Package ‘TNC’

January 20, 2025

Type Package
Title Temporal Network Centrality (TNC) Measures
Version 0.1.0

Description
Node centrality measures for temporal networks. Available measures are temporal degree central-
ity, temporal closeness centrality and temporal betweenness centrality defined by Kim and An-
derson (2012) <doi:10.1103/PhysRevE.85.026107>. Applying the REN algo-
rithm by Hanke and Foraita (2017) <doi:10.1186/s12859-017-1677-x> when calculating the cen-
trality measures keeps the computational running time linear in the number of graph snap-
shots. Further, all methods can run in parallel up to the number of nodes in the network.

Depends R (>=3.4.1)

License GPL-3

Encoding UTF-8

LazyData true

Suggests igraph (>= 1.1.2), parallel (>= 3.4.1), testthat (>= 1.0.2)
RoxygenNote 6.0.1

NeedsCompilation no

Author Moritz Hanke [aut, cre]

Maintainer Moritz Hanke <hanke@leibniz-bips.de>
Repository CRAN

Date/Publication 2017-09-06 13:06:13 UTC

Contents
1100 2
(CC o o o e e 4
tdC . . e e 7
TNC . . e, 9

Index 11

https://doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1186/s12859-017-1677-x

2 tbc

tbc Temporal betweenness centrality

Description

tbc returns the temporal betweenness centrality for each node in a dynamic network (sequence of
graph snapshots).

Usage

tbc(x, type = NULL, startsnapshot = 1, endsnapshot = length(x),
vertexindices = NULL, directed = FALSE, normalize = TRUE,
centrality_evolution = FALSE)

Arguments
X A list of adjacency matrices or a list of adjacency lists.
type Data format of x. Possible formats are "M"” for a list of adjacency matrices

(containing only 1s and Os) and "L" for a list of adjacency lists (adjacency lists
of the igraph package are supported). Default is NULL.

startsnapshot Numeric. Entry of x to start the calculation of tbc. Default is 1.

endsnapshot Numeric. Entry of x to end the calculation of tbc. Default is the last element of
X.

vertexindices Numeric. A vector of nodes. Only shortest temporal paths ending at nodes in
vertexindices are considered for calculating tbc. Can be used to parallel the
calculation of tbc (see section Examples). Default is NULL.

directed Logical. Set TRUE if the dynamic network is a directed network. Default is
FALSE.
normalize Logical. Set TRUE if centrality values should be normalized with 1/((]V| —1) *

(V| — 2) x m) where |V]| is the number of nodes and m = endsnapshot —
startsnapshot. Default is TRUE.

centrality_evolution
Logical. Set TRUE if an additional matrix should be returned containing the

centrality values at each snapshot. Rows correspondent to nodes, columns cor-
respondent to snapshots. Default is FALSE.

Details

tbc calculates the temporal betweenness centrality (Kim and Anderson, 2012). To keep the compu-
tational effort linear in the number of snapshots the Reversed Evolution Network algorithm (REN;
Hanke and Foraita, 2017) is used to find all shortest temporal paths.

tbc 3

Value

The (normalized) temporal betweenness centrality (TBC) values of all nodes. If centrality_evolution
is TRUE, an additional matrix will be returned (CentEvo), containing the temporal (|V'|zT") matrix is
returned (CentEvo), containing the temporal centrality value at each snapshot between startsnapshot
and endsnapshot.

Warning
Using adjacency matrices as input exponentially increases the required memory. Use adjacency
lists to save memory.

References

Kim, Hyoungshick and Anderson, Ross (2012). Temporal node centrality in complex networks.
Physical Review E, 85 (2).

Hanke, Moritz and Foraita, Ronja (2017). Clone temporal centrality measures for incomplete se-
quences of graph snapshots. BMC Bioinformatics, 18 (1).

See Also

tcc, tde

Examples

Create a list of adjacency matrices, plot the corresponding graphs
(using the igraph package) and calculate tbc

), ncol=6)

), ncol=6)

,0,0), ncol=6)

4 tcc

0,1,0,0,0,0,
0!9’0’0?9’07
0,0,0,0,0,0), ncol=6)
library(igraph)
par(mfrow=c(2,2))
Layout <-
layout_in_circle(graph_from_adjacency_matrix (A1, mode = "undirected"))

plot(graph_from_adjacency_matrix(A1, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A2, "undirected”), layout=Layout)
plot(graph_from_adjacency_matrix(A3, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A4, "undirected”), layout=Layout)

As <- list(A1,A2,A3,A4)
tbc(As, "M", centrality_evolution=TRUE)

Create list of adjacency lists

Ls <- lapply(seq_along(As), function(i){
sapply(1:6, function(j){which(As[[i]11[j,1==1)3})

»

tbc(Ls, "L", centrality_evolution=TRUE)

Run tbc in parallel #i##
library(parallel)

Calculate the number of cores
cores_avail <- detectCores()-1

Initiate cluster

cl <- makeCluster(2)
clusterExport(cl, c("As", "tbc"))

TBC <- parLapply(cl, 1:6, function(x){
tbc(As, "M", vertexindices = x)
}

)

stopCluster(cl)

Reduce("+", TBC)

tcc Temporal closeness centrality

Description

tcc returns the temporal closeness centrality for each node in a dynamic network (sequence of
graph snapshots).

tcc 5

Usage

tcc(x, type = NULL, startsnapshot = 1, endsnapshot = length(x),
vertexindices = NULL, directed = FALSE, normalize = TRUE,
centrality_evolution = FALSE)

Arguments
X A list of adjacency matrices or a list of adjacency lists.
type Data format of x. Possible formats are "M" for a list of adjacency matrices

(containing only Is and Os) and "L" for a list of adjacency lists (adjacency lists
of the igraph package are supported). Default is NULL.

startsnapshot Numeric. Entry of x to start the calculation of tcc. Default is 1.

endsnapshot Numeric. Entry of x to end the calculation of tcc. Default is the last element of
X.

vertexindices Numeric. A vector of nodes. Only shortest temporal paths ending at nodes in
vertexindices are considered for calculating tcc. Can be used to parallel the
calculation of tcc (see section Examples). Default is NULL.

directed Logical. Set TRUE if the dynamic network is a directed network. Default is
FALSE.
normalize Logical. Set TRUE if centrality values should be normalized with 1/((|V] — 1) %

m) where | V| is the number of nodes and m = endsnapshot — startsnapshot.
Default is TRUE.

centrality_evolution
Logical. Set TRUE if an additional matrix should be returned containing the
centrality values at each snapshot. Rows correspondent to nodes, columns cor-
respondent to snapshots. Default is FALSE.

Details

tcc calculates the temporal closeness centrality (Kim and Anderson, 2012). To keep the compu-
tational effort linear in the number of snapshots the Reversed Evolution Network algorithm (REN;
Hanke and Foraita, 2017) is used to find all shortest temporal paths.

Value

The (normalized) temporal betweenness centrality values of all nodes (TCC). If centrality_evolution
is TRUE, an additional (|V|2T") matrix is returned (CentEvo), containing the temporal centrality
value at each snapshot between startsnapshot and endsnapshot.

Warning

Using adjacency matrices as input exponentially increases the required memory. Use adjacency
lists to save memory.

6 tcc

References

Kim, Hyoungshick and Anderson, Ross (2012). Temporal node centrality in complex networks.
Physical Review E, 85 (2).

Hanke, Moritz and Foraita, Ronja (2017). Clone temporal centrality measures for incomplete se-
quences of graph snapshots. BMC Bioinformatics, 18 (1).

See Also

tbc, tdc

Examples

Create a list of adjacency matrices, plot the corresponding graphs
(using the igraph package) and calculate tcc

), ncol=6)

), ncol=6)

,0,0), ncol=6)

), ncol=6)

library(igraph)
par(mfrow=c(2,2))

Layout <-
layout_in_circle(graph_from_adjacency_matrix (A1, mode = "undirected"))

plot(graph_from_adjacency_matrix(A1, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A2, "undirected”), layout=Layout)

tdc 7

plot(graph_from_adjacency_matrix(A3, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A4, "undirected"), layout=Layout)

As <- list(A1,A2,A3,A4)
tcc(As, "M", centrality_evolution=TRUE)

Create list of adjacency lists

Ls <- lapply(seqg_along(As), function(i){
sapply(1:6, function(j){which(As[[i]1[j,1==1)3})

»

tcc(Ls, "L", centrality_evolution=TRUE)

Run tbc in parallel #i##
library(parallel)

Calculate the number of cores
cores_avail <- detectCores()-1

Initiate cluster

cl <- makeCluster(2)
clusterExport(cl, c("As", "tcc"))

TCC <- parLapply(cl, 1:6, function(x){
tcc(As, "M", vertexindices = x)

}

)

stopCluster(cl)

Reduce("+", TCC)

tdc Temporal degree centrality

Description
tdc returns the temporal degree centrality for each node in a dynamic network (sequence of graph
snapshots).

Usage

tdc(x, type = NULL, startsnapshot = 1, endsnapshot = length(x),
directed = FALSE, normalize = TRUE, centrality_evolution = FALSE)

Arguments
X A list of adjacency matrices or a list of adjacency lists.
type Data format of x. Possible formats are "M” for a list of adjacency matrices

(containing only 1s and Os) and "L" for a list of adjacency lists (adjacency lists
of the igraph package are supported). Default is NULL.

tdc

Numeric. Entry of x to start the calculation of tdc. Default is 1.

Numeric. Entry of x to end the calculation of tdc. Default is the last element of
X.

Logical. Set TRUE if the temporal network is a directed network. Default is
FALSE.

Logical. Set TRUE if centrality values should be normalized with 1/((|V] — 1) =
m) where | V| is the number of nodes and m = endsnapshot — startsnapshot.
Default is TRUE.

Logical. Set TRUE if an additional matrix should be returned containing the
centrality values at each snapshot. Rows correspondent to nodes, columns cor-
respondent to snapshots. Default is FALSE.

tdc calculates the temporal degree centrality (see Kim and Anderson, 2012), which is defined as
the average degree centrality over all snapshots.

The (normalized) temporal degree centrality values of all nodes (TDC). If centrality_evolution
is TRUE an additional matrix is returned (CentEvo), containing the temporal centrality value at each
snapshot between startsnapshot and endsnapshot.

Using adjacency matrices as input exponentially increases the required memory. Use adjacency

Kim, Hyoungshick and Anderson, Ross, 2012. Temporal node centrality in complex networks.

8
startsnapshot
endsnapshot
directed
normalize
centrality_evolution
Details
Value
Warning
lists to save memory.
References
Physical Review E, 85 (2).
See Also
tbc, tcc
Examples

Create a list of adjacency matrices, plot the corresponding graphs
(using the igraph package) and calculating tdc

[SENSEES RIS]
[SENSS RGN
(SEKSEESSER SIS IS

TNC

), ncol=6)

A3 <- matrix(c(0,0,0,0,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0,

,0,0,0), ncol=6)

), ncol=6)

library(igraph)
par(mfrow=c(2,2))
Layout <-
layout_in_circle(graph_from_adjacency_matrix(A1, mode = "undirected"))

plot(graph_from_adjacency_matrix(A1, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A2, "undirected”), layout=Layout)
plot(graph_from_adjacency_matrix(A3, "undirected"), layout=Layout)
plot(graph_from_adjacency_matrix(A4, "undirected"), layout=Layout)

As <- list(A1,A2,A3,A4)

tdc(As, "M", centrality_evolution=TRUE)

#' ### Create list of adjacency lists

Ls <- lapply(seg_along(As), function(i){
sapply(1:6, function(j){which(As[[i11[j,1==1)3})

»

tdc(Ls, "L", centrality_evolution=TRUE)

TNC TNC: A package for computing temporal network centrality values for
nodes of a dynamic network.

10 TNC

Description

The TNC package provides three functions: tbc, tcc and tdc for calculating temporal betweenness,
temporal closeness and temporal degree centrality.

Index

tbe, 2,6, 8

tce, 3,4, 8

tdc, 3, 6,7

TNC, 9

TNC-package (TNC), 9

11

	tbc
	tcc
	tdc
	TNC
	Index

