Package ‘TSDT’

January 20, 2025
Type Package
Title Treatment-Specific Subgroup Detection Tool
Version 1.0.8
Date 2025-01-07

Description Implements a method for identifying subgroups with superior response rela-
tive to the overall sample.

Imports methods, mlbench, hash, party, rpart, survival, survRM2,
stats, modeltools, utils, parallel

LazylL.oad no
License GPL (>=2)

URL https://github.com/E1iLillyCo/CRAN_TSDT

BugReports https://github.com/E1iLillyCo/CRAN_TSDT/issues
Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Chakib Battioui [aut],
Brian Denton [aut, cre],
Lei Shen [ctb],
Eli Lilly and Company [cph]

Maintainer Brian Denton <denton_brian_david@lilly.com>
Repository CRAN
Date/Publication 2025-01-07 22:20:07 UTC

Contents

binary_transform . . . . . . L. L e e e
DOOSIIAD . . . o o o o e e e e e e e e e e e e e
Bootstrap-class . . . . . ...
BootstrapStatistic-class . . . . . . ...
CTree-class . . . . . . . . o i e


https://github.com/EliLillyCo/CRAN_TSDT
https://github.com/EliLillyCo/CRAN_TSDT/issues

Index

Contents

CLIEE_WIAPPET . « . v v v v v i e e e e e e e e e e e e e e e e e e e e 7
CULPOINES . .« © o v v v v et e et e e e e e e e 8
diff_mean_deviance_residuals . . . . . . . . . ... .. 8
diff_quantile_response . . . . . .. .. 9
diff_restricted_mean_survival_time . . . . . . . . .. .. ... 10
diff_survival_time_quantile . . . . . . . ... oo 11
distribution . . . . . .. .. e 12
folds . . . . . . e e e e e e 14
function_parameter_names . . . . . . . . . . ... ..o e 15
GEL_COVATIALES . . . . o v v v it e e e e e e e e e e e e e e e 15
GEt_CULPOINES . . . . . . o i e e e 16
get_suggested_subgroup . . . . . ... e 17
LT . . o e e e e e e e 19
GELLY o i e e e e 20
hazard_ratio . . . . . . . . . . e e e e e e e 22
mean_deviance_residuals . . . . . . .. L L e 22
MEAN_TESPONSE . . . o v o v et v et e e e e e e e e e e e 23
MOB-Class . . . . . . . e e 24
MOD_WIAPPET . . . . v o vt ettt e e e e e e e e e e e e e e e e 25
NA2EMPLY .« . v v o v e e e e e e e e e e e e e e e e e e e e e e e e e 26
PArSE_PAILY . . . o . e e e e e e e e e e e e e 26
PATSE_TPATt . . . . . o e e e e e e e e e e e e e e 28
Partition . . . . ... . e e e 29
permutation . . . . . .. ... L. e e e e 30
quantile_response . . . . . . ... e e e e e e e e e e e e e 31
reset_factor_levels . . . . . . . . 32
part_Nodes . . . ... e e e e e e e 33
TPATt_WIAPPET .« . . o o v v e v e e e e e e e e e e e e e e e e e e e 34
SUDZIOUD . . . v o e e e e e e e e e 35
subsample . . . . e 37
Subsample-class . . . . . . . . L e 38
summary, TSDT-method . . . . . . . . . .. ... . .. . 39
survival_time_quantile . . . . . . ... L. 39
treatment_effect . . . . . . . . .. e e 40
TSDT . . e e e e 41
TSDT-class . . . . . . . . e e e e 47
TSDT_CutpointDistribution-class . . . . . . . . . ... ... ... ... .. 48
TSDT_Sample-class . . . . . . . . . . e 48
unfactor . . . . . L e e e e e e 49
unpack_args . . . ... oo e 50
GoniinTo . . . ... e e e e e e e e e 51
52



binary_transform

binary_transform binary transform

Description

Converts any variable with two possible values to a {0,1} binary variable.

Usage

binary_transform(x)

Arguments

X A variable with two possible values.

Value

A vector with values in {0,1}.

Examples

## Convert a variable that takes values 'A' and 'B' to @ and 1

x <- sample( c('A','B'), size = 10, prob = c(0.5,0.5), replace = TRUE )
print(x);flush.console()

binary_transform( x )

bootstrap bootstrap

Description

Generate a vector of bootstrap samples.

Usage

bootstrap(
X,
trt = NULL,
trt_control = "Control”,
FUN = NULL,
varname = NULL,
varcol = NULL,
arglist = NULL,
n_samples = 1



4 bootstrap

Arguments
X Source data to bootstrap.
trt Treatment variable. (optional)
trt_control Value for treatment control arm. Default value is *Control’.
FUN Function to compute statistic for each bootstrap sample. (optional)
varname Name of variable in x on which to compute FUN. If x has only one column
varname is not needed. If x has more than one column then either varname or
varcol must be specified.
varcol Column index of x on which to compute FUN. If x has only one column varcol
is not needed. If x has more than one column then either varname or varcol must
be specified.
arglist List of additional arguments to pass to FUN.
n_samples Number of bootstrap samples to generate.
Details

Each bootstrap sample will retain the in-bag and out-of-bag data. Optionally, the user may specify a
function to compute a statistic for each in-bag and out-of-bag sample. This function may be a built-
in R function (e.g. mean, median, etc.) or a user-defined function (see Examples). If no statistic
function is provided bootstrap returns a vector of objects of class Bootstrap. If a statistic function
is provided bootstrap returns a vector of objects of class BootstrapStatistic, which in addition to the
in-bag and out-of-bag samples contains the name of the statistic, variable on which the statistic is
computed, and the numerical result of the statistic for each in-bag and out-of-bag sample.

Value

If FUN is NULL returns a vector of objects of class Bootstrap. If FUN is non-NULL returns a
vector of objects of class BootstrapStatistic

See Also

Bootstrap, BootstrapStatistic

Examples

## Generate example data frame containing response and treatment

N <- 20

x <- data.frame( runif( N ) )

names( x ) <- "response”

x$treatment <- factor( sample( c(”"Control”,"Experimental”), size = N,
prob = c(0.8,0.2), replace = TRUE ) )

## Generate two bootstrap samples without regard to treatment
ex1 <- bootstrap( x, n_samples = 2 )

## Generate two bootstrap samples stratified by treatment
ex2 <- bootstrap( x, trt = x$treatment, trt_control = "Control”, n_samples = 2 )



Bootstrap-class

## For each bootstrap sample compute a statistic on the in-bag and out-of-bag data
ex3 <- bootstrap( x, FUN = mean, varname = "response”, n_samples = 2 )

## Specify a user-defined function that takes a numeric vector input and
## returns a numeric result
sort_and_rank <- function( z, rank ){

z <- sort( z )

return( z[rank] )

3
ex4 <- bootstrap( x, FUN = sort_and_rank, arglist = list( rank =1 ),
varname = "response”, n_samples = 2 )
Bootstrap-class Bootstrap

Description

Bootstrap is a container class for bootstrap samples.

Value

Object of class Bootstrap

Slots

inbag In-bag bootstrap sample.
oob Out-of-bag bootstrap sample.

See Also

BootstrapStatistic, bootstrap

BootstrapStatistic-class
BootstrapStatistic

Description

BootstrapStatistic is a container class for bootstrap samples augmented with a computed statistic.

Value

Object of class BootstrapStatistic



6 CTree-class

Slots

statname The name of a (possibly user-defined) statistic to compute on the bootstrap sample.
arglist A list of arguments passed to the function referenced by statname.

variable The name of the variable on which to compute statname.

inbag_stat The value of statname for the in-bag bootstrapped sample.

oob_stat The value of statname for the out-of-bag bootstrapped sample.

See Also

Bootstrap, bootstrap

CTree-class CTree

Description

CTree is a container class for trees created by ctree.

Value

An object of class CTree

Slots

tree An object of class BinaryTree-class produced by ctree.
data Training data.

parameters Control parameters

See Also

ctree, BinaryTree-class



ctree_wrapper

ctree_wrapper ctree_wrapper

Description

A wrapper function to ctree

Usage

ctree_wrapper(response, covariates = NULL, tree_builder_parameters = list())

Arguments
response Response variable to use in ctree model.
covariates Covariates to use in ctree model.

tree_builder_parameters
A named list of parameters to pass to ctree.

Value

An object of class CTree

See Also

ctree

Examples

requireNamespace( "party"”, quietly = TRUE )
## From party::ctree() examples:
set.seed(290875)

airq <- subset(airquality, !is.na(Ozone))

## Provide response and covariates to fit ctree
ex1 <- ctree_wrapper( response = airq$0zone,
covariates = subset( airqg, select = -Ozone ) )

## Pass list of control parameters. Note that ctree takes a parameter called
## 'controls' (with an 's'), rather than 'control' as in rpart.
ex2 <- ctree_wrapper( response = airq$0zone,
covariates = subset( airqg, select = -Ozone ),
tree_builder_parameters = list( controls =
party::ctree_control( maxdepth =2 ) ) )



8 diff mean_deviance_residuals

cutpoints Get distribution of cutpoints for subgroups.

Description

Get distribution of cutpoints for subgroups.

Usage

cutpoints(object, subgroup = NULL, subsub = NULL)

Arguments
object An object of class TSDT
subgroup A string decscription of a subgroup (optional)
subsub A string description of a sub-subgroup (optional)
Value

A vector containing the subgroup cutpoints.

See Also
TSDT

diff_mean_deviance_residuals
diff_mean_deviance_residuals

Description

Computes the difference in the mean of deviance residuals function across treatment groups.

Usage

diff_mean_deviance_residuals(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters



diff_quantile_response 9

Details

The deviance residual is the observed number of events at time t minus the expected number of
events at time t. See documentation for mean_deviance_residuals (linked below) for more details.
A smaller value for the deviance residual is preferred when the event under study is an undesirable
event — i.e. it is preferred to observe fewer events than predicted by the survival model. A two-arm
TSDT model computes the mean deviance residual in the treatment arm minus the mean deviance
residual in the control arm. The treatment arm is superior to the control arm when the mean de-
viance residual in the treatment arm is less than the mean deviance residual in the control arm. Thus,
the appropriate value for desirable_response is desirable_response = ’decreasing’. If the event un-
der study is a desirable event the appropriate value for desirable_response is desirable_response =
’increasing’. It is assumed most survival models will model an undesirable event, so the default
value for desirable_response when the scoring_function is diff_mean_deviance_residuals is desir-
able_response = ’decreasing’. Note this differs from all other TSDT configurations, for which the
default value for desirable_response is desirable_response = ’increasing’.

Value

Difference in mean deviance residuals across treatment arms.

See Also

mean_deviance_residuals, Surv, coxph, survreg, residuals.coxph, residuals.survreg, TSDT

diff_quantile_response
diff_quantile_response

Description

Return the difference across treatment arms of a specified response quantile

Usage

diff_quantile_response(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data
scoring_function_parameters

named list of scoring function control parameters
Details

This function returns the difference across treatment arms of the response quantile associated with
a specified percentile. The default behavior is to return the difference in medians.



10 diff restricted_mean_survival_time

Value

A difference of response quantiles across treatment arms

See Also

TSDT, quantile_response, quantile

Examples

## Generate example data containing response and treatment

N <- 100

y = runif( min = @, max = 20, n = N )

df <- as.data.frame( y )

names( df ) <- "y"

df$trt <- sample( c('Control’', 'Experimental'), size = N, prob = c(0.4,0.6),
replace = TRUE )

## Default behavior is to return the median
diff_quantile_response( df )

# should match previous result from quantile_response
median( df$y[df$trt!="Control'] ) - median( df$y[df$trt=="'Control'] )

## Get Q1 response
diff_quantile_response( df, scoring_function_parameters = list( percentile = 0.25 ) )

# should match previous result from quantile_response
quantile( df$y[df$trt!="'Control'], ©0.25 ) - quantile( df$y[df$trt=="Control'], 0.25 )

## Get max response
diff_quantile_response( df, scoring_function_parameters = list( percentile =1 ) )

# should match previous result from quantile_response
max( df$y[df$trt!="Control'] ) - max( df$y[df$trt=="'Control'] )

diff_restricted_mean_survival_time
diff _restricted_mean_survival_time

Description

Computes the difference in restricted mean survival time across treatment arms.

Usage

diff_restricted_mean_survival_time(data, scoring_function_parameters = NULL)



diff_survival_time_quantile 11

Arguments
data data.frame containing response data
scoring_function_parameters
named list of scoring function control parameters
Details
Computes the restricted mean survival time for the treatment and control arms and returns the
difference.
Value

Difference in restricted mean survival time across treatment arms.

See Also
TSDT, Surv, rmst2

diff_survival_time_quantile
diff _survival_time_quantile

Description

Computes the difference in the quantile of a survival function across treatment groups.

Usage

diff_survival_time_quantile(data, scoring_function_parameters = NULL)

Arguments
data data.frame containing response data
scoring_function_parameters
named list of scoring function control parameters
Details
Computes the survival function quantile for the treatment and control arms and returns the differ-
ence.
Value

A difference in a survival time quantile across treatment arms.

See Also

TSDT, survival_time_quantile, Surv, coxph, survfit, survreg, predict.coxph, predict.survreg



12 distribution

Examples

requireNamespace( "survival”, quiet = TRUE )
N <- 200
df <- data.frame( y = survival::Surv( runif( min = @, max = 20, n = N ),
sample( c(0,1), size = N, prob = ¢c(0.2,0.8), replace = TRUE ) ),
trt = sample( c('Control', 'Experimental'), size = N,
prob = c(0.4,0.6), replace = TRUE ) )

## Compute difference in median survival time between Experimental arm and

## Control arm. It is not actually necessary to provide the value for the

## time_var, trt_var, trt_control, and percentile parameters because these

## values are all equal to their default values. The value are explicitly

## provided here simply for clarity.

ex1 <- diff_survival_time_quantile( data = df,
scoring_function_parameters = list( trt_var = "trt",
trt_control = "Control”,
percentile = 0.50 ) )

## Compute difference in Q1 survival time. In this example the default value
## for all scoring function parameters are used except percentile, which here
## takes the value 0.25.
ex2 <- diff_survival_time_quantile( data = df,
scoring_function_parameters = list( percentile = 0.25 ) )

distribution distribution

Description

Returns the distribution of values used to compute TSDT summary statistics.

Usage

distribution(object, statistic, subgroup = NULL, subsub = NULL)

Arguments
object An object of class TSDT
statistic The desired statistic distribution
subgroup The desired subgroup
subsub A subset of the subgroup
Details

This function returns the distribution of all values used to compute summary statistics for superior
subgroups identified by the TSDT algorithm. The summary statistics returned for a TSDT object
include the mean subgroup size, mean response value, and median value of the scoring function.
These statistics reported seperately for in-bag and out-of-bag data sets, and also stratified by treat-
ment arm. This function can also provide the distribution of all cutpoints for a numeric splitting
variable in a subgroup definition.



distribution

Value

A vector containing the observed values for the specified subgroup

See Also

TSDT, summary-methods

Examples

set.seed(0)

N <- 200

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6),
replace = TRUE )

X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(@,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )

covariates <- data.frame( X1 )

covariates$X2 <- X2

covariates$X3 <- factor( X3 )

covariates$X4 <- factor( X4 )

## Create a TSDT object

ex1 <- TSDT( response = continuous_response,
trt = trt, trt_control = 'Control’',
covariates = covariates[,1:4],
inbag_score_margin = 0,
desirable_response = "increasing”,
oob_score_margin = 0,
min_subgroup_n_control = 5,
min_subgroup_n_trt = 5,
n_sample = 5 )

## Show summary statistics
summary ( ex1 )

## Get the number of subjects in each superior in-bag subgroup
distribution( ex1, statistic = 'Inbag_Subgroup_Size' )

## Get the vector of subgroup sample sizes for a particular subgroup
distribution( ex1, statistic = 'Inbag_Subgroup_Size',
subgroup = "XT1<xxxxx & XI1>=xxxxx' )

## Get the observed cutpoints for the numeric splitting variables in a subgroup
distribution( ex1, statistic = 'Cutpoints', subgroup = 'XT1<xxxxx & XI1>=xxxxx' )

## If the subgroup definition has more than one numeric splitting variable you

## can retrieve the numeric cutpoints for the splitting variables individually

distribution( ex1, statistic = 'Cutpoints', subgroup = 'X1<xxxxx & X1>=xxxxx',
subsub = 'X1<xxxxx' )

distribution( ex1, statistic = 'Cutpoints', subgroup = 'XT1<xxxxx & XT1>=xxxxx',

13



14 folds

subsub = "XT1>=xxxxx' )

## Valid statistic names come from the column names in the summary output. If
## you are uncertain what the possible statistic values could be, you can pass
## any arbitrary string as the statistic and an error message is returned

## listing valid statistic values.

## Not run:

distribution( ex1, statistic = 'Invalid_Statistic' )

## End(Not run)

folds folds

Description

Partition data into k folds for k-fold cross-validation. Adds a variable fold_id to the data.frame.

Usage
folds(x, k)

Arguments

X data.frame to partition into k folds for k-fold cross-validation.

k Number of folds to use in cross-validation

Value

A list of partitions of the vector x.

Examples

# Generate random example data

N <- 200

ID <- 1:N

continuous_response = runif( min =
X1 <= runif( N, min = @, max = 1)
X2 <= runif( N, min = @, max = 1
X3 <- sample( c(@,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )

@, max = 20, n = N)

~

df <- data.frame( ID )

names( df ) <- "ID"

df$response <- continuous_response
df$x1 <- X1

df$x2 <- X2

df$X3 <- factor( X3 )

df$Xx4 <- factor( X4 )



function_parameter_names

## Partition data into 5 folds
ex1 <- folds( df, k =5)

## Partition data into 10 folds
ex2 <- folds( df, k = 10 )

15

function_parameter_names
function_parameter_names

Description

Returns a character vector of the specified function’s parameters

Usage

function_parameter_names(FUN)

Arguments

FUN The name of a function

Value

A character vector of function parameter names

Examples

## Define a function
example_function <- function( parml, arg2, x, bool = FALSE ){
cat( "This is an example function.\n" )

}

## Return the function parameter names
function_parameter_names( example_function )

get_covariates get_covariates

Description

Returns the covariate variables in the in-bag or out-of-bag data.

Usage

get_covariates(data, scoring_function_parameters)



16 get_cutpoints

Arguments

data A data.frame containing in-bag or out-of-bag data
scoring_function_parameters

A list of named elements containing control parameters and other data required
by the scoring function

Details

If the user provides a covariate_vars parameter in the list of scoring_function_parameters this func-
tion will return the variables specified by that parameter. If the user specifies a covariate_cols pa-
rameter in the list of scoring_function_parameters the function returns the columns in data indexed
by that parameter. Otherwise, NULL is returned.

Value

A data.frame of covariates.

See Also

get_y, get_trt

Examples

## Create an example data.frame

df <- data.frame( y <- 1:5)

names( df ) <- "y"

df$time <- 10:14

df$time2 <- 20:24

df$event <- sample( c(@:1), size = 5, replace = TRUE )

df$trt <- sample( c("Control”,"Treatment”), size = 5, replace = TRUE )
df$x1 <= runif( n =5)

df$x2 <- LETTERS[1:5]

## Select the covariate variables by name
get_covariates( df, scoring_function_parameters = list( covariate_vars = c("x1","x2") ) )

## Select the covariate variables by column index
get_covariates( df, scoring_function_parameters = list( covariate_cols = c(6:7) ) )

get_cutpoints get_cutpoints

Description

Accessor method for cutpoints slot in TSDT objects.



get_suggested_subgroup 17
Usage
get_cutpoints(.0Object, subgroup, subsub = NULL)

## S4 method for signature 'TSDT_CutpointDistribution'’
get_cutpoints(.0Object, subgroup = character, subsub = NULL)

## S4 method for signature 'TSDT'
get_cutpoints(.0Object, subgroup = character, subsub = NULL)

Arguments

.Object A TSDT object.

subgroup The anonymized subgroup.

subsub A particular component of the subgroup to retrieve.
Details

The summary results from TSDT provide a set of anonymized’ subgroups in a form similar to
’X1<xxxxx’. The variable X1 may have been selected as a splitting variable in several boot-
strapped samples. The exact numerical cutpoint for X1 could vary from one sample to the next.
The get_cutpoints method returns all the numerical cutpoints associated with this subgroup. If the
subgroup is a compound subgroup defined on more than one spliting variable the user can specify
the *subsub’ parameter to get the cutpoints associated with a particular component of the subgroup.

Examples

## Not run:

example( TSDT )

## You can access the cutpoints slot of a TSDT object directly
ex2@cutpoints

## You can also use the accessor method
get_cutpoints( ex2@cutpoints, subgroup = 'X1<xxxxx' )

## Retrieving a compound subgroup defined on multiple splits
get_cutpoints( ex2, subgroup = 'XI<xxxxx & XI1>=xxxxx' )

## Retrieving a single component from the compound subgroup
get_cutpoints( ex2, subgroup = 'XI1<xxxxx & XI1>=xxxxx', subsub = 'X1>=xxxxx' )

## End(Not run)

get_suggested_subgroup
get_suggested_subgroup




18 get_suggested_subgroup

Description

Get a string definition of the suggested subgroup definition.

Usage

get_suggested_subgroup(anonymized_subgroup, suggested_cutoff, anon = "xxxxx"

Arguments

anonymized_subgroup
A string containing the the anonymized subgroup.

suggested_cutoff
A string containing the suggested cutoff.

anon The anonymization string. By default this is *xxxxx’.

Details

Subgroups are reported in an anonymized fashion — e.g. a subgroup defined on a variable X1
could be reported as X1<xxxxx, 'Xxxxx’ is a string used to represent an exact numeric cutoff.
For each anonymized subgroup, the distribution of exact numeric cutpoints is retained across all
bootrstrapped samples. TSDT then provides a suggested cutoff got each anonymized subgroup. By
default, this suggested cutoff is the median of the observed cutpoints. Note that this anonymization
applies only to numeric splitting variables. Categorical splitting variables are not anonymized.

Examples

set.seed(0)

N <- 200

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control’', 'Experimental'), size = N, prob = c(0.4,0.6), replace = TRUE )
X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(@,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )
covariates <- data.frame( X1 )

covariates$X2 <- X2

covariates$X3 <- factor( X3 )

covariates$Xx4 <- factor( X4 )

## Create a TSDT object

ex1 <- TSDT( response = continuous_response,
trt = trt, trt_control = 'Control’,
covariates = covariates[,1:4],
inbag_score_margin = 0,
desirable_response = "increasing”,
oob_score_margin = 0,
min_subgroup_n_control = 10,
min_subgroup_n_trt = 20,
maxdepth = 2,
rootcompete = 2 )



get_trt 19

## Show summary statistics
summary( ex1 )

## Get the anonymized subgroup defined on X1
anonymized_subgroup <- as.character( ex1@superior_subgroups$Subgroup[2] )

## Get the suggested cutoff for this subgroup
suggested_cutoff <- as.character( ex1@superior_subgroups$Suggested_Cutoff[2] )

## Get the suggested subgroup
get_suggested_subgroup( anonymized_subgroup = anonymized_subgroup,
suggested_cutoff = suggested_cutoff )

get_trt get_trt

Description

Returns the treatment variable in the in-bag or out-of-bag data.

Usage

get_trt(data, scoring_function_parameters = NULL)

Arguments

data A data.frame containing in-bag or out-of-bag data

scoring_function_parameters
A list of named elements containing control parameters and other data required

by the scoring function
Details

If the user provides a trt_var parameter in the list of scoring_function_parameters this function will
return the variable specified by that parameter. If the user specifies a trt_col parameter in the list
of scoring_function_parameters the function returns the column in data indexed by that parameter.
Lastly, if data contains a variable called ’trt’ that variable is returned. Otherwise, NULL is returned.

Value

Treatment variable (if available) or NULL.

See Also

get_y, get_covariates



20 get y

Examples

## Create an example data.frame

df <- data.frame( y <- 1:5)

names( df ) <- "y"

df$time <- 10:14

df$time2 <- 20:24

df$event <- sample( c(@:1), size = 5, replace = TRUE )

df$trt <- sample( c("Control”,"Treatment”), size = 5, replace = TRUE )
df$x1 <= runif( n =5)

df$x2 <- LETTERS[1:5]

## Select the trt variable by name

get_trt( df, scoring_function_parameters = list( trt_var "trt' ) )

## Select the trt variable by column index
get_trt( df, scoring_function_parameters = list( trt_col =5 ) )

## The default behavior works for this example because the trt variable in df
## is actually called trt.
get_trt( df )

## If the user's data does not contain a variable called

## 'y' the default behavior will fail. In this case the user must explicitly

## identify the 'y' variable via one of the two previous methods.

names( df )[which(names(df) == "trt")] <- "treatment” # rename the 'trt' variable to 'treatment'

get_trt( df ) # now default behavior fails (i.e. returns NULL)

get_trt( df, scoring_function_parameters = list( trt_var = 'treatment' ) ) # this works
get_y ger_y
Description

Returns the response variable in the in-bag or out-of-bag data.

Usage

get_y(data, scoring_function_parameters = NULL)

Arguments

data A data.frame containing in-bag or out-of-bag data

scoring_function_parameters
A list of named elements containing control parameters and other data required
by the scoring function



get y 21

Details

If the user provides a y_var parameter in the list of scoring_function_parameters this function will
return the variable specified by that parameter. If the user specifies a y_col parameter in the list
of scoring_function_parameters the function returns the column in data indexed by that parameter.
Lastly, if data contains a variable called ’y’ that variable is returned. Otherwise, NULL is returned.

Value

Response variable (if present) or NULL.

See Also

get_trt, get_covariates

Examples

## Create an example data.frame

df <- data.frame( y <- 1:5)

names( df ) <- "y"

df$time <- 10:14

df$time2 <- 20:24

df$event <- sample( c(0:1), size = 5, replace = TRUE )

df$trt <- sample( c("Control”,"Treatment”), size = 5, replace = TRUE )
df$x1 <- runif( n=5)

df$x2 <- LETTERS[1:5]

## Select the y variable by name

get_y( df, scoring_function_parameters = list( y_var = 'y' ) )
## Select the y variable by column index
get_y( df, scoring_function_parameters = list( y_col =1 ) )

## The default behavior works for this example because the y variable in df
## is actually called y.

get_y( df )

## If the user's data does not contain a variable called

## 'y' the default behavior will fail. In this case the user must explicitly

## identify the 'y' variable via one of the two previous methods.

names( df )[which(names(df) == "y")] <- "response” # rename the 'y' variable to 'response’

get_y( df ) # now default behavior fails (i.e. returns NULL)

get_y( df, scoring_function_parameters = list( y_var = 'response' ) ) # this works



22 mean_deviance_residuals

hazard_ratio hazard_ratio

Description

Computes the hazard ratio across treatment arms using a CoxPH model.

Usage

hazard_ratio(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters

Value

Hazard ratio across treatment arms.

See Also
TSDT, Surv, coxph,

mean_deviance_residuals
mean_deviance_residuals

Description

Computes the mean of the deviance residuals from a survival model

Usage

mean_deviance_residuals(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters



mean_response 23

Details

Computes the mean of the deviance residuals from a survival model. The deviance residual at time
t is computed as the observed number of events at time t minus the expected number of events at
time t (see Therneau, et. al. linked below). The expected number of events is the number of events
predicted by the survival model. If the event under study is an undesirable event (as would likely be
the case in a clinical context), then a smaller value for the deviance residual is desirable — i.e. it is
desirable to observe fewer events than expected from the survival model. In this case the appropriate
value for desirable_response in TSDT is desirable_response = ’decreasing’. If the event under study
is desirable then the appropriate value for desirable_response is desirable_response = ’increasing’.
It is assumed that most survival models are modeling an undesirable event. Therefore, when the
user specifies mean_deviance_residual or diff_mean_deviance_residual, the default value for desir-
able_repsonse is changed to ’decreasing’, unless the user explicitly provides desirable_response =
’increasing’. Note this differs from all other TSDT configurations, for which the default value for
desirable_response is desirable_response = ’increasing’.

Value

Mean of deviance residuals

References
Therneau, T.M., Grambsch, P.M., and Fleming, T.R. (1990). Martingale-based residuals for survival
models. Biometrika, 77(1), 147-160. doi:10.1093/biomet/77.1.147

See Also
TSDT, Surv, coxph, survfit

mean_response mean_response

Description

Compute the mean response.

Usage

mean_response(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters


https://doi.org/10.1093/biomet/77.1.147

24 MOB-class

Details

This function will compute the mean of the response variable. If a value for trt_arm is provided
the mean in that treatment arm only will be computed (and the trt variable must also be provided),
otherwise the mean for all data passed to the function will be computed.

Value

The mean of the provided response variable.

See Also

TSDT, treatment_effect

Examples

N <- 50

data <- data.frame( continuous_response = numeric(N),
trt = character(N) )

data$continuous_response <- runif( min = @, max = 20, n = N )
data$trt <- sample( c('Control', 'Experimental'), size =N, prob =c(0.4,0.6), replace = TRUE )

## Compute mean response for all data
mean_response( data, scoring_function_parameters = list( y_var = 'continuous_response' ) )
mean( data$continuous_response ) # Function return value should match this value

## Compute mean response for Experimental treatment arm only

scoring_function_parameters <- list( y_var = 'continuous_response', trt_arm = 'Experimental' )
mean_response( data, scoring_function_parameters = scoring_function_parameters )

# Function return value should match this value

mean( data$continuous_response[ data$trt == 'Experimental' ] )
MOB-class MOB
Description

MORB is a container class for trees created by mob.

Value

An object of class MOB

Slots

tree An object of class BinaryTree-class produced by mob.
data Training data.

parameters Control parameters



mob_wrapper 25

See Also

mob, BinaryTree-class

mob_wrapper mob_wrapper

Description

Wrapper function for mob.

Usage

mob_wrapper (
response,
x = NULL,
z = NULL,
covariates = NULL,
tree_builder_parameters = list()

)
Arguments

response Response variable to use in mob model.

X Covariates passed to model in mob. mob uses fits the formula y ~ x1 + ... + xk
| zI1 + ... + zI where the variables before the | are passed to the model and the
variables after the | are used for partitioning. x represents the x variables. See
mob help page for more information.

z Covariates used to parition the mob model. mob uses fits the formula y ~ x1 +
.. + xk | z1 + ... + zl where the variables before the | are passed to the model
and the variables after the | are used for partitioning. z represents the z variables.
See mob help page for more information.

covariates An alias for z.

tree_builder_parameters
A named list of parameters to pass to mob.

Value

An object of class MOB

See Also

mob



26

parse_party

na2empty na2empty

Description

Replace all instances of NA in character variable with empty string.

Usage

na2empty (x)

Arguments

X A character vector.

Value

A character vector with NA values replaced with empty string.

See Also

unfactor

Examples

## Create character variable with missing values
ex1 <- c( 'A', NA, 'B', NA, 'C', NA)
ex1

## Replace NAs with empty string
ex1 <- na2empty( ex1 )
ex1

parse_party parse_party

Description

Parse output from ctree() and mob() functions in party package.

Usage

parse_party(tree, data = NULL, include_subgroups = FALSE, digits

= NULL)



parse_party 27

Arguments
tree An object of class BinaryTree or mob resulting from a call to the ctree() or mob()
function.
data data.frame containing covariates used to create tree.

include_subgroups
A logical value indicating whether or not to include a string representation of
the subgroups in the results. Defaults to FALSE.

digits Number of digits for rounding.

Details

Collects text output from party::ctree() or party::mob(), parses the splits, and populates a data.frame
with the relevant data.

Value

A data.frame containing a parsed tree.

See Also

ctree, mob

Examples

requireNamespace( "party”, quietly = TRUE )
requireNamespace( "modeltools”, quietly = TRUE )
## From party::ctree() examples:
set.seed(290875)
## regression
airq <- subset(airquality, !is.na(Ozone))
airct <- party::ctree(Ozone ~ ., data = airq,
controls = party::ctree_control(maxsurrogate = 3))

## Parse the results into a new data.frame
ex1 <- parse_party( airct )
ex1

## From party::mob() examples:

data("BostonHousing", package = "mlbench")

## and transform variables appropriately (for a linear regression)

BostonHousing$lstat <- log(BostonHousing$lstat)

BostonHousing$rm <- BostonHousing$rm”2

## as well as partitioning variables (for fluctuation testing)

BostonHousing$chas <- factor( BostonHousing$chas, levels = 0:1,
labels = c("no”, "yes") )

BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE)

## partition the linear regression model medv ~ lstat + rm
## with respect to all remaining variables:
fmBH <- party::mob( medv ~ lstat + rm | zn + indus + chas + nox + age +



28 parse_rpart

dis + rad + tax + crim + b + ptratio,
control = party::mob_control(minsplit = 40), data = BostonHousing,
model = modeltools::linearModel )

## Parse the results into a new data.frame
ex2 <- parse_party( fmBH )
ex2

parse_rpart parse_rpart

Description

Extract splits from an rpart.object returned from a call to rpart().

Usage

parse_rpart(tree, include_subgroups = FALSE)

Arguments

tree An rpart.object returned from call to rpart().

include_subgroups
A logical value indicating whether or not to include a string representation of
the subgroups in the results. Defaults to FALSE.

Details

This function takes as its input an rpart.object returned from a call to rpart. It parses this rpart.object
using rpart_nodes() and returns the splits in the tree. The data returned include the NodeID of the
node to split, the NodeID of that node’s parent, the NodelID of that nodes left child and right child,
the number of observations in that node, the variable used in the split, the data type for the splitting
variable, the logic indicating which observations will go to the node’s left child, the value of the
splitting variable at which the split ocurrs, the mean response value of the node, and (optionally)
the string representation of the node’s subgroup. A node’s subgroup is defined by the sequence of
splits from the root to that node.

Value

A data.frame containing a parsed tree.

See Also

rpart_nodes, rpart, rpart.object



partition

Examples

requireNamespace( "rpart”, quietly = TRUE )

## Generate example data containing response, treatment, and covariates

N <- 50

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6),
replace = TRUE )

X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(0,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )

## Fit an rpart model

fit <- rpart::rpart( continuous_response ~ trt + X1 + X2 + X3 + X4,
control = rpart::rpart.control( maxdepth = 3L ) )

fit

## Parse the results into a new data.frame
ex1 <- parse_rpart( fit, include_subgroups = TRUE )
ex1

29

partition partition

Description

Partitions a vector x into n groups of roughly equal size.

Usage

partition(x, n)

Arguments

X Vector to partition.

n Number of (roughly) equally-sized groups
Value

A list of partitions of the vector x.

Examples

x <= 1:10
partition( x, 3 )



30 permutation

permutation permutation

Description

Permute response, treatment, or response for one treatment arm only.

Usage

permutation(response = NULL, trt = NULL, permute_arm = NULL)

Arguments
response Response (or other) variable(s) to be permuted. This can be a data.frame of
multiple variables (e.g. a data.frame of covariates or a multivariate response).
trt Treatment variable.
permute_arm reatment arm to permute.
Details

If a response variable is provided and treatment is not provided the response variable is permuted.
If a treatment variable is provided and response is not provided the treatment variable is permuted.

If a response variable and treatment variable and permute are provided the response variable is
permuted only for the treatment arm indicated by permute_arm.

If a response variable and treatment variable are provided, but permute_arm

Value

If permuting response or treatment, returns vector of permuted response or treatment. If permuting
response and treatment, returns a list of permuted response and treatment.

Examples

N <- 20

x <- data.frame( 1:N )

names( x ) <- "response”

x$trt <- factor( c( rep( "Experimental”, 9 ), rep( "Control”, N -9 ) ) )
x$time <- x$response

x$event <- 0:1

## Permute treatment variable
ex1 <- x[,c("response”,"trt")]
ex1$permuted_trt <- permutation( trt = ex1$trt )

## Permute response variable
ex2 <- x[,c("response”,"trt")]
ex2$permuted_response <- permutation( response = ex2$%$response )



quantile_response 31

## Permute the response for treatment arm only

ex3 <- x[,c("response”,"trt")]

permuted3 <- permutation( response = ex3$response, trt = ex3$trt, permute_arm = "Experimental” )
names( permuted3 ) <- paste( "permuted_", names(permuted3), sep = "" )

ex3 <- chind( ex3, permuted3 )

## Permute response and treatment together

ex4 <- x[,c("response”,"trt")]

permutation_list4 <- permutation( response = ex4$response, trt = ex4$trt )
ex4$permuted_response <- permutation_list4$response

ex4$permuted_trt <- permutation_list4$trt

## Permute a survival response for treatment arm only

ex5 <= x[,c("time”,"event”,"trt")]

permuted5 <- permutation( response = ex5[,c("time”,"event”")], trt = ex5%trt,
permute_arm = "Experimental” )

names( permuted5 ) <- paste( "permuted_”, names(permuted5), sep = "" )
ex5 <- cbind( ex5, permuted5 )

## Permute a survival outcome and treatment together

ex6 <- x[,c("time"”,"event”,"trt")]

permutation_list6 <- permutation( response = ex6[,c("time”,"event”)], trt = ex6$trt )
ex6$permuted_time <- permutation_list6$response$time

ex6$permuted_event <- permutation_list6$response$event

quantile_response quantile_response

Description

Return the specified quantile of the response distribution.

Usage

quantile_response(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters
Details

This function returns the response quantiles associated with a specified percentile. The default
behavior is to return the median — i.e. 50th-percentile.



32 reset_factor_levels

Value

A quantile of the response variable.

See Also

TSDT, diff_quantile_response, quantile

Examples

## Generate example data containing response and treatment

N <- 100

y = runif( min = @, max = 20, n = N )

df <- as.data.frame( y )

names( df ) <- "y"

df$trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6),
replace = TRUE )

## Default behavior is to return the median
quantile_response( df )
median( df$y ) # should match previous result from quantile_response

## Get Q1 response
quantile_response( df, scoring_function_parameters = list( percentile = 0.25 ) )
quantile( df$y, 0.25 ) # should match previous result from quantile_response

## Get max response
quantile_response( df, scoring_function_parameters = list( percentile =1 ) )
max( df$y ) # should match previous result from quantile_response

reset_factor_levels reset_factor_levels

Description

Reset the list of levels associated with a factor variable.

Usage

reset_factor_levels(data)

Arguments

data A data.frame containing factor variables.

Details

After subsetting a factor variable some factor levels that were previously present may be lost. This
is particularly true for relatively rare factor levels. This function resets the list of factor levels to
include only the levels currently present.



rpart_nodes 33

Value

A data.frame with factor variable that now have reset levels.

Examples

ex1 = as.factor( c( rep('A', 3), rep('B',3), rep('C',3) ) )

## The levels associated with the factor variable include the letters A, B, C
ex1l # Levels are A, B, C

## If the last three observations are dropped the value C no longer occurs
## in the data, but the list of associated factor levels still contains C.
## This mismatch between the data and the list of factor levels may cause
## problems, particularly for algorithms that iterate over the factor levels.

ex1 <- ex1[1:6]
ex1 # Levels are still A, B, C, but the data contains only A and B

## If the factor levels are reset the data and list of levels will once again
## be consistent

ex1 <- reset_factor_levels( ex1 )

ex1 # Levels now contain only A and B, which is consistent with data

rpart_nodes rpart_nodes

Description

Extract node information from an rpart.object.

Usage

rpart_nodes(tree)

Arguments

tree An rpart.object returned from call to rpart().

Details

Information about nodes and splits returned in an rpart.object is contained in strings printed to the
console. This function parses those strings and populates a data.frame.

Value

A data.frame containing the nodes of a parsed tree.

See Also

rpart, rpart.object



34

Examples

requireNamespace( "rpart”, quietly =

## Generate example data containing response, treatment, and covariates

N <- 50
continuous_response =

runif( min = @,
binary_response <- sample( c('A','B'), size

TRUE )

max = 20, n =N )

N, prob = ¢(0.5,0.5),

TRUE )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6),

replace =
replace = TRUE )
X1 <= runif( N, min = @, max = 1)
X2 <= runif( N, min = @, max = 1)
X3 <- sample( c(@,1), size = N, prob
X4 <- sample( c('A','B','C'), size =
#i#t

= ¢(0.2,0.8), replace = TRUE )
N, prob = ¢(0.6,0.3,0.1), replace

Fit an rpart model with continuous response (i.e. regression)

fitl <- rpart::rpart( continuous_response ~ trt + X1 + X2 + X3 + X4 )

fitl

## Parse the results into a new data.

ex1 <- rpart_nodes( fitl )
ex1

frame

## Fit an rpart model with binary response (i.e. classification)
fit2 <- rpart::rpart( binary_response ~ trt + X1 + X2 + X3 + X4 )

fit2

Ipart_wrapper

TRUE )

rpart_wrapper

rpart_wrapper

Description

A wrapper function to rpart.

Usage

rpart_wrapper (
response,
response_type = NULL,
covariates = NULL,
tree_builder_parameters =
prune = FALSE

NULL,

Arguments

response
response_type

covariates

Response variable to use in rpart model.
Class of response variable.

Covariates to use in rpart model.



subgroup 35

tree_builder_parameters

A named list of parameters to pass to rpart. This includes all input parameters
that rpart can take.

prune Logical variable indicating whether the tree shold be pruned to the subtree with
the smallest cross-validation error. Defaults to FALSE.

Details

This function provides a wrapper to rpart that provides a convenient interface for specifying the
response variable and covariates for the rpart model. The user may indicate whether the tree should
be pruned to the size that yields the smallest cross-validation error. An rpart.object is returned.

Value

An object of class rpart.

See Also

rpart, rpart.object, Surv

Examples

## Generate example data containing response, treatment, and covariates

N <- 100

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6), replace = TRUE )
X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(@,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )
covariates <- data.frame( trt )

names( covariates ) <- "trt"

covariates$X1l <- X1

covariates$X2 <- X2

covariates$X3 <- X3

covariates$x4 <- X4

## Fit an rpart model

ex1 <- rpart_wrapper( response = continuous_response, covariates = covariates )
ex1

subgroup subgroup

Description

Subset a user-provided data.frame according to the subgroup specified by a node in a tree.

Usage

subgroup(splits, node, xdata, ydata = xdata)



36 subgroup

Arguments
splits A data.frame of splits returned from a call to parse_rpart().
node The NodelD of the node defining the desired split.
xdata The data.frame of covariates to subset according to the subgroup definition.
ydata The associated vector of response values to subset according to the subgroup
definition. (optional)
Details

After the splits from an rpart.object are extracted by a call to parse_rpart(), the extracted splits
define a subgroup for each node. This subgroup can be used to subset a user-provided data.frame.
This function takes as its input a data.frame of splits obtained from a call to parse_rpart(), a NodeID
indicating which node specifies the desired subgroup, a data.frame of covariates to subset, and
(optionally) the associated response data to subset. If only xdata is specified by the user, the subset
of xdata implied by the subgroup will be returned. If xdata and ydata are provided by the user,
the subset of ydata will be returned (xdata is still required from the user because the subsetting is
computed on the covariate values even when the data returned to the user are from ydata).

Value

A data.frame containing the data consistent with the specified subgroup.

See Also

parse_rpart, rpart, rpart.object

Examples

requireNamespace( "rpart”, quietly = TRUE )

## Generate example data containing response, treatment, and covariates

N <- 20

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6), replace = TRUE )
X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(0,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )

covariates <- data.frame( trt )
names( covariates ) <- "trt"
covariates$X1l <- X1
covariates$x2 <- X2
covariates$X3 <- X3
covariates$x4 <- X4

## Fit an rpart model
fit <- rpart::rpart( continuous_response ~ trt + X1 + X2 + X3 + X4 )

## Return parsed splits with subgroups



subsample 37

splits1 <- parse_rpart( fit, include_subgroups = TRUE )
splitsi

## Subset covariate data according to split for NodelID 3
ex1 <- subgroup( splits = splitsl, node = 3, xdata = covariates )
ex1

## Subset response data according to split for NodeID 3
ex2 <- subgroup( splits = splits1, node = 3, xdata = covariates, ydata = continuous_response )
ex2

subsample subsample

Description

Generate a vector of subsamples.

Usage

subsample(
X,
trt = NULL,
trt_control = "Control”,
training_fraction = NULL,
validation_fraction = NULL,
test_fraction = NULL,
n_samples = 1

)
Arguments
X <Source data to subsample.
trt Treatment variable. (optional)
trt_control Value for treatment control arm. Defaulte value is *Control’.

training_fraction

Fraction of source data to include in training subsample.
validation_fraction

Fraction of source data to include in validation subsample.

test_fraction Fraction of source data to include in test subsample.

n_samples Number of subsamples to generate.

Details

Each subsample will contain training, validation, and test data in proportions specified by the user.
If a treatment variable is supplied the ratio of treatments will be preserved as closely as possible.



38 Subsample-class

Value

Vector of objects of class Subsample.

See Also

Subsample

Examples

## Generate example data frame containing response and treatment

N <- 50

x <- data.frame( runif( N ) )

names( x ) <- "response”

x$treatment <- factor( sample( c("Control”,"Experimental”), size = N,
prob = c(0.8,0.2), replace = TRUE ) )

## Generate two subsamples

ex1 <- subsample( x,
training_fraction =
test_fraction = 0.1,
n_samples = 2 )

0.9,

## Generate two subsamples preserving treatment ratio
ex2 <- subsample( x,
trt = x$treatment,
trt_control = "Control”,
training_fraction = 0.7,
validation_fraction = 0.2,
test_fraction = 0.1,
n_samples = 2 )

Subsample-class Subsample

Description

Subsmaple is a container class for subsamples.

Value

Object of class

Slots

training Training data.
validation Validation data.

test Test data.



summary, TSD'T-method

See Also

subsample

39

summary, TSDT-method Summary function for class TSDT.

Description

Summary function for class TSDT.

Usage
## S4 method for signature 'TSDT'
summary(object)

Arguments

object An object of class TSDT.

Value

A data.frame containing the superior subgroups identified by TSDT.

See Also
TSDT

survival_time_quantile
survival_time_quantile

Description

Computes the quantile of a survival function.

Usage

survival_time_quantile(data, scoring_function_parameters = NULL)

Arguments

data data.frame containing response data
scoring_function_parameters
named list of scoring function control parameters



40 treatment_effect

Details

Computes the quantile of a survival function. The user specifies the percentile associated with
the desired quantile in scoring_function_parameters. The default is percentile = 0.50, which re-
turns the median survival. A user may also specify a value for the trt_arm parameter in scor-
ing_function_parameters to compute the survival quantile for only one arm.

Value

A quantile of the response survival time.

See Also

TSDT, diff_survival_time_quantile, Surv, coxph, survfit, survreg, quantile.survfit, predict.coxph,
predict.survreg

Examples

N <- 200

time <- runif( min = @, max = 20, n = N )

event <- sample( c(0,1), size = N, prob = ¢c(0.2,0.8), replace = TRUE )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6), replace = TRUE )
df <- data.frame( y = survival::Surv( time, event ), trt = trt )

## Compute median survival time in Experimental treatment arm.

ex1 <- survival_time_quantile( data = df,
scoring_function_parameters = list( trt_var = "trt",
trt_arm = "Experimental”,
percentile = 0.50 ) )

## Compute Q1 survival time for all data. It is necessary here to explicitly
## specify trt = NULL because a variable called trt exists in df. The default
## behavior is to use this variable as the treatment variable. To override
## the default behavior trt = NULL is included in scoring_function_parameters.
ex2 <- survival_time_quantile( data = df,
scoring_function_parameters = list( trt = NULL, percentile = 0.25) )

treatment_effect treatment_effect

Description

Compute treatment effect as mean( treatment response ) - mean( control response )

Usage

treatment_effect(data, scoring_function_parameters = NULL)



TSDT 41

Arguments

data data.frame containing response data

scoring_function_parameters
named list of scoring function control parameters

Details

This function will compute the treatment for the response. The treatment effect is computed as the
difference in means between the non-control treatment arm and the control treatment arm. The user
must provide the treatment variable as well as the control value.

Value

The difference in mean response across treatment arms.

See Also

TSDT, mean_response

Examples
N <- 100

df <- data.frame( continuous_response = numeric(N),
trt = integer(N) )

df$continuous_response <- runif( min = @, max = 20, n = N )
df$trt <- sample( c(0,1), size = N, prob = c(0.4,0.6), replace = TRUE )

# Compute the treatment effect
treatment_effect( df, list( y_var = 'continuous_response', trt_control =0 ) )

# Function return value should match this value
mean( df$continuous_response[df$trt == 1] ) - mean( df$continuous_response[df$trt == 0] )

TSDT Treatment-Specific Subgroup Detection Tool

Description

Implements a method for identifying subgroups with superior response relative to the overall sam-
ple.



42

Usage

TSDT(

response = NULL,
response_type = NULL,
survival_model = "kaplan-meier”,
percentile = 0.5,

tree_builder = "rpart”,
tree_builder_parameters = list(),
covariates,

trt = NULL,

trt_control = 0,

permute_method = NULL,
permute_arm = NULL,

n_samples = 1,

desirable_response = NULL,
sampling_method = "bootstrap”,
inbag_proportion = 0.5,
scoring_function = NULL,

scoring_function_parameters = list(),

inbag_score_margin = 0,
oob_score_margin = 0,

eps = le-05,
min_subgroup_n_control = NULL,
min_subgroup_n_trt = NULL,
min_subgroup_n_oob_control = NULL,
min_subgroup_n_oob_trt = NULL,
maxdepth = 30,

rootcompete = 0,

competedepth = 1,

strength_cutpoints = c(@0.1, 0.2, 0.3),

n_permutations = 0,
n_cpu =1,
trace = FALSE

Arguments

response Response variable.

response_type

survival_model

percentile

TSDT

Data type of response. Must be one of binary, continuous, survival. If none
provided it will be inferred from the data type of response. (optional)

The model to use for a survival response. Defaults to kaplan-meier. Other pos-

sible values are: coxph, fleming-harrington, fh2, weibull, exponential, gaussian,

logistic, lognormal, and loglogistic. (optional)

For a two-arm study this parameter specifies a test for the difference in response

percentile across the two treatment arms. For a continuous response the de-
fault value for percentile is NULL. Instead, the difference in mean response is
computed by default for a continuous response. If the user provides a values of



TSDT

tree_builder

43

percentile = 0.50 then the difference in median response would be computed.
For a survival outcome, the default value for percentile is 0.50, which computes
the difference in median survival.

The algorithm to use for building the trees. Defaults to rpart. Other possible
values include ctree and mob (both from the party package). (optional)

tree_builder_parameters

covariates
trt

trt_control

permute_method

permute_arm

n_samples

A named list of parameters to pass to the tree-builder. The default tree-builder
is rpart. In this case, the parameters passed here would be rpart parameters.
Examples might include parameters such as control, cost, weights, na.action,
etc. Consult the rpart documentation (or the documentation of your selected
tree-builder) for a complete list. (optional)

A data.frame containing the covariates.
Treatment variable. Only needed if there are two treatment arms. (optional)

Value for treatment control arm. This parameter is relevant only for two-arm
data. (defaults to 0)

Indicates whether only the response variable should be permuted in the com-
putation of the p-value, or the response and treatment variable should be per-
muted together (preserving the treatment-response correlation, but eliminating
the correlation with the covariates), or the response variable should be permuted
within one treatment arm only. The parameter values for these permutation
schemes are (respectively) simple, permute_response_and_treatment, and per-
mute_response_one_arm. See permute_arm to specify which treatment arm
is to be permuted. The default permutation scheme is response_one_arm. As
noted in the documentation for the permute_arm parameter is to permute the
non-control arm. Taken together, this implies the default permutation method
for p-value computation is to permute the response in the non-control arm only.
For one-arm data only the response is permuted. (optional)

Which treatment arm should be permuted? Defaults to the experimental treat-
ment arm —i.e. the treatment arm not matching the value provided in trt_control.
For one-arm data only the response is permuted. (optional)

Number of TSDT_Samples to draw.

desirable_response

sampling_method

Direction of desirable response. Valid values are ’increasing’ or ’decreasing’.
The default value is ’increasing’. It is important to note that although the param-
eter is called desirable_response, it actually refers to the desirable direction of
scoring function values. In most cases there is a positive correlation bewteen the
response and scoring function values — i.e. as the response increases the scor-
ing function also increases. One instance for which this relationship between
response and scoring function may not hold is when mean_deviance_residuals
or diff_mean_deviance_residuals is used as the scoring function. See the help
for these scorings function for further details.

Sampling method used to populate samples for TSDT in-bag and out-of-bag
data. Must be either bootstrap or subsample. Default is bootstrap.

inbag_proportion

The proportion of the data to use as the in-bag subset when sampling_method is
subsample.



TSDT

scoring_function
Scoring function to compute treatment effect. Links to several possible scoring
functions are provided in the See Also section below.

scoring_function_parameters
Parameters passed to the scoring function. As an example, the scoring func-
tion quantile_response takes a parameter "percentile” which indicates the de-
sired percentile of the response distribution. Thus, if the median response is
desired, this parameter could be set as follows: scoring_function_parameters
= list( percentile = 0.50 ). Most of the built-in scoring functions have sensi-
ble defaults for the scoring function parameters so it is not necessary to specify
them explicitly in the call to TSDT. But this parameter could be very useful for
user-defined custom scoring functions. (optional)

inbag_score_margin
Required margin above overall mean for a subgroup to be considered superior.
If a subgroup mean must be 10% larger than the overall subgroup mean to be
superior then inbag_score_margin = 0.10. If desirable_response = "decreasing"
then inbag_score_margin should be negative or zero.

oob_score_margin
Similar to inbag_score_margin but for classifying out-of-bag subgroups as su-
perior.

eps Tolerance value for floating-point precision. The default is 1E-5. (optional)

min_subgroup_n_control
Minimum number of Control arm observations in an in-bag subgroup. A value
greater than or equal to one will be interpreted as the required minimum number
of observations. A value between zero and one will be interpreted as a pro-
portion of the in-bag Control observations. For a bootstrapped in-bag sample
the default for this parameter is 10 of Control observations in the overall sam-
ple. For an in-bag sample obtained via subsampling the default value is the
inbag_proportion times 10 number of Control observations in the overall sam-
ple.

min_subgroup_n_trt
Minimum number of Experimental arm observations in an in-bag subgroup. A
value greater than or equal to one will be interpreted as the required minimum
number of observations. A value between zero and one will be interpreted as a
proportion of the in-bag Experimental observations. For a bootstrapped in-bag
sample the default for this parameter is 10 number of Experimental observations
in the overall sample. For an in-bag sample obtained via subsampling the de-
fault value is the inbag_proportion times 10% of the number of Experimental
observations in the overall sample.

min_subgroup_n_oob_control
Minimum number of Control arm observations in an out-of-bag subgroup. A
value greater than or equal to one will be interpreted as the required minimum
number of observations. A value between zero and one will be interpreted
as a proportion of the out-of-bag Control observations. For a bootstrapped
out-of-bag sample the default for this parameter is exp(-1)*10% of the num-
ber of Control observations in the overall sample. For an out-of-bag sample
obtained via subsampling the default value is the inbag_proportion times (1-
inbag_proportion)*10 Control observations in the overall sample.



TSDT 45

min_subgroup_n_oob_trt

Minimum number of Experimental arm observations in an out-of-bag subgroup.
A value greater than or equal to one will be interpreted as the required minimum
number of observations. A value between zero and one will be interpreted as
a proportion of the out-of-bag Experimental observations. For a bootstrapped
out-of-bag sample the default for this parameter is exp(-1)*10% of the number
of Experimental observations in the overall sample. For an out-of-bag sam-
ple obtained via subsampling the default value is the inbag_proportion times
(1-inbag_proportion)*10% of the number of Experimental observations in the
overall sample.

maxdepth Maximum depth of trees.
rootcompete Number of competitor splits to retain for root node split.

competedepth Depth of competitor split trees (defaults to 1)
strength_cutpoints

Cutpoints for permuted p-values to classify a subgroup as Strong, Moderate,
Weak, or Not Confirmed. The default cutpoints are 0.10, 0.20, and 0.30 for
Strong, Moderate, and Weak subgroups, respectively. (optional)

n_permutations Number of permutations to compute for adjusted p-value. Defaults to zero (no
p-value computation). If p-values are desired, it is recommended to use at least
500 permutations.

n_cpu Number of CPUs to use. Defaults to 1.
trace Report number of permutations computed as algorithm proceeds.
Details

The Treatment-Specific Subgroup Detection Tool (TSDT) creates several bootstrapped samples
from the input data. For each of these bootstrapped samples the in-bag and out-of-bag data are
retained. A tree is grown on the in-bag data of each bootstrapped sample using the response vari-
able and supplied covariates. Each split in the tree defines a subgroup. The overall mean response
for the in-bag data is computed as well as the mean response within each subgroup. Additionally,
a scoring function is provided. Example scoring functions might be mean response, difference in
mean response between treatment arms (i.e. treatment effect), or a quantile of the response (e.g.
median), or a difference in quantiles across treatment arms. Sensible defaults are provided given
the data type of the response and treatment variables. The user can also specify a custom scor-
ing function. The value of the scoring function is computed for the overall in-bag data and each
subgroup. Subgroups with mean response larger than the overall in-bag mean response and a mean
scoring function value larger than the overall in-bag scoring function value are identified as superior
subgroups. This definition of a superior subgroup assumes a larger value of the response variable
is desirable. If a smaller value of the response is desirable then subgroups with mean response and
mean scoring function smaller than the overall in-bag mean are superior. The same computation of
overall and subgroup mean response and mean scoring function are done for the out-of-bag data.
This is repeated for all bootstrapped samples. Measures of internal and external consistency are
then computed. Internal consistency is computed for each subgroup that is identified as superior
in one of the in-bag samples. Internal consistency for each of these subgroups is the fraction of
bootstrapped samples where that subgroup is identified as superior in the in-bag data. External
consistency is also defined only for subgroups that are identified as superior in at least one of the
in-bag samples. For each of these subgroups, external consistency is the number of bootstrapped



46 TSDT

samples where the subgroup is defined as superior in the in-bag and out-of-bag data divided by the
number of bootstrapped samples where the subgroup is identified as superior in the in-bag data.
The internal and external consistency results are returned for each subgroup that identified as su-
perior in the in-bag data of at least one bootstrapped sample. A score for the overall strength of
each subgroup is computed as the product of the internal and external consistency. Optionally, a
permutation-adjusted p-value for the strength of each subgroup can be computed. Based on this
p-value subgroups are classified as strong, moderate, weak, or not confirmed. A suggested cutoff
for each subgroup is also provided. This is helpful because two subgroups defined on the same
continuous splitting variable but with different cutpoints are considered equivalent. That is, one
subgroup X1<0.6 and another X1<0.7 would be considered equivalent and listed in the results as
Xl<xxxxx. (Note that X1<0.6 and X1>=0.7 would be considered distinct subgroups and listed in
the output as X1<xxxxx and X1>=xxxxx, respectively.) So if a subgroup listed in the output as
X1<xxxxx could actually represent many different numeric values for xxxxx it is helpful to provide
a final suggestion for the cutpoint. The algorithm retains all the numeric values and uses the me-
dian as the suggested cutoff. The user can also request the vector of numeric cutpoints and use any
function of their choosing to compute a suggested cutoff.

Value

An object of class TSDT

Author(s)

Brian Denton <denton_brian_david@lilly.com>, Chakib Battioui <battioui_chakib@lilly.com>,
Lei Shen <shen_lei@lilly.com>

References

Battioui, C., Shen, L., Ruberg, S., (2014). A Resampling-based Ensemble Tree Method to Identify
Patient Subgroups with Enhanced Treatment Effect. JSM proceedings, 2014

Shen, L., Battioui, C., Ding, Y., (2013). Chapter "A Framework of Statistical methods for Identifica-
tion of Subgroups with Differential Treatment Effects in Randomized Trials" in the book "Applied
Statistics in Biomedicine and Clinical Trials Design"

See Also

mean_response, quantile_response, diff_quantile_response, treatment_effect, survival_time_quantile,
diff_survival_time_quantile, mean_deviance_residuals, diff_mean_deviance_residuals, diff_restricted_mean_survival_time,
TSDT, rpart, ctree, mob

Examples

## Create example data for constructing TSDT object

N <- 200

continuous_response = runif( min = @, max = 20, n = N )

trt <- sample( c('Control', 'Experimental'), size = N, prob = c(0.4,0.6), replace = TRUE )
X1 <= runif( N, min = @, max = 1)

X2 <= runif( N, min = @, max = 1)

X3 <- sample( c(@,1), size = N, prob = c(0.2,0.8), replace = TRUE )

X4 <- sample( c('A','B','C'), size = N, prob = c(0.6,0.3,0.1), replace = TRUE )



TSDT-class

covariates <- data.frame( X1 )
covariates$x2 <- X2

covariates$X3 <- factor( X3 )
covariates$X4 <- factor( X4 )

## In the following examples n_samples and n_permutations are set to small
## values so the examples complete quickly. The intent here is to provide
## a small functional example to demonstrate the structure of the output. In
## a real-world use of TSDT these values should be at least 100 and 500,

## respectively.

## Single-arm TSDT
ex1 <- TSDT( response = continuous_response,
covariates = covariates[,1:4],
inbag_score_margin = 0,
desirable_response = "increasing”,
n_samples = 5, ## use value >= 100 in real world application
n_permutations = 5, ## use value >= 500 in real world application
rootcompete = 1,
maxdepth = 2 )

## Two-arm TSDT
ex2 <- TSDT( response = continuous_response,
trt = trt, trt_control = 'Control’,
covariates = covariates[,1:4],
inbag_score_margin = 0,
desirable_response = "increasing”,
oob_score_margin = 0,
min_subgroup_n_control = 10,
min_subgroup_n_trt = 20,
maxdepth = 2,
rootcompete = 1,
n_samples = 5, ## use value >= 100 in real world application
n_permutations = 5 ) ## use value >= 500 in real world application

47

TSDT-class TSDT

Description

TSDT is a container class for TSDT samples and metadata.

Value

Object of class TSDT

Slots

parameters List of parameters used in construction of TSDT samples.



48 TSDT_Sample-class

samples Vector of TSDT_Sample objects.

superior_subgroups data.frame containing summary statistics for superior subgroups
cutpoints An object of class TSDT_CutpointDistribution.

distributions A list of distributions of TSDT statistics.

See Also
TSDT, TSDT_Sample, TSDT_CutpointDistribution

TSDT_CutpointDistribution-class
TSDT_CutpointDistribution

Description

Implementation of TSDT_CutpointDistribution class. This class continuous split variable. If the
subgroup contains more than one split variable a distribution of numeric cutpoints is collected for
each continuous split variable in the subgroup definition.

Value

Object of class TSDT_CutpointDistribution

Slots

Cutpoints An object of class hash-class

See Also
TSDT, hash

TSDT_Sample-class TSDT _Sample

Description

TSDT_Sample is a container class containing the in-bag and out-of-bag data from a subsampled or
bootstrapped dataset. This container class also contains a data.frame containing the parsed tree that
is fit on the in-bag data.

Value

Object of class TSDT_Sample



unfactor 49

Slots

inbag A data.frame containing in-bag data
oob A data.frame containing out-of-bag data

subgroups A data.frame containing a parsed tree

See Also
TSDT

unfactor unfactor

Description

Convert the factor columns of a data.frame to character or numeric.

Usage

unfactor(data)

Arguments

data A factor variable or a data.frame containing factor variables.

Details

If the levels of a factor variable in data represent numeric values the variable will be converted to a
numeric data type, otherwise it is converted to a character data type.

Value

A vector or data.frame no longer containing any factor variables.

See Also

na2empty

Examples

## Generate example data.frame of factors with factor levels of numeric,

## character and mixed data types.

N <- 20

ex1 <- data.frame( factor( sample( c(@,1,NA), size = N, prob = c(0.4,0.3,0.3),
replace = TRUE ) ) )

n ”

names( ex1 ) <- "num

ex1$char <- factor( sample( c("Control”,"Experimental”, NA ), size = N,
prob = c(0.4,0.3,0.3), replace = TRUE ) )

ex1$mixed <- factor( sample( c(10,'A' ,NA), size = N, prob = c(0.4,0.3,0.3),



50

replace = TRUE ) )

## Initially the data type of all variables in

ex1

class(
class(
class(

## Now
ex2 <-
ex2

## The
class(
class(
class(

## The

ex1$num )  #factor
ex1$char ) #factor
ex1$mixed ) #factor

convert all factor variables to numeric
unfactor( ex1 )

data types are now numeric or character
ex2$num )  # numeric

ex2$char ) # character

ex2$mixed ) # character

<NA> notation for missing factor values

## character can be changed to an empty string

## the

function na2empty().

ex2%$char <- na2empty( ex2$char )
ex2$mixed <- nalempty( ex2$mixed )

ex2

unpack_args

ex1 is factor

or character

that have been converted to
for easier reading by use of

unpack_args unpack_args

Description

Assign the elements of a named list in current environment.

Usage

unpack_args(args)

Arguments

args

Details

List of entities to be assigned.

This function takes a list of named entities and assigns each element of the list to its name in the
calling environment.

See Also

assign, parent.frame



%nin% 51

Examples

## Create a list of named elements
arglist <- list( one = 1, two = 2, color = "blue” )

## The variables one, two, and color do not exist in the current environment

IsO

## Unpack the elements in arglist
unpack_args( arglist )

## Now the variables one, two, and color do exist in the current environment

IsO

one

%nin% Yonin%

Description

Negation of the built-in %in% operator. %nin% is a short-hand for !( a %in% b ).

Usage

a %nin% b

Arguments
a Any R object for which the binary operator %in% is defined. This would include
many built-in R primitives.
b Any R object for which the binary operator %in% is defined. This would include
many built-in R primitives.
See Also
%in%
Examples

# 4 is not an element in {5,6,73}.
4 %nin% 5:7 # Evaluates to TRUE

# 4 is an element in {4,5,6,73}.
4 %nin% 4:7 # Evaluates to FALSE



Index

%in%, 51
%nin%, 51

assign, 50

binary_transform, 3
BinaryTree-class, 6, 24, 25
Bootstrap, 4, 6
bootstrap, 3, 5, 6
Bootstrap-class, 5
BootstrapStatistic, 4, 5
BootstrapStatistic-class, 5

coxph, 9, 11,22, 23, 40
CTree, 7
ctree, 6, 7,27, 46
CTree-class, 6
ctree_wrapper, 7
cutpoints, 8

diff_mean_deviance_residuals, 8, 46
diff_quantile_response, 9, 32, 46
diff_restricted_mean_survival_time, 10,

46

diff_survival_time_quantile, 11, 40, 46

distribution, 12

folds, 14
function_parameter_names, 15

get_covariates, 15, 19, 21
get_cutpoints, 16
get_cutpoints, ANY-method
(get_cutpoints), 16
get_cutpoints,TSDT-method
(get_cutpoints), 16

hash, 48
hash-class, 48
hazard_ratio, 22

mean_deviance_residuals, 9, 22, 46
mean_response, 23, 41, 46

MOB, 25

mob, 24, 25, 27, 46

MOB-class, 24

mob_wrapper, 25

na2empty, 26, 49

parent.frame, 50
parse_party, 26
parse_rpart, 28, 36
partition, 29
permutation, 30
predict.coxph, /1,40
predict.survreg, 11,40

quantile, 10, 32
quantile.survfit, 40
quantile_response, 10, 31, 46

reset_factor_levels, 32
residuals.coxph, 9
residuals.survreg, 9
rmst2, 11
rpart, 28, 33, 35, 36, 46
rpart.object, 28, 33, 35, 36
rpart_nodes, 28, 33
rpart_wrapper, 34

subgroup, 35
Subsample, 38

get_cutpoints,TSDT_CutpointDistribution-methosubsample, 37, 39

(get_cutpoints), 16
get_suggested_subgroup, 17
get_trt, 16, 19, 21
get_y, 16, 19, 20

Subsample-class, 38
summary, TSDT-method, 39
summary-methods, 13
Surv, 9, 11,22, 23, 35,40



INDEX

survfit, 11,23, 40
survival_time_quantile, 11, 39, 46
survreg, 9, 11,40

treatment_effect, 24, 40, 46

TSDT, 8-11, 13, 22-24, 32, 3941, 41, 46, 48,
49

TSDT-class, 47

TSDT_CutpointDistribution, 48

TSDT_CutpointDistribution-class, 48

TSDT_Sample, 48

TSDT_Sample-class, 48

unfactor, 26, 49
unpack_args, 50

53



	binary_transform
	bootstrap
	Bootstrap-class
	BootstrapStatistic-class
	CTree-class
	ctree_wrapper
	cutpoints
	diff_mean_deviance_residuals
	diff_quantile_response
	diff_restricted_mean_survival_time
	diff_survival_time_quantile
	distribution
	folds
	function_parameter_names
	get_covariates
	get_cutpoints
	get_suggested_subgroup
	get_trt
	get_y
	hazard_ratio
	mean_deviance_residuals
	mean_response
	MOB-class
	mob_wrapper
	na2empty
	parse_party
	parse_rpart
	partition
	permutation
	quantile_response
	reset_factor_levels
	rpart_nodes
	rpart_wrapper
	subgroup
	subsample
	Subsample-class
	summary,TSDT-method
	survival_time_quantile
	treatment_effect
	TSDT
	TSDT-class
	TSDT_CutpointDistribution-class
	TSDT_Sample-class
	unfactor
	unpack_args
	nin
	Index

