfi, 2019).

Usage

get.scores(dat, blocks, itf, fit, alg = mvtnorm::TVPACK(), log = TRUE, mp,
sp, serr = TRUE, sv = NULL, blocks_ul = NULL, mplus = FALSE, ...)

Arguments

dat A data.frame or matrix defining holding the binary coded and named response
data.

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

fit The fit object. In case of Mplus, this is the path to the Mplus output file. In case
of lavaan this is the lavaan Object.

alg The algorithm to use for numerical integration. See ?mvtnorm::pmvnorm.

log logical. Should the log transformed results be returned. Defaults to TRUE.

mp The means of prior distribution. Defaults to multivariate normal with means 0
and vars 1

sp The vars of prior distribution. Defaults to multivariate normal with means 0 and
vars 1

serr Logical. Should the standard errors be returned. Defaults to TRUE.

sv Starting values. Defaults to NULL.

blocks_ul Similar to ‘blocks‘, but only with the unlinked design. Useful for comparison
with other functions based on R.

mplus Logical. Are results read from mplus? Defaults to FALSE.

... other arguments passed by get.scores for optim.

14 get.scores

Details

The function estimates factor scores based on the Thurstonian IRT model and based on genuine
likelihood proposed by Yousfi (2019). The function allows for the estimation of factor scores under
all block designs, limited only by numerical integration procedures. For items per block between 5
and 20 use ‘alg=mvtnorm::Miwa()‘. Additionally, all model types can be performed with all types
of forced choice designs (full, block, partially linked block, linked block). For an overview and
review see Jansen and Schulze (2023a,2023b).

The standard naming procedure ixiy, for the comparison of items x and y.

Value

The result is a list with the factor scores and the standard errors per person and factor.

References

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285

Maydeu-Olivares, A., & Brown, A. (2010). Item response modeling of paired comparison and rank-
ing data. Multivariate Behavioural Research, 45(6), 935-974. doi:10.1080/00273171.2010.531231

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Educational and Psychological Measurement.

Jansen, M. T., & Schulze, R. (2023b, in review). The Thurstonian linked block design: Improving
Thurstonian modeling for paired comparison and ranking data.

Yousfi, S. (2019). Person Parameter Estimation for IRT Models of Forced-Choice Data: Merits and
Perils of Pseudo-Likelihood Approaches. In: Wiberg, M., Molenaar, D., González, J., Böckenholt,
U., Kim, JS. (eds) Quantitative Psychology. IMPS 2019. Springer Proceedings in Mathematics &
Statistics, vol 322. Springer, Cham. doi:10.1007/9783030434694_3.

Examples

read and save data set FC
data(FC12)

set seed and define blocks
blocks <- matrix(c(5,2,1,4,7,6,3,8,10,12,9,11), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,4)

Create and run syntax
fit <- fit.lavaan(blocks, itf, 'irt', FC, estimator = 'ULSMV')

get scores for the first two respondents
ests <- get.scores(dat=as.matrix(FC)[1:2,],itf=itf, blocks=blocks,
fit = fit,mp=rep(0,max(itf)),
sp=diag(1,max(itf)),estimator="MAP",sv=NULL, alg=mvtnorm::Miwa(),log=TRUE, mplus=FALSE)

https://doi.org/10.1037/1082-989X.10.3.285
https://doi.org/10.1080/00273171.2010.531231
https://doi.org/10.1007/978-3-030-43469-4_3

get.xblocks 15

get.xblocks Get extra blocks in a Thurstonian design, that links all blocks.

Description

The function creates extra blocks for a Thurstonian design, that links all initial blocks with as few
extra blocks as possible. The number of extra blocks is determined by ‘count.xblocks‘ (see Jansen
& Schulze, 2023).

Usage

get.xblocks(blocks, itf, multidim, item_not = NULL, min = FALSE,
show.warnings = FALSE)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

multidim Logical. Should the items within each linking block be forced to be multidimen-
sional?

item_not The items that are differently keyed compared to the majority of items.

min Logical. Should a minimal number of blocks contain mixed keyed items?

show.warnings Logical. Should warnings be shown?

Value

The result is a matrix where the rows correspond to the specific extra blocks.

References

Jansen, M. T., & Schulze, R. (2023). The Thurstonian linked block design: Improving Thurstonian
modeling for paired comparison and ranking data. Manuscript submitted.

Examples

Define a matrix of blocks
blocks <- matrix(1:15,ncol=3, byrow=TRUE)

define the item-to-factor relation
itf <- rep(1:3,5)

Get the extra blocks for a completely linked design

16 get.xblocks.any

get.xblocks(blocks, itf, FALSE)

get.xblocks.any Get extra blocks in a Thurstonian design, that links as few blocks as
possible.

Description

The function creates extra blocks in a Thurstonian design, that links as few initial blocks as possible,
with the number of blocks determined by ‘count.xblocks‘. This is only useful for comparisons
between linked and partially linked block designs (Jansen & Schulze, 2023).

Usage

get.xblocks.any(blocks, itf, multidim)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

multidim Logical. Should the items within each linking block be forced to be multidimen-
sional?

Details

The main strategy of the function is to create extra blocks that link as few blocks as possible, with
the number of blocks determined by ‘count.xblocks‘. Therefore, first all combinations of additional
blocks with the first two blocks are created. If more extra blocks are needed the function uses block
three, four, etc..

Value

The result is a matrix where the rows correspond to the specific extra blocks.

References

Jansen, M. T., & Schulze, R. (2023). The Thurstonian linked block design: Improving Thurstonian
modeling for paired comparison and ranking data. Manuscript submitted.

i.name 17

Examples

Define a matrix of blocks
blocks <- matrix(1:15,ncol=3, byrow=TRUE)

define the item-to-factor relation
itf <- rep(1:3,5)

Get the extra blocks for a partially linked design
get.xblocks.any(blocks, itf, FALSE)

i.name Creates names for paired comparisons of a given design.

Description

This function creates names for paired comparisons in the ixiy scheme. If items 1 and 2 are com-
pared, this corresponds to i1i2.

Usage

i.name(blocks)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

Value

Returns a character vector, containing names for all binary indicators of a design.

Examples

Define 30 items divided by ten triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

i.name(blocks)

18 metablock

metablock Find all general blocks

Description

This function creates meta interlinked blocks within a Thurstonian design.

Usage

metablock(blocks)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

Details

This function creates meta interlinked blocks of a block design. These are blocks, that have at least
one link from each of its items to any other of its items. If there is not such a link between every
item, there are at least two meta blocks.

Value

Returns a list of items that form meta interlinked blocks.

Examples

Define 30 items divided by ten triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

Add one block to link the first three blocks.
blocks <- rbind(blocks,c(1,2,3))

Find mata blocks
metablock(blocks)

mod.matrices 19

mod.matrices Create model matrices for Thurstonian modeling

Description

This function creates and returns model matrices of Thurstonian model equations.

Usage

mod.matrices(blocks, itf, model)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

Value

Returns a list of elements containing model matrix information.

Examples

set seed and define blocks
set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,5)

mod.matrices(blocks,itf,'irt')

20 rankA

pair.combn Determine all paired comparisons

Description

This function returns a matrix containing all paired comparisons defined by a design.

Usage

pair.combn(blocks, unique = TRUE)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

unique Logical. Should only unique paired comparisons be returned?

Value

Returns a matrix with all paired comparisons defined by a design.

Examples

#' # Define 30 items divided by three triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

Get all blocks
pair.combn(blocks)

rankA Determine the rank of the design matrix defined by the blocks.

Description

This function determines the rank of the fundamental design matrix defined by the blocks.

Usage

rankA(blocks)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

read.mplus 21

Value

Returns the rank of the design matrix as an integer.

Examples

Define nine items divided by three triplets as blocks
blocks <- matrix(c(1:9), ncol = 3)

Determine the rank of the design matrix
rankA(blocks)

read.mplus Reads results from Mplus output file.

Description

This function reads and returns results from an Mplus output file.

Usage

read.mplus(blocks, itf, model, output_path, convergence = TRUE,
fit.stat = TRUE, loading = TRUE, cor = TRUE, intercept = TRUE,
threshold = TRUE, resvar = TRUE, standardized = FALSE)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

output_path Path to the Mplus output file. Defaults to ‘’myFC_model.out’‘.

convergence Logical. Should a message for convergence be returned? Defaults to ‘TRUE‘.

fit.stat Logical. Should fit statistics be returned? Defaults to ‘TRUE‘.

loading Logical. Should loading estimates be returned? Defaults to ‘TRUE‘.

cor Logical. Should latent correlation estimates be returned? Defaults to ‘TRUE‘.

intercept Logical. Should intercepts be returned? Does only work for ‘model = ’lmean’‘.
Defaults to ‘TRUE‘.

22 recode

threshold Logical. Should thresholds be returned? Does only work for ‘model = ’uc’‘ or
‘’irt’‘. Defaults to ‘TRUE‘.

resvar Logical. Should residual variances be returned? Defaults to ‘TRUE‘.

standardized Logical. Should standardized values be returned? Defaults to ‘FALSE‘.

Value

Returns a list containing the specified results, after model analysis, by reading the results from the
’output_path’.

Examples

read and save data set FC
data(FC)

write.table(FC,paste0(tempdir(),'/','my_data.dat'),quote=FALSE, sep=" ",
col.names = FALSE, row.names = FALSE)

set seed and define blocks
set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,5)

perform analysis
Not run:
fit.mplus(blocksort(blocks),itf,'irt',data_path = 'mydata.dat', data_full = TRUE,
input_path = paste0(tempdir(),'/','myFC_model'))

After estimation
read.mplus(blocks,itf,'irt',output_path = paste0(tempdir(),'/','myFC_model.out'))

End(Not run)

recode Recode variables.

Description

Recode variables.

Usage

recode(var = var, vals = c(1, 2, 3, 4, 5), ct = c(5, 4, 3, 2, 1),
cat = FALSE)

recode 23

Arguments

var A variable/column of a data matrix/ data frame containing data to be recoded.

vals A vector containing the original scores. If cat is TRUE, these are thresholds.

ct A vector containing the desired scores.

cat Logical. should the data be categorized?
Outputs —-

Details

This function is a simple recode function. It is possible to recode any value to any other value, as
long as the class of values within a vector are equal. If an interval of numerical values should be
categorized, for N categories, N-1 thresholds must be given. The first N-1 categories are constructed
by using all values that are smaller or equal (<=) than the thresholds, the last category is constructed
to be all values larger than the last threshold.

Value

Returns a vector with the recoded input values.

Author(s)

Markus Thomas Jansen

Examples

#numerical
v <- rep(c(1:5),10)
v_r <- recode(v, c(1:5), c(5:1))

character
v <- rep(c('a','b','d','e'),10)
v_r <- recode(v, c('a','b','d','e'), c('apple','1','dummy',TRUE))

interval
set.seed(1)
v <- sample(runif(20,0,6))

recode x <= 1.3 into 1
recode x <= 2.6 into 2
recode x <= 3.9 into 3
recode x <= 5.2 into 4
recode x > 5.1 into 5
v_r <- recode(v,c(1.3,2.6,3.9,5.2),c(1:5),cat=TRUE)

24 redundancies

redundancies Determine the number of redundancies

Description

This function determines the number of redundancies among the tetrachoric correlations and thresh-
olds.

Usage

redundancies(blocks, warn = TRUE)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

warn Logical. Should warning messages be returned? Defaults to ‘TRUE‘.

Details

If a ranking design is used (variances of binary indicators is zero) there are redundancies among
the thresholds and tetrachoric correlations to be estimated. This is the case, whenever the number
of items per block is larger than two. In these cases the degrees of freedom must be corrected by
subtracting the redundancies. For more details see Jansen and Schulze (2023) and Maydeu-Olivares
(1999).

Value

Returns an integer of the number of redundancies.

References

Jansen, M. T., & Schulze, R. (in review). The Thurstonian linked block design: Improving Thursto-
nian modeling for paired comparison and ranking data.

Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean and covariance struc-
ture analysis. Psychometrika, 64(3), 325-340. doi:10.1007/BF02294299

Examples

Define 30 items divided by ten triplets as blocks
blocks <- matrix(c(1:30), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,10)

Determine the redundancies

https://doi.org/10.1007/BF02294299

reliabiltyFS 25

redundancies(blocks)

reliabiltyFS Calculate reliability estimate for factor scores.

Description

This function returns a reliability estimate for factor scores estimated via the Thurstonian IRT mod-
els.

Usage

reliabiltyFS(scores, scores_se, method = "sub")

Arguments

scores A matrix with factor scores. Rows are respondents, columns are factors/traits.

scores_se A matrix with the standard errors of the factor scores. Rows are respondents,
columns are factors/traits. Factors/traits must be in the same order as for ‘scores‘.

method Can be one of ’div’ or ’sub’. See details. Defaults to ’sub’.

Details

The function returns the empirical reliability of factor scores. If σ2 is the sample variance of the
estimated scores and ¯sigma

2
error is the average if the squared scores, that is

¯sigma
2
error =

1

N

N∑
i

= 1se2scores

then the subtraction method, a classical reliability estimate similar to classical test theory is returned
using ’sub’ yields

σ2 − ¯sigma
2
error

σ2

for the reliability of the scores. If ’div’ is chosen, and alternative division based approach is used.

σ2

σ2 + ¯sigma
2
error

.

If ’irt’ is chosen, a plot returning the standard error of the scores with the scores is returned per
factor.

Value

Returns the reliability value. If method = ’irt’, the a plot with the reliability depending on the
factorscore is returned.

26 sim.data

Examples

read and save data set FC
data(FC_scores)

get reliability
reliabiltyFS(FC_scores[,c(106,108,110)],FC_scores[,c(107,109,111)])

sim.data Create data based on Thurstonian model equations

Description

Simulates a data set of paired comparisons or ranking data based a Thurstonian latent utility model.

Usage

sim.data(nfactor = 1, nitem, nperson, itf, model = "factor",
variables = NULL, ints = NULL, lmu = NULL, ivarcov = NULL,
loadings = NULL, varcov = NULL, graded = FALSE, ncat = NULL,
thres = NULL, transitive = TRUE, var = 0, fvalues = FALSE,
sim = TRUE)

Arguments

nfactor The number of factors. Defaults to 1.

nitem The number of items.

nperson The number of data points (= respondents) to simulate.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model The model class from which to simulate. Options are ’simple’, ’factor’, ’uc’ and
’irt’. Defaults to ’factor’.

variables A vector containing the names of paired comparison variables to return. If
‘NULL‘ (default), all variables are returned.

ints A vector defining the latent intercepts of item pairs.

lmu A vector defining the latent means of items.

ivarcov A matrix defining the variance-covariance matrix of the items.

loadings A vector defining the loadings of items.

varcov A matrix defining the variance-covariance matrix of the traits.

graded Logical. Should a graded preference model be simulated? Defaults to ‘FALSE‘.

ncat Numerical. The number of categories to specify for graded preference models.
If graded = ‘FALSE‘, ncat is 2.

syntax.lavaan 27

thres A vector of thresholds to categorize the latent difference response. If no thresh-
olds are given, they are simulated from the distribution of the latent items. If
graded = ‘FALSE‘, the thresholds are all 0.

transitive Logical. Should the data be transitive? If ‘TRUE‘, ranking data is simulated,
else paired comparison data is simulated. Defaults to ‘TRUE‘.

var A vector containing the variances for each paired comparison. Defaults to 0.

fvalues Logical. Should simulated factor values be returned? Defaults to ‘FALSE‘.

sim Logical. Should the simulated data be returned? Defaults to ‘TRUE‘.

Details

The syntax currently is able to simulate data from the latent utility model (‘’simple’‘ and ‘’factor’‘;
Maydeu-Olivares & Böckenholt, 2005) the unconstrained factor model (‘’uc’‘; Maydeu-Olivares &
Böckenholt, 2005) and the IRT model(‘’irt’‘; Maydeu-Olivares & Brown, 2010).

Value

Returns a list containing the true factor scores and the data, or a matrix containing the data.

Examples

nfactor <- 3
nitem <- 15
nperson <- 1000
itf <- rep(1:3,5)
varcov <- diag(1,3)

latent utility means
set.seed(69)
lmu <- runif(nitem, -1, 1)
loadings <- runif(nitem, 0.30, 0.95)

FC <- sim.data(nfactor=nfactor, nitem=nitem, nperson=nperson, itf=itf,
varcov = varcov, lmu = lmu, loadings=loadings)

syntax.lavaan Create lavaan syntax for Thurstonian forced choice analysis

Description

This function writes a lavaan syntax given the specifications of the Thurstonian forced choice model.

Usage

syntax.lavaan(blocks, itf, model, rename_list = NULL)

28 syntax.lavaan

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

rename_list A list with two vectors to rename the objects in the syntax. Vector one is the
original names, vector two the new names. Defaults to ‘NULL‘.

Details

The syntax currently is able to perform model analysis for the latent utility models (‘’simple’‘ and
‘’lmean’‘; Maydeu-Olivares & Böckenholt, 2005) the unconstrained factor model (‘’uc’‘; Maydeu-
Olivares & Böckenholt, 2005) and the IRT model(‘’irt’‘; Maydeu-Olivares & Brown, 2010). Ad-
ditionally, all model types can be performed with all types of forced choice designs (full, block, par-
tially linked block, linked block). For an overview and review see Jansen and Schulze (2023a,2023b).

The standard naming procedure ixiy, for the comparison of items x and y, can be changed by spec-
ifying the ‘rename_list‘ argument. The first vector of the schould be the vector of original names,
for example ‘c(’i1i2’,’i1i3’,’i2i3’,’Trait1’,’Trait2’,’Trait3’)‘ the second vector should contain the
new names, for example ‘c(’A01E12’,’A01C13’,’E01C23’,’Agree’,’Extra’,’Consc’)‘.

Value

Returns a description of the user-specified model. Typically, the model is described using the lavaan
model syntax. See ‘lavaan::model.syntax‘ for more information.

References

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285

Maydeu-Olivares, A., & Brown, A. (2010). Item response modeling of paired comparison and rank-
ing data. Multivariate Behavioural Research, 45(6), 935-974. doi:10.1080/00273171.2010.531231

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Educational and Psychological Measurement.

Jansen, M. T., & Schulze, R. (2023b, in review). The Thurstonian linked block design: Improving
Thurstonian modeling for paired comparison and ranking data.

Examples

read data set FC
data(FC)

https://doi.org/10.1037/1082-989X.10.3.285
https://doi.org/10.1080/00273171.2010.531231

syntax.mplus 29

set seed and define blocks
set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,5)

Create lavaan model syntax
syntax.lavaan(blocks,itf,'irt')

syntax.mplus Create Mplus syntax for Thurstonian forced choice designs.

Description

This function writes and saves the Mplus syntax given the specifications of a Thurstonian forced
choice design.

Usage

syntax.mplus(blocks, itf, model, input_path, data_path = "myDataFile.dat",
fscore_path = "myFactorScores.dat", title = "myFC_model", ID = FALSE,
byblock = TRUE, estimator = "ULSMV", data_full = FALSE,
standardized = TRUE, rename_list = NULL)

Arguments

blocks A matrix defining the blocks of the model. The number of rows must be the
number of blocks, each row represents a block and contains the item numbers.
The number of columns present the number of items per block.

itf A vector defining the items-to-factor relation. For example ‘c(1,1,1,2,2,2)‘ de-
fines six items, the first three correspond to factor 1, the second three correspond
to factor 2.

model A descriptor for the model. Can be one of ‘’lmean’‘, ‘’uc’‘, ‘’irt’‘ or ‘’simple2’‘,
‘’simple3’‘ or ‘’simple5’‘. The Number behind the ‘’simple’‘ statement defines
the Thurstone case.

input_path Path to save the Mplus input file. Defaults to ‘’myFC_model.inp’‘.

data_path Path of the data file for Mplus. Defaults to ‘’myDataFile.dat’‘.

fscore_path Path to save the file of factor scores. Defaults to ‘’myFactorScores.dat’‘.

title Title of the Mplus model. Defaults to ‘’myFC_model’‘.

ID Logical. Should a ID variable be included? The ID must be the first variable in
the data set. Defaults to ‘FALSE‘.

byblock Logical. Should the order in Mplus variable statement be the same as in the
blocks. Defaults to ‘TRUE‘.

30 syntax.mplus

estimator Which estimator should be used? All Estimators that are available in Mplus can
be used. Defaults to ‘’ULSMV’‘.

data_full Logical. Are the data considered to be from a full design? Defaults to ‘FALSE‘.

standardized Logical. Should standardized values be computed? Defaults to ‘TRUE‘.

rename_list A list with two vectors to rename the objects in the syntax. Vector one is the
original names, vector two the new names. Defaults to ‘NULL‘.

Details

The syntax currently is able to perform model analysis for the latent utility models (‘’simple’‘ and
‘’lmean’‘; Maydeu-Olivares & Böckenholt, 2005) the unconstrained factor model (‘’uc’‘; Maydeu-
Olivares & Böckenholt, 2005) and the IRT model(‘’irt’‘; Maydeu-Olivares & Brown, 2010). Ad-
ditionally, all model types can be performed with all types of forced choice designs (full, block, par-
tially linked block, linked block). For an overview and review see Jansen and Schulze (2023a,2023b).

The function writes and saves the Mplus input files.

The standard naming procedure ixiy, for the comparison of items x and y, can be changed by spec-
ifying the ‘rename_list‘ argument. The first vector of the schould be the vector of original names,
for example ‘c(’i1i2’,’i1i3’,’i2i3’,’Trait1’,’Trait2’,’Trait3’)‘ the second vector should contain the
new names, for example ‘c(’A01E12’,’A01C13’,’E01C23’,’Agree’,’Extra’,’Consc’)‘.

Outputs —-

Value

Returns a description of the user-specified model. Typically, the model is described using the lavaan
model syntax. See ‘lavaan::model.syntax‘ for more information.

Saves a list Mplus input file at ’input_path’.

References

Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison
and ranking data. Psychological Methods, 10(3), 285-304. doi:10.1037/1082989X.10.3.285

Maydeu-Olivares, A., & Brown, A. (2010). Item response modeling of paired comparison and rank-
ing data. Multivariate Behavioural Research, 45(6), 935-974. doi:10.1080/00273171.2010.531231

Jansen, M. T., & Schulze, R. (2023a). Linear factor analytic Thurstonian forced-choice models:
Current status and issues. Educational and Psychological Measurement.

Jansen, M. T., & Schulze, R. (2023b, in review). The Thurstonian linked block design: Improving
Thurstonian modeling for paired comparison and ranking data.

Examples

read and save data set FC
data(FC)
write.table(FC,paste0(tempdir(),'/','my_data.dat'),quote=FALSE, sep=" ",
col.names = FALSE, row.names = FALSE)

set seed and define blocks

https://doi.org/10.1037/1082-989X.10.3.285
https://doi.org/10.1080/00273171.2010.531231

syntax.mplus 31

set.seed(1)
blocks <- matrix(sample(1:15,15), ncol = 3)

define the item-to-factor relation
itf <- rep(1:3,5)

Create and save Mplus syntax
syntax.mplus(blocks,itf,'lmean',data_path = 'my_data.dat', data_full = TRUE,
input_path = paste0(tempdir(),'/','myFC_model'))

Index

∗ datasets
FC, 6
FC12, 6
FC_raw, 7
FC_scores, 7

blocksort, 2

count.combn, 3
count.xblocks, 4

designA, 5

FC, 6
FC12, 6
FC_raw, 7
FC_scores, 7
fit.correct, 8
fit.lavaan, 9
fit.mplus, 11

get.scores, 13
get.xblocks, 15
get.xblocks.any, 16

i.name, 17

metablock, 18
mod.matrices, 19

pair.combn, 20

rankA, 20
read.mplus, 21
recode, 22
redundancies, 24
reliabiltyFS, 25

sim.data, 26
syntax.lavaan, 27
syntax.mplus, 29

32

	blocksort
	count.combn
	count.xblocks
	designA
	FC
	FC12
	FC_raw
	FC_scores
	fit.correct
	fit.lavaan
	fit.mplus
	get.scores
	get.xblocks
	get.xblocks.any
	i.name
	metablock
	mod.matrices
	pair.combn
	rankA
	read.mplus
	recode
	redundancies
	reliabiltyFS
	sim.data
	syntax.lavaan
	syntax.mplus
	Index

