Package 'TSS.RESTREND'

January 20, 2025

Type Package

Title Time Series Segmentation of Residual Trends

Version 0.3.1

Description

Time Series Segmented Residual Trends is a method for the automated detection of land degradation from remotely sensed vegetation and climate datasets. TSS-RESTREND incorporates aspects of two existing degradation detection methods: RESTREND which is used to control for climate variability, and BFAST which is used to look for structural changes in the ecosystem. The full details of the testing and justification of the TSS-RESTREND method (version 0.1.02) are published in Bur-

rell et al., (2017). <doi:10.1016/j.rse.2017.05.018>. The changes to the method introduced in version 0.2.03 focus on the inclusion of temperature as an additional climate variable. This allows for land degradation assessment in temperature limited drylands. A paper that details this work is currently under review. There are also a number of bug fixes and speed improvements. Version 0.3.0 introduces additional attribution for eCO2, climate change and climate variability the details of which are in press in Burrell et al., (2020). The version under active development and additional example scripts showing how the package can be applied can be found at <https://github.com/ArdenB/TSSRESTREND>.

License GPL-3

LazyData TRUE

Imports stats, graphics, utils, bfast (>= 1.5.7), broom, strucchange, ggplot2, RcppRoll, mblm

Suggests rgl, car

Depends R (>= 3.6.0)

RoxygenNote 7.1.1

NeedsCompilation no

Author Arden Burrell [aut, cre]

Maintainer Arden Burrell <arden.burrell@gmail.com>

Repository CRAN

Date/Publication 2020-08-02 20:10:02 UTC

Contents

TSS.RESTREND-package	2
ACP.calculator	3
AnMaxVI	4
AnnualClim.Cal	5
CHOW	7
climate.accumulator	8
franksCO2	9
plot.TSSRESTREND	10
print.TSSRESTREND	10
rabbitACPtable	11
RESTREND	11
seg.RESTREND	12
seg.VPR	14
segRESTREND	15
segRESTRENDctRF	16
segRESTRENDCTSR	16
segRESTRENDrfTab	17
segVPR	17
segVPRctRF	18
segVPRCTSR	18
segVPRrfTab	19
stdRESTREND	19
stdRESTRENDctRF	20
stdRESTRENDCTSR	20
stdRESTRENDrfTab	21
TSSRattribution	21
TSSRESTREND	23
VPR.BFAST	26
	29

Index

TSS.RESTREND-package TSS.RESTREND: Time Series Segmented RESidual TREND

Description

The TSS-RESTREND package is designed used via the TSS-RESTREND function which calls all the other functions in the correct order to perform a complete TSS-RESTREND analysis. The individual functions have been made callable to allow for greater user control. The version in active development, as well as additional documentation, data and example scripts, see https://github.com/ArdenB/TSSRESTREND.

Details

Version 0.3.0

ACP.calculator

Note

This code is a demostration of the method and not the code used in Burrell et. al., (2017). The original code uses both python and R and was designed for batch processing. For the pixels tested using the TSS.RESTREND package it produces identical results.

Author(s)

Maintainer: Arden Burrell <arden.burrell@gmail.com>

ACP.calculator Antecedental Rainfall (and temperature) Accumulation calculator for the VI Complete Time Series

Description

Takes the Complete Time Series Vegetation Index and a table of every possible accumulation period and offset period for precipitation and temperature(optional). A OLS is calculated 1m for every combination of VI ~ rainfall (and temperature if that is included). if only the VPR is being calculated, this Function preferences those results where slope>0 (increase in rainfall causes an increase in vegetation),returning the rainfall accumulation that has the highest R-squared and a positive slope. If no combination produces a positive slope then the one with the highest R-squared is returned.

Usage

```
ACP.calculator(
  CTSR.VI,
  ACP.table,
  ACT.table = NULL,
  allow.negative = FALSE,
  allowneg.retest = FALSE
)
```

Arguments

CTSR.VI	Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.	
ACP.table	A table of every combination of offset period and accumulation period.for pre- cipitation ACP.table can be calculated using the climate.accumulator.	
ACT.table	A table of every combination of offset period and accumulation period.for tem- perature ACP.table can be calculated using the climate.accumulator.	
allow.negative	If true, will not preference positive slope in either CTSR or VI calculations. default=FALSE is set because negative associations between rainfall and vege- tation in water limited ecosystems is unexpected If temperature data is included then this paramter is forced to TRUE.	
allowneg.retest		
	default=FALSE If temperature data is provided but found to not be significant then a retest is performed. This paramter is to allow negative on re-test.	

Value

A list containing:

summary a Matrix containing "slope", "intercept", "p.value", "R^2.Value", "Break.Height", "Slope.Change" of the lm between Antecedental Rainfall Accumulation (CTSR.RF) and the CTSR.VI

CTSR.precip see CTSR.RF in TSSRESTREND for description

CTSR.osp The offest period for the complete time series rainfall

CTSR.acp The accumulation period for the complete time series rainfall

CTSR.tmp The optimally accumulated CTS temperature

CTSR.tosp The offest period for the complete time series temperature

CTSR.tacp The accumulation period for the complete time series temperature

Examples

```
#Find the data
vi.path <- system.file("extdata", "rabbitVI.csv", package = "TSS.RESTREND", mustWork = TRUE)
in.VI <- read.csv(vi.path)
CTSR.VI <- ts(in.VI, start=c(1982, 1), end=c(2013,12), frequency = 12)
data(rabbitACPtable)
ACPres <- ACP.calculator(CTSR.VI, rabbitACPtable)
print(ACPres$summary)</pre>
```

AnMaxVI Annual max VI Calculator

Description

Takes the monthly time series of the VI and calculates the growing season max VI. In series where the peak occurs in November or December, an interannual growing season is assessed.

Usage

```
AnMaxVI(CTSR.VI)
```

Arguments

CTSR.VI Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.

Value

Max(anu.VI) The annual (Growing season) max VI. See TSSRESTREND

Max.Month The month number where max values were observed (1 for January). if month > 12, the peak was detected in Nov, Dec, Jan. In this case the peak seasonal value and position is used. index(VI.index) the index of the CTSR.VI ts that the anu.VI values occur at. See TSSRESTREND. Note.R indexs from 1 rather than 0.

4

AnnualClim.Cal

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
anmax <- AnMaxVI(stdRESTRENDCTSR$cts.NDVI)
print(anmax)</pre>
```

AnnualClim.Cal

Antecedental accumulation calculator for the annual max VI time series

Description

Takes the Annual Max VI Time Series, the VI.index and tables of every possible accumulation period and offset period for preciptation and Temperature (optional). A OLS is calculated lm for every combination of VI ~ rainfall. If temperature is provided The formula is (VI ~ rainfall + temperature). By defualt, this function preferences those results where slope>0 (increase in rainfall causes an increase in vegetation), returning the rainfall accumulation that has the highest R-squared and a positive slope. If no combinations produce a positive slope then the one with the highest Rsquared is returned. TO DO: non peramtric and other variables

Usage

```
AnnualClim.Cal(
   anu.VI,
   VI.index,
   ACP.table,
   ACT.table = NULL,
   Breakpoint = FALSE,
   allow.negative = FALSE,
   allowneg.retest = FALSE
)
```

Arguments

anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
ACP.table	A table of every combination of offset period and accumulation period.for pre- cipitation ACP.table can be calculated using the climate.accumulator.
ACT.table	A table of every combination of offset period and accumulation period.for tem- perature ACP.table can be calculated using the climate.accumulator.

Breakpoint	Used when calcualting rf.bf and rf.af for ts with breakpoints in the VPR. See CHOW
allow.negative	If true, will not preference positive slope in either CTSR or VI calculations. default=FALSE is set because negative associations between rainfall and vege- tation in water limited ecosystems is unexpected If temperature data is included then this paramter is forced to TRUE.
allowneg.retest	
	default=FALSE If temperature data is provided but found to not be significant then a retest is performed. This paramter is to allow negative on re-test.

Value

summary a Matrix containing "slope", "intercept", "p.value", "R^2.Value", "Break.Height", "Slope.Change" of the 1m of VI ~ rainfall. If Breakpoint, summary covers both rf.b4 and rf.af.

acu.RF (aka. annual.precip)The optimal accumulated rainfall for anu.VI. Mut be a object of class 'ts' and of equal length to anu.VI. It is caculated from the ACP.table by finding the acp and osp that has the largest R^2 value. $lm(anu.VI \sim rainfall)$

acu.TM (aka, annual.temp) The optimal accumulated rainfall for anu.T<. Mut be a object of class 'ts' and of equal length to anu.VI. It is caculated from the ACT.table by finding the tacp and tosp that has the largest R^2 value. $lm(anu.VI \sim rainfall+temperature)$

rf.b4 The optimal acumulated rainfall before the Breakpoint

rf.af The Optimally accumulated rainfall after the Breakpoint

tm.b4 The optimal acumulated temperature before the Breakpoint

tm.af The Optimally accumulated temperature after the Breakpoint

osp The offest period for the annual max time series rainfall

acp The accumulation period for the annual max time series rainfall

tosp The offest period for the annual max time series temperature

tacp The accumulation period for the annual max time series temperature

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
ARC <- AnnualClim.Cal(stdRESTREND$max.NDVI, stdRESTREND$index, stdRESTRENDrfTab)
print(ARC)
## Not run:</pre>
```

```
#Test the complete time series for breakpoints
VPRBFdem <- VPR.BFAST(segVPRCTSR$cts.NDVI, segVPRCTSR$cts.precip)
bp<-as.numeric(VPRBFdem$bkps)</pre>
```

```
#test the significance of the breakpoints
reschow <- CHOW(segVPR$max.NDVI, segVPR$acum.RF, segVPR$index, bp)
brkp <- as.integer(reschow$bp.summary["yr.index"])</pre>
```

CHOW

ARCseg <-AnnualClim.Cal(segVPR\$max.NDVI, segVPR\$index, segVPRrfTab, Breakpoint = brkp)
print(ARCseg)</pre>

End(Not run)

CHOW

Chow test on detected breakpoints

Description

Takes the breakpoints detected by VPR.BFAST, finds the most significant one then tests it in both the residuals and the VPR.

Usage

CHOW(anu.VI, acu.RF, VI.index, breakpoints, acu.TM = NULL, sig = 0.05)

Arguments

anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.RF	The optimal accumulated rainfall for anu.VI. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.VI. if anu.RF=FALSE, it will be calculated from ACP.table using the AnnualClim.Cal
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
breakpoints	vector containing the breakpoints detected by VPR.BFAST (bkps)
acu.TM	The optimal accumulated rainfall for anu.TM. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.TM. if anu.TM=FALSE, it will be calculated from ACT.table using the AnnualClim.Cal
sig	Significance of all the functions. defualt sig=0.05

Value

n.Method The method that the ts should be tested with. TSSRESTREND internal communication.
bp.summary Summary of the most significant breakpoint in the residuals and VPR. see sctest
allbp.index the Annual index of every breakpoint. Used by plot.TSSRESTREND
bpRESID.chow Chow test in the VPR residuals. See sctest
bpVPR.chow Chow test in the VPR. See sctest

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
## Not run:
#Test the complete time series for breakpoints
VPRBFdem <- VPR.BFAST(segVPRCTSR$cts.NDVI, segVPRCTSR$cts.precip)
bp <- as.numeric(VPRBFdem$bkps)
#test the significance of the breakpoints
reschow <- CHOW(segVPR$max.NDVI, segVPR$acum.RF, segVPR$index, bp)
print(reschow)
```

End(Not run)

climate.accumulator Climate Accumulator

Description

Takes the time series of rainfall and returns a rainfall accumulation table of every possible combination of the max accumulation period and the max offset period.

Usage

```
climate.accumulator(
  CTSR.VI,
  clim.data,
  max.acp,
  max.osp,
  temperature = FALSE,
  cliwindow = 0
)
```

Arguments

CTSR.VI	Complete Time Series of Vegetation Index. An object of class 'ts'. Monthly time series of VI values
clim.data	Complete Time Series of monthly rainfall or temperature. An object of class 'ts'. Must have the same end date as CTSR.VI and be longer than the CTSR.VI by more than the max acsumuation period (max.acp) plus the max offset period.(max.ops)
max.acp	The max accumuation period. Must be an integer > 1 .
max.osp	The max offset period. Must be an integer >1
temperature	Bool. If the clim.data being accumulated is temperature, will take a mean not a sum. This makes it easier to comapare regions with different accumulation and offset periods. This is new in v0.3.0. Defualt=FALSE which replicates the behaviour of TSSRESTREND versions <0.2.16.
cliwindow	The size of the window in years to be used for calculating climate change.

8

franksCO2

Value

ACP.table A matrix with ever possible accumuated climate combination

Examples

```
# Define the max accumuulation period
acp <- 12
#Define the max offset period
osp <- 4
rftable <- climate.accumulator(segRESTRENDCTSR$cts.NDVI, segRESTRENDctRF$precip, acp, osp)</pre>
```

franksC02

Franks CO2 Vegetation correction

Description

Adjusts a vegetation time series to account for CO2 fertilisation

Usage

```
franksCO2(CTSR.VI, C4frac, CO2 = FALSE, refyear = 1980)
```

Arguments

CTSR.VI	Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.
C4frac	The fraction of vegetation that follows the C4 photosynthetic pathway, between 0 and 1
C02	A timeseries containg the CO2 concentration. The defualt is CMIP5 RCP8.5
refyear	The Year that acts as a baseline for CO2. All vegetation values will be scaled # to the CO2 concentration of this year. Defulat is 1980. THis function will pick the first value in the selected year,

Value

CTSR.VIadj A version of the CTSR.VI data that has been adjusted to account for CO2

Author(s)

Arden Burrell, aburrell@whrc.org

plot.TSSRESTREND

Description

Produces plots for class TSSRESTREND

Usage

S3 method for class 'TSSRESTREND'
plot(x, plots = "all", sig = 0.05, ...)

Arguments

х	Object of class TSSRESTREND
plots	Defualts to "all", will produce the standard plots, plots can be called individually, "bfast", "chow", "VPR", "anu.VI", "final".
sig	Significance
•••	further arguments passed to the function.

print.TSSRESTREND	Print function for class TSSRESTREND
-------------------	--------------------------------------

Description

print function for objects of class TSSRESTREND

Usage

```
## S3 method for class 'TSSRESTREND'
print(x, ...)
```

Arguments

х	Object of class TSSRESTREND
	further arguments passed to the function.

rabbitACPtable

Description

Rainfall Accumulation Table form a part of the Simpson-sStrzelecki Dunefields bioregion impacted by reduced rabbit predation after the release of RHD.

Usage

```
rabbitACPtable
```

Format

A matrix containing the complete time series of every acp and ofp. See climate.accumulator for details

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

Examples

data(rabbitACPtable)

RESTREND

RESTREND (RESidual TREND)

Description

For ts with no significant breakpoints in the residuals or the VPR. Takes annual VI max and it associated optimal accumulated precipitation

Usage

```
RESTREND(
    anu.VI,
    acu.RF,
    VI.index,
    acu.TM = NULL,
    sig = 0.05,
    retnonsig = FALSE
)
```

Arguments

anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.RF	The optimal accumulated rainfall for anu.VI. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.VI. if anu.RF=FALSE, it will be calculated from ACP.table using the AnnualClim.Cal
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.TM	The optimal accumulated rainfall for anu.TM. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.TM. if anu.TM=FALSE, it will be calculated from ACT.table using the AnnualClim.Cal
sig	Significance of all the functions. defualt sig=0.05
retnonsig	Bool. New in v0.3.0. Allows TSSRESTREND to return change estimates of values that filed the sig component in the residual analysis. defualt FALSE will give the same result as eralier versions.

Value

a list of class TSSRESTREND. See TSSRESTREND for details. Note. if called seperatly from TSS-RESTREND, this list will be incomplete.

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

restrend <- RESTREND(stdRESTREND\$max.NDVI, stdRESTREND\$acc.precip, stdRESTREND\$index)
print(restrend)</pre>

seg.RESTREND

Segmented RESTREND (RESidual TREND)

Description

For ts with a significant breakpoints in the residuals but not in the VPR. Takes annual VI max and it associated optimal accumulated precipitation and regresses it with a dummy variable that is 0 before the breakpoint and 1 after it

seg.RESTREND

Usage

```
seg.RESTREND(
    anu.VI,
    acu.RF,
    VI.index,
    breakpoint,
    acu.TM = NULL,
    sig = 0.05,
    retnonsig = FALSE
)
```

Arguments

anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.RF	The optimal accumulated rainfall for anu.VI. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.VI. if anu.RF=FALSE, it will be calculated from ACP.table using the AnnualClim.Cal
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
breakpoint	The index of the most significant breakpoint as determined using CHOW.
acu.TM	The optimal accumulated rainfall for anu.TM. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.TM. if anu.TM=FALSE, it will be calculated from ACT.table using the AnnualClim.Cal
sig	Significance of all the functions. defualt sig=0.05
retnonsig	Bool. New in v0.3.0. Allows TSSRESTREND to return change estimates of values that filed the sig component in the residual analysis. defualt FALSE will give the same result as eralier versions.

Value

a list of class TSSRESTREND. See TSSRESTREND for details. Note. if called seperatly from TSS-RESTREND, this list will be incomplete.

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
# brkp can be determined using VPR.BFAST and CHOW.
brkp <- as.integer(11)
resu <- seg.RESTREND(segRESTREND$max.NDVI, segRESTREND$acc.precip, segRESTREND$index, brkp)</pre>
```

seg.VPR

Description

For a ts with a significant breakpoints in the the VPR/VCR. This function takes annual VI max, the optimal accumulated precipitation (& temperature) before and after the breakpoint, then caculates the Standard Variance of the climate cariables. Theen an OLS is performed with a dummy variable to repersent the breakpoint (0 before the breakpoint and 1 after it)..

Usage

```
seg.VPR(
   anu.VI,
   acu.RF,
   VI.index,
   breakpoint,
   rf.b4,
   rf.af,
   acu.TM = NULL,
   tm.b4 = NULL,
   tm.af = NULL,
   sig = 0.05,
   retnonsig = FALSE
)
```

Arguments

anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.RF	The optimal accumulated rainfall for anu.VI. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.VI. if anu.RF=FALSE, it will be calculated from ACP.table using the AnnualClim.Cal
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
breakpoint	The index of the most significant breakpoint as determined using CHOW.
rf.b4	If a breakpoint in the VPR is detected this is the optimial accumulated rainfall before the breakpoint. must be the same length as the anu.VI. If ACP.table is provided it will be generated using AnnualClim.Cal
rf.af	If a breakpoint in the VPR is detected this is the optimial accumulated rainfall after the breakpoint. must be the same length as the anu.VI. If ACP.table is provided it will be generated using AnnualClim.Cal
acu.TM	The optimal accumulated rainfall for anu.TM. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.TM. if anu.TM=FALSE, it will be calculated from ACT.table using the AnnualClim.Cal

tm.b4	If a breakpoint in the VCR is detected this is the optimial accumulated tempera- ture before the breakpoint. It must be the same length as the anu.VI. If ACT.table is provided it will be generated using AnnualClim.Cal
tm.af	If a breakpoint in the VCR is detected this is the optimial accumulated tempera- ture after the breakpoint. It must be the same length as the anu.VI. If ACT.table is provided it will be generated using AnnualClim.Cal
sig	Significance of all the functions. defualt sig=0.05
retnonsig	Bool. New in v0.3.0. Allows TSSRESTREND to return change estimates of values that filed the sig component in the residual analysis. defualt FALSE will give the same result as eralier versions.

Value

a list of class TSSRESTREND. See TSSRESTREND for details. Note. if called seperatly from TSS-RESTREND, this list will be incomplete.

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
brkp <- as.integer(24) #calculated using th CHOW (DONTRUN) example
VPRres <- seg.VPR(segVPR$max.NDVI, segVPR$acum.RF, segVPR$index, brkp, segVPR$RFB4, segVPR$RFAF)
print(VPRres)
```

segRESTREND	Data frame	containing the annua	l data for a segRESTRI	END analysis

Description

contains anu.VI, acu.RF, VI.index, rf.b4, rf.af. Range 1982 - 2013. Breakpoint for this pixel is 24 (2005)

Usage

segRESTREND

Format

R data frame

Source

gimms-package

segRESTRENDctRF

Description

contains raw monthly precipitation

Usage

segRESTRENDctRF

Format

R data frame

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

See Also

stdRESTREND for the annual values for the same pixel

segRESTRENDCTSR	Data frame containing the Complete Times Series data for a seg-
	mented RESTREND analysis

Description

contains CTSR.VI and CTSR.RF. See TSSRESTREND. Starts 1/1982 and extend to 12/2013

Usage

segRESTRENDCTSR

Format

R data frame

Source

a single pixel from monthlyComposite

See Also

stdRESTREND for the annual values for the same pixel

segRESTRENDrfTab Precipitation Accumulation Table for the segRESTREND demonstration pixel

Description

Rainfall Accumulation Table

Usage

segRESTRENDrfTab

Format

A matrix containing the complete time series of every acp and ofp. See climate.accumulator for details

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

segVPR

Data frame containing the annual data for a segVPR analysis

Description

contains anu.VI, acu.RF, VI.index, rf.b4, rf.af. Range 1982 - 2013. Breakpoint for this pixel is 24 (2005)

Usage

segVPR

Format

R data frame

Source

gimms-package

segVPRctRF

Description

contains raw monthly precipitation

Usage

segVPRctRF

Format

R data frame

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

See Also

stdRESTREND for the annual values for the same pixel

segVPRCTSR	Data frame containing the Complete Times Series data for a
	segmented VPR (VEGETATION PRECIPTATION RELATIONSHIP) analysis

Description

contains CTSR.VI and CTSR.RF. See TSSRESTREND. Starts 1/1982 and extend to 12/2013

Usage

segVPRCTSR

Format

R data frame

Source

a single pixel from monthlyComposite

See Also

stdRESTREND for the annual values for the same pixel

segVPRrfTab

Description

Rainfall Accumulation Table

Usage

segVPRrfTab

Format

A matrix containing the complete time series of every acp and ofp. See climate.accumulator for details

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

stdRESTREND	Data frame containing the annual data for a standard Restrend anal- ysis
	ysis

Description

contains anu.VI, acu.RF and VI.index. Range 1982 - 2013

Usage

stdRESTREND

Format

R data frame

Source

gimms-package

stdRESTRENDctRF

Description

contains raw monthly precipitation

Usage

stdRESTRENDctRF

Format

R data frame

See Also

stdRESTREND for the annual values for the same pixel

stdRESTRENDCTSR	Data frame containing the Complete Times Series data for a standard
	Restrend analysis

Description

contains CTSR.VI and CTSR.RF. See TSSRESTREND. Starts 1/1982 and extend to 12/2013

Usage

stdRESTRENDCTSR

Format

R data frame

Source

a single pixel from monthlyComposite

See Also

stdRESTREND for the annual values for the same pixel

stdRESTRENDrfTab

Description

Rainfall Accumulation Table

Usage

stdRESTRENDrfTab

Format

A matrix containing the complete time series of every acp and ofp. See climate.accumulator for details

Source

Awap data from http://www.csiro.au/awap/cgi/awap2.pl

TSSRattribution	Vegetation change attribution using the Time Series Segmentation of
	Residual Trends (MAIN FUNCTION)

Description

This is a wrapper function around the TSS-RESTREND main function that dows additional attribution. It measues the Observed vegetation change, land use, climate change and climate varibility. Unlike TSSRESTREND function, this requires both temperature and precitation data fo work.

Usage

```
TSSRattribution(
 CTSR.VI,
 CTSR.RF,
 CTSR.TM,
 max.acp,
 max.osp,
 C4frac = 0,
 sig = 0.05,
 season = "none",
 exclude = 0,
 allow.negative = FALSE,
 allowneg.retest = FALSE,
 h = 0.15,
```

```
returnmodels = FALSE,
AnnualRes = FALSE,
SkipError = TRUE,
retnonsig = TRUE,
splitclim = TRUE,
cliwindow = 20,
CO2 = FALSE,
refyear = 1980
)
```

Arguments

CTSR.VI	Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.	
CTSR.RF	Complete Time Series of Rainfall. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. If ACP.table is provided, CTSR.RF will be automitaclly calculated using the ACP.calculator	
CTSR.TM	Complete Time Series of temperature. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. Default (CTSR.TM=NULL). If ACT.table is provided, CTSR.RF will be automitaclly calculated using the ACP.calculator	
max.acp	The max accumuation period. Must be an integer > 1 .	
max.osp	The max offset period. Must be an integer >1	
C4frac	The fraction of vegetation that follows the C4 photosynthetic pathway, between 0 and 1	
sig	Significance of all the functions. defualt sig=0.05	
season	See bfast . This season value only applies to bfast done using the CTS VPR. if a non VPR adjusted BFAST is performed.a harmonic season is used.	
exclude	A numberic vector containg months excluded from breakpoint detection. This was included to allow sensor transitions to be masked.	
allow.negative	If true, will not preference positive slope in either CTSR or VI calculations. default=FALSE is set because negative associations between rainfall and vege- tation in water limited ecosystems is unexpected If temperature data is included then this paramter is forced to TRUE.	
allowneg.retest		
	default=FALSE If temperature data is provided but found to not be significant then a retest is performed. This paramter is to allow negative on re-test.	
h	See bfast, The.minimal segment size between potentially detected breaks in the trend model given as fraction relative to the sample size (i.e. the minimal number of observations in each segment divided by the total length of the timeseries. Default $h = 0.15$.	
returnmodels	Return all the created models as well as the original data	
AnnualRes	Report results in change per year. Defualt is False. Instead reports total change from the start to the end of the time series.	

22

SkipError	Bool, If TRUE will handle most errors and return a dataframe filled with NA's. Usefull when processing large datasets to stop analysis failing on a single pixel. Use with caution. Defualt=TRUE
retnonsig	Bool. New in v0.3.0. Allows TSSRESTREND to return change estimates of values that filed the sig component in the residual analysis. defualt FALSE will give the same result as eralier versions.
splitclim	Bool, If TRUE Climate will be split into climate change and climate varibility as per Burrell et al., (2020). If FALSE. will just return climate as per IPCC: Chapter 3: Desertification in the IPCC Special Report on Climate Change, De- sertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Defualt=True.
cliwindow	The size of the window in years to be used for calculating climate change.
C02	A timeseries containg the CO2 concentration. The defualt is CMIP5 RCP8.5
refyear	The Year that acts as a baseline for CO2. All vegetation values will be scaled # to the CO2 concentration of this year. Defulat is 1980. THis function will pick the first value in the selected year,

Value

tacp The accumulation period for the annual max time series temperature

Author(s)

Arden Burrell, aburrell@whrc.org

TSSRESTREND

Time Series Segmentation of Residual Trends (MAIN FUNCTION)

Description

Time Series Segmented Residual Trend (TSS.RESTREND) methodology.Takes in a complete monthly time series of a VI and its corrosponding precipitation (and temperature). It then looks looks for breakpoints using the BFAST function. The significance of the breakpoin in the residuals and the VPR is assessed using a Chow test, then, the total time series change is calculated.

Usage

```
TSSRESTREND(
CTSR.VI,
ACP.table = FALSE,
ACT.table = NULL,
CTSR.RF = FALSE,
CTSR.TM = NULL,
anu.VI = FALSE,
acu.RF = FALSE,
acu.TM = NULL,
```

```
VI.index = FALSE,
rf.b4 = FALSE,
rf.af = FALSE,
sig = 0.05,
season = "none",
exclude = 0,
allow.negative = FALSE,
allowneg.retest = FALSE,
h = 0.15,
retnonsig = FALSE
)
```

Arguments

CTSR.VI	Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.
ACP.table	A table of every combination of offset period and accumulation period.for pre- cipitation ACP.table can be calculated using the climate.accumulator.
ACT.table	A table of every combination of offset period and accumulation period.for temperature ACP.table can be calculated using the climate.accumulator.
CTSR.RF	Complete Time Series of Rainfall. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. If ACP.table is provided, CTSR.RF will be automitaclly calculated using the ACP.calculator
CTSR.TM	Complete Time Series of temperature. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. Default (CTSR.TM=NULL). If ACT.table is provided, CTSR.RF will be automitaclly calculated using the ACP.calculator
anu.VI	The annual (Growing season) max VI. Must be a object of class 'ts' without NA's. if anu.VI=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
acu.RF	The optimal accumulated rainfall for anu.VI. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.VI. if anu.RF=FALSE, it will be calculated from ACP.table using the AnnualClim.Cal
acu.TM	The optimal accumulated rainfall for anu.TM. Must be a object of class 'ts' without NA's and be of equal length and temporal range to anu.TM. if anu.TM=FALSE, it will be calculated from ACT.table using the AnnualClim.Cal
VI.index	the index of the CTSR.VI ts that the anu.VI values occur at. Must be the same length as anu.VI. NOTE. R indexs from 1 rather than 0. if VI.index=FALSE, it will be calculated from the CTSR.VI using AnMaxVI.
rf.b4	If a breakpoint in the VPR is detected this is the optimial accumulated rainfall before the breakpoint. must be the same length as the anu.VI. If ACP.table is provided it will be generated using AnnualClim.Cal
rf.af	If a breakpoint in the VPR is detected this is the optimial accumulated rainfall after the breakpoint. must be the same length as the anu.VI. If ACP.table is provided it will be generated using AnnualClim.Cal
sig	Significance of all the functions. defualt sig=0.05

24

season	See bfast. This season value only applies to bfast done using the CTS VPR. if a non VPR adjusted BFAST is performed.a harmonic season is used.
exclude	A numberic vector containg months excluded from breakpoint detection. This was included to allow sensor transitions to be masked.
allow.negative	If true, will not preference positive slope in either CTSR or VI calculations. default=FALSE is set because negative associations between rainfall and vege- tation in water limited ecosystems is unexpected If temperature data is included then this paramter is forced to TRUE.
allowneg.retes	t
	default=FALSE If temperature data is provided but found to not be significant then a retest is performed. This paramter is to allow negative on re-test.
h	See bfast, The.minimal segment size between potentially detected breaks in the trend model given as fraction relative to the sample size (i.e. the minimal number of observations in each segment divided by the total length of the timeseries. Default $h = 0.15$.
retnonsig	Bool. New in v0.3.0. Allows TSSRESTREND to return change estimates of values that filed the sig component in the residual analysis. defualt FALSE will give the same result as eralier versions.

Value

An object of class 'TSSRESTREND' is a list with the following elements:

- *summary* Method The method used to determine total change. (*RESTREND* see RESTREND, *segmented.RESTREND* see seg.RESTREND, *segmented.VPR* see seg.VPR)
 - Total.Change The total significant change. Residual.Change + VPR.HeightChange.
 - Residual.Change The change in the VPR Residuals over the time period
 - **VPR.HeightChange** The change in VI at mean rainfall for a "ts" with a significant breakpoint in the VPR
 - model.p p value of the regression model fitted to the VPR. See 1m
 - residual.p p value of the regression model fitted to the VPR Residuals. See 1m
 - VPRbreak.p the p value associated with the break height. See 1m

bp.year The Year of the most significant breakpoint

- ts.data The Time series used in analysis. See Arguments for description
 - CTSR.VI
 - CTSR.RF
 - anu.VI
 - VI.index
 - acu.RF
 - StdVar.RF see seg.VPR)

ols.summary chow.summary summary of the most significant breakpoint.

chow.ind Summary of every detected breakpoint

OLS.table A matrix containing the coefficients for the CTS.fit, VPR.fit, RESTREND.fit and segVPR.fit

TSSRmodels models of class "lm" lm and class "bfast" bfast generated.

Note

if ACP.table = FALSE, CTSR.RF and acu.RF must be provided as well as rf.b4 and rf.af for 'ts' with a breakpoint in the VPR.

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

See Also

- plot.TSSRESTREND
- print.TSSRESTREND

Examples

```
## Not run:
#To get the latest version of the package (Still in development)
install.packages("devtools")
library("devtools")
install_github("ArdenB/TSSRESTREND", subdir="TSS.RESTREND")
library(TSS.RESTREND)
#Find the path of the rabbitRF.csv dataset, read it in and turn it into a time series
rf.path<- system.file("extdata", "rabbitRF.csv", package = "TSS.RESTREND", mustWork = TRUE)</pre>
in.RF <- read.csv(rf.path)</pre>
rf.data <- ts(in.RF, end=c(2013,12), frequency = 12)</pre>
#Find the path of the rabbitVI.csv dataset and read it in
vi.path <- system.file("extdata", "rabbitVI.csv", package = "TSS.RESTREND", mustWork = TRUE)</pre>
in.VI <- read.csv(vi.path)</pre>
CTSR.VI <- ts(in.VI, start=c(1982, 1), end=c(2013,12), frequency = 12)
#Define the max accumuulation period
max.acp <- 12
#Define the max offset period
max.osp <- 4
#Create a table of every possible precipitation value given the max.acp and max.osp
ACP.table <- climate.accumulator(CTSR.VI, rf.data, max.acp, max.osp)</pre>
results <- TSSRESTREND(CTSR.VI, ACP.table)
print(results)
plot(results, verbose=TRUE)
## End(Not run)
```

VPR.BFAST

VPR.BFAST

Description

takes the Complete VI and optimally accumulated Rainfall (and tmperature if included), calculates a lm between them And then performs a bfast.in the residuals. If BFAST.raw=TRUE, it will perform bfast on the Complete VI ts

Usage

```
VPR.BFAST(
 CTSR.VI,
 CTSR.RF,
 CTSR.TM = NULL,
 season = "none",
 BFAST.raw = FALSE,
 h = 0.15
)
```

Arguments

CTSR.VI	Complete Monthly Time Series of Vegetation Index values. An object of class 'ts' object without NA's.
CTSR.RF	Complete Time Series of Rainfall. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. If ACP.table is provided, CTSR.RF will be automitaclly calculated using the ACP.calculator
CTSR.TM	Complete Time Series of temperature. An object of class 'ts' object without NA's and be the same length and cover the same time range as CTSR.VI. Default (CTSR.TM=NULL).
season	See bfast. This season value only applies to bfast done using the CTS VPR. if a non VPR adjusted BFAST is performed.a harmonic season is used.
BFAST.raw	Defualt = FALSE If TRUE will perform a BFAST (season="harmonic") on the CTSR.VI If FALSE will perform BFAST on the CTSR VPR residuals
h	See bfast, The.minimal segment size between potentially detected breaks in the trend model given as fraction relative to the sample size (i.e. the minimal number of observations in each segment divided by the total length of the timeseries. Default $h = 0.15$.

Value

List of objects:

bkps The index of the Breakpoints detected. If no breakpoints are detected, bkps = FASLE

BFAST.obj See bfast

CTS.Im the 1m of CTSR.VI and CTSR.RF

BFAST.type the type of BFAST done (VPR residuals or on the VI timeseris itself)

Author(s)

Arden Burrell, arden.burrell@unsw.edu.au

Examples

```
## Not run:
VPRBFdem <- VPR.BFAST(segVPRCTSR$cts.NDVI, segVPRCTSR$cts.precip)
print(VPRBFdem)
## End(Not run)
```

28

Index

* datasets rabbitACPtable, 11 segRESTREND, 15 segRESTRENDctRF, 16 segRESTRENDCTSR, 16 segRESTRENDrfTab, 17 segVPR, 17 segVPRctRF, 18 segVPRCTSR, 18 segVPRrfTab, 19 stdRESTREND, 19 stdRESTRENDctRF, 20 stdRESTRENDCTSR, 20 stdRESTRENDrfTab, 21 ACP.calculator, 3, 22, 24, 27 AnMaxVI, 4, 5, 7, 12–14, 24 AnnualClim.Cal, 5, 7, 12–15, 24 bfast, 22, 25, 27 CHOW, 6, 7, 13, 14 climate.accumulator, 3, 5, 8, 11, 17, 19, 21, 24 franksCO2, 9 1m, 3-6, 25, 27 monthlyComposite, 16, 18, 20 plot.TSSRESTREND, 7, 10, 26 print.TSSRESTREND, 10, 26 rabbitACPtable, 11 RESTREND, 11, 25 sctest, 7 seg.RESTREND, 12, 25 seg.VPR, 14, 25 segRESTREND, 15

segRESTRENDctRF, 16 segRESTRENDCTSR, 16 segRESTRENDrfTab, 17 segVPR, 17 segVPRctRF, 18 segVPRctSR, 18 segVPRrfTab, 19 stdRESTREND, 16, 18, 19, 20 stdRESTRENDctRF, 20 stdRESTRENDctRF, 20 stdRESTRENDctSR, 20 stdRESTRENDrfTab, 21 TSS.RESTREND (TSS.RESTREND-package), 2

TSS.RESTREND-package, 2 TSSRattribution, 21 TSSRESTREND, *4*, *12*, *13*, *15*, *16*, *18*, *20*, 23

VPR.BFAST, 7, 26