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This tutorial describes statistical approaches for inferring rates of lineage di-
versification (speciation — extinction) from empirical (i.e., estimated) phylogenetic
trees—and for generating simulated phylogenetic trees—under various stochastic-
branching process models using the R package TESS. TESS provides a flexible
framework for specifying diversification models—where diversification rates are
constant, vary continuously, or change episodically through time (including ex-
plicit models of mass-extinction events)—and implements numerical methods to
estimate parameters of these models from estimated phylogenies. A major feature
of TESS is the ability to include various methods of incomplete taxon sampling.
Additionally, we provide robust Bayesian methods for assessing the relative fit of
these models of lineage diversification to a given study tree—e.g., where stepping-
stone simulation is used to estimate the marginal likelihoods of competing models,
which can then be compared using Bayes factors. We also provide Bayesian meth-
ods for evaluating the absolute fit of these branching-process models to a given
study tree—i.e., where posterior-predictive simulation is used to assess the abil-
ity of a candidate model to generate the observed phylogenetic data. Finally, we
show how TESS can be used to efficiently simulate phylogenies, and how these
simulations can provide invaluable null hypotheses.
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5.4 Auto-stopping MCMC simulations



1 Getting Started

We assume that the reader has some experience using R and has installed the TESS
package (including all dependent packages, such as ape and coda). We also assume
some familiarity with Bayesian inference and models of lineage diversification.
Nevertheless, we intend this guide to be relatively self-contained: we provide brief
explanations of the methods and models in the corresponding tutorials, and direct
the reader to the relevant primary literature for more detailed descriptions of the
corresponding topics.

We originally developed TESS as a tool for efficiently simulating phylogenies in
order to test and validate new inference methods and models (Hohna, 2013). How-
ever, TESS has since evolved to include several methods for estimating diversifica-
tion rates from empirical phylogenies (e.g., Hohna, 2014; May et al., 2015). This
is a natural extension, as both simulation and inference methods are based on the
same equations and underlying theory.

1.1 Types of research questions involving diversification
rates

Many evolutionary phenomena entail differential rates of diversification (speciation
— extinction); e.g., adaptive radiation, diversity-dependent diversification, key in-
novations, and mass extinction. The innumerable specific study questions regard-
ing lineage diversification may be classified within five fundamental categories of
inference problems. Admittedly, this classification scheme is somewhat arbitrary,
but it is nevertheless useful, as it allows users to navigate the ever-increasing num-
ber of available phylogenetic methods. Below, we describe each of the fundamental
questions regarding diversification rates and provide a few examples of software
packages that are available to address them.

(1) Rate estimation What is the (constant) rate of diversification in my study
group? Methods have been developed to estimate parameters of the stochastic-
branching process (i.e., rates of speciation and extinction, or composite parame-
ters such as net-diversification and relative-extinction rates) under the assumption
that rates have remained constant across lineages and through time; i.e., under
a constant-rate birth-death stochastic-branching process model. Statistical phylo-
genetic methods developed specifically to estimate diversification-rate parameters
include:

e DivBayes is a program to estimate the net-diversification rate (speciation—
extinction rate) and the relative-extinction rate (speciation =+ extinction



rate) given the estimated stem age of a group and the number of extant
species that belong to it (Ryberg et al., 2011).

e SubT is a program for estimating the net-diversification rate and the relative-
extinction rate using the method described by Bokma (2008), which allows
inclusion of unsampled species. This is a nice feature, as SubT models un-
sampled species explicitly—rather than assuming some artificial sampling
scheme—Dby virtue of estimating the divergence times of the missing taxa.

Both DivBayes and SubT are implemented in a Bayesian statistical framework,
and therefore estimate posterior probability distributions for the rate parameters
of interest, which provides a natural means of accommodating uncertainty in these
parameter estimates. Of course, rate parameters may also be estimated by many
other methods that relax the assumption that rates of diversification are con-
stant across lineages or constant through time (i.e., the constant-rate birth-death
branching model is a special case of these more general rate-variable branching
process models, which we describe below).

Similarly, diversification-rate parameters are also included as nuisance parameters
of other phylogenetic models—i.e., where these diversification-rate parameters are
not of direct interest. For example, many methods for estimating species diver-
gence times—such as BEAST (Drummond et al., 2012), MrBayes (Ronquist et al.,
2012), and RevBayes (Hohna et al., 2015)—implement ‘relaxed-clock models’ that
include a constant-rate birth-death branching process as a prior model on the dis-
tribution of tree topologies and node ages (c.f., 7). Although the parameters of
these ‘tree priors’ are not typically of direct interest, they are nevertheless esti-
mated as part of the joint posterior probability distribution of the relaxed-clock
model, and so can be estimated simply by querying the corresponding marginal
posterior probability densities. In fact, this may provide more robust estimates of
the diversification-rate parameters, as they accommodate uncertainty in the other
phylogenetic-model parameters (including the tree topology, divergence-time esti-
mates, and the other relaxed-clock model parameters).

(2) Detecting diversification-rate variation across branches Is there evi-
dence that diversification rates have varied significantly across the branches of my
study group? Methods have been developed to detect departures from rate con-
stancy across lineages; these tests are analogous to methods that test for departures
from a molecular clock—i.e., to assess whether substitution rates vary significantly
across lineages. Like molecular-clock tests, these diversification-rate methods only
indicate whether diversification rates vary significantly across lineages, but they
do not identify the location(s) of any rate shifts. These methods are important for



assessing whether a given tree violates the assumptions of other inference meth-
ods. For example, statistical phylogenetic methods that detect diversification-rate
variation through time (see below) typically assume that rates are constant across
branches at every instant in time (even though they may vary through time). Sev-
eral methods are available to detect diversification-rate variation across lineage.

e SymmeTREE (Chan and Moore, 2005) implements a number of so-called ‘whole-
tree’ indices that summarize the shape of a tree as a number (Chan and
Moore, 2002), and uses these indices as test statistics to identify significant
diversification-rate variation across lineages using Monte Carlo simulation
(Moore et al., 2004).

e apTreeshape (Bortolussi et al., 2006) is an R package that implements two
of the seven ‘whole-tree’ indices implemented in SymmeTREE, and implements
the Monte Carlo simulation method of Moore et al. (2004) to provide tests
for significant diversification-rate variation across lineages.

e TreeStat (developed by Andrew Rambaut) also implements several ‘whole-
tree’ indices to measure tree shape, but does not provide tests for significant
diversification-rate variation across lineages.

(3) Detecting diversification-shifts along branches There are two distinct
questions that fall under this general inference category, depending upon whether
we are testing an a priori hypothesis about the predicted location(s) of diversification-
rate shifts in our study tree, or if we are instead agnostically surveying our study
tree for possible location(s) of significant diversification-rate shifts across lineages.
The first type of question asks: Was there a significant diversification-rate shift
along a specified branch in my study group? Several statistical phylogenetic meth-
ods have been developed to detect significant diversification-rate shifts along pre-
specified branches of the tree.

e r8s (Sanderson, 2003) implements a maximum-likelihood approach (Mag-
allén and Sanderson, 2001) to identify pre-specified lineages that have diver-
sified at anomalous (either significantly elevated or decreased) diversification
rates.

e BayesRate (Silvestro et al., 2011) can identify significant diversification-rate
shift across branches by estimating the marginal likelihood (using robust
thermodynamic integration methods) of a study tree that has been parti-
tioned into one or more rate categories, and then selecting the partition
scheme (diversification-rate model) that provides the best fit to the data



using Bayes factors. BayesRate implements constant and exponentially de-
caying birth-death models, and can accommodate phylogenetic uncertainty
by averaging inferences over a sample of trees.

The second type of question asks: Have there been significant diversification-rate
shifts along branches in my study group, and if so, how many shifts and along
which branches? Several statistical phylogenetic methods have been developed to
detect significant diversification-rate shifts along pre-specified branches of the tree.

e SymmeTREE (Chan and Moore, 2005) implements a maximum-likelihood ap-

proach, in which various ‘shift statistics’ compute the probability of a diversification-

rate shift along each internal node, and uses Monte Carlo simulation to assess
their significance (Moore et al., 2004).

e MEDUSA (Alfaro et al., 2009) implements a maximum-likelihood approach in

which birth-death models of increasing complexity (with 0, 1, 2 .. . diversification-

rate shifts) are first fit to the tree, and then AIC is used to select the preferred
diversification-rate model.

e BAMM (Rabosky, 2014) implements a compound Poisson process model in
a Bayesian framework to provide estimates of the number and location of
diversification-rate shifts across the branches of a tree, and also infers the

diversification-rate parameters (speciation, extinction, and diversity-dependence)

on each branch of the tree.

(4) Detecting diversification-rate correlates Are diversification rates corre-
lated with some variable in my study group? Several methods have been developed
to identify overall correlations between diversification rates and organismal features
(binary and multi-state discrete morphological traits, continuous morphological
traits, geographic range, etc.), many of which are implemented in the excellent
DiversiTree package (FitzJohn, 2012). These methods include the following:

e BiSSE (Binary State Speciation and Extinction; Maddison et al., 2007) mod-
els the evolution of a binary trait—with parameters qy; and ¢, that specify
the instantaneous rates of change between the two states, 0 and 1-—where
the rate of lineage diversification depends on the current state. When a
lineage is in state 0, the stochastic-branching process has rate parameters
¢o = {Ao, o}, and when it is in state 1, the process has rate parameters
¢1 = {A1,p1}. The BiSSE model is implemented in both maximum likeli-
hood and Bayesian frameworks, although in practice, selection among can-
didate state-specific models is typically performed in a maximum-likelihood
framework using likelihood-ratio tests.



e MuSSE (Multiple State Speciation and Extinction; FitzJohn et al., 2009) ex-
tends the BiSSE model to identify correlations for multi-state discrete states.

e GeoSSE (Geographic State Speciation and Extinction; Goldberg et al., 2011)
extends the BiSSE model to identify correlations between diversification rates
among a set of discrete geographic areas.

e BiSSENESS (BiSSE-Node Enhanced State Shift; Magnuson-Ford and Otto,
2012) extends the BiSSE model to identify correlations between diversifica-
tion rates and a discrete binary traits, while also assessing whether the trait
evolves gradually or episodically.

e QuaSSE (Quantitative State Speciation and Extinction; FitzJohn, 2010) is
the continuous-trait analogue of the BiSSE model.

(5) Detecting diversification-rate shifts through time There are several
distinct and common types of questions that fall under this general inference cat-
egory. First, we might ask whether there is evidence of an episodic, tree-wide
increase in diversification rates (associated with a sudden increase in speciation
rate and/or decrease in extinction rate), as might occur during an episode of
adaptive radiation. A second question asks whether there is evidence of a con-
tinuous/gradual decrease in diversification rates through time (associated with
decreasing speciation rates and/or increasing extinction rates), as might occur
because of diversity-dependent diversification (i.e., where competitive ecological
interactions among the species of a growing tree decrease the opportunities for
speciation and/or increase the probability of extinction). A final question in this
category asks whether our study tree was impacted by a mass-extinction event
(where a large fraction of the standing species diversity is suddenly lost). This is
the category of methods to which TESS belongs, which is shared with several other
methods for detecting tree-wide variation in diversification rates.

e DDD (Diversity-Dependent Diversification; Etienne et al., 2012) implements
an explicit model of diversity-dependent diversification in a maximum-likelihood
framework. This flexible model allows diversity-dependent diversification
where: (1) speciation rate is a function of time; (2) extinction rate is a func-
tion of time; (3) speciation and extinction rates are both functions of time;
(4) speciation rate is a function of species diversity; (5) extinction rate is
a function of species diversity, and; (6) speciation and extinction rates are
both functions of species diversity. Additionally, DDD can identify the ef-
fect of events (tree-wide ‘key innovations’) that alter the carrying capacity
of the tree (Etienne and Haegeman, 2012), and can accommodate incom-
plete species sampling under the assumption of uniform species sampling.



Finally, DDD can be used to simulate trees under various diversity-dependent
stochastic-branching processes. This method is primarily used to address
two research questions:

— Does the study tree exhibit diversity-dependent diversification?

— Have key innovations changed the carrying capacity in the study tree?

RPANDA (Phylogenetic ANalyses of DiversificAtion; Morlon et al., prep) im-
plements the time-dependent birth-death process described in Morlon et al.
(2010) and Morlon et al. (2011). RPANDA estimates maximum likelihood pa-
rameter values for any time-dependent speciation and extinction rate func-
tion, providing specification of a virtually infinite number of diversification
rate through time functions. Missing species are modeled by uniform taxon
sampling. This method is primarily used to address two research questions:

— Are diversification rates constant through time?

— How have diversification rates changed through time?

TreePar is the inference counterpart to the simulation package, TreeSim
(described below), and enables maximum-likelihood estimation under a wide
range of diversification models, including constant-rate, episodic, or contin-
uously varying birth-death branching process models. Under the episodic
model, tree-wide diversification rates may change instantaneously at a shift
event, but are constant between those shift events (Stadler, 2011a). A spe-
cial case of the episodic model is an explicit mass-extinction model, in which
a large fraction of the standing species diversification is lost when an event
occurs. These (piecewise) constant-rate models are complemented by con-
tinuously varying rate models, including diversity-dependent diversification
rates (where the net-diversification rate is a function of the species diver-
sity; Etienne et al., 2012; Leventhal et al., 2014), and age-dependent models
(where the extinction rate is a function of species age; Lambert et al., 2014).
Incomplete species sampling is incorporated by uniform species sampling or
using information based on the diversity of more inclusive taxonomic groups.
An intriguing feature of TreePar (and TreeSim and expoTree, see below)
is the ability to include serially samples species (which are common for viral
datasets) to enable inference of diversification dynamics from non-ultrametric
trees (Stadler, 2010). This method is primarily used to address three research
questions:

— Are diversification rates constant through time?

— How have diversification rates changed through time?



— Is there evidence that my study tree experienced mass extinction?

e TreeSim enables flexible simulation of reconstructed and complete phyloge-
netic trees under constant or episodic birth-death bracing process models.
Trees can be simulated for a specified time interval (duration) or to a species
species diversity (tree size) (Stadler, 2011b). Additionally, tips can be sam-
pled sequentially through time (e.g., sampling fossil taxa).

e expoTree (Leventhal et al., 2014) estimates maximum likelihood parameter
values for diversity-dependent diversification branching process, and accom-
modates missing species under the assumption of uniform taxon sampling.
Like TreePar, expoTree accommodates sequential species sampling, which
makes it well suited for the study of epidemiological inference problems. This
method is primarily used to address the following research question:

— Does the study tree exhibit diversity-dependent diversification?

1.2 Scope of research questions addressed by TESS

There are three fundamental questions that can be addressed using TESS:
1. What are the rates of the process that gave rise to my study tree?
2. Have diversification rates changed through time in my study tree?
3. Is there evidence that my study tree experienced mass extinction?

Questions regarding diversification rates can be addressed using TESS simply by
estimating the parameters of the branching-process model—i.e., rates of specia-
tion (), extinction (u), net-diversification (A — p), and relative-extinction (u—+A).
We estimate these parameters in a Bayesian statistical framework, which provides
a natural means to accommodate our uncertainty in estimates of the parameters—
i.e., rather than inferring rate parameters as point estimates, TESS provides es-
timates as marginal posterior probability densities. We describe the branching-
process models implemented in TESS—and the methods for estimating parameters
of these models—in Section 2 of this guide.

Questions regarding temporal variation in diversification rates can be addressed
using TESS by comparing the relative fit of the study tree to candidate branching-
process models—i.e., by performing Bayes factor comparisons to assess the rela-
tive support for models in which diversification rates are either constant or change
through time. Note that the models we have implemented in TESS assume that
diversification rates are homogeneous across lineages. Accordingly, even though
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diversification rates may change—gradually or episodically—through time, diver-
sification rates are nevertheless identical across all lineages at any instant in time.
We describe how to use TESS to compare the fit of candidate diversification models
to a given dataset in Section 4 of this guide. Special attention is given to different
methods of incomplete taxon sampling in Section 3.

Questions regarding mass-extinction events can be inferred using TESS by per-
forming specific hypothesis tests (see Section 2.4.4) or analyses under the CPP
on Mass-Extinction Times (CoMET) model (May et al., 2015). These analyses can
identify whether your study tree has been impacted by mass extinction, and if so,
can identify the number and timing of these events. Additionally, the COMET model
can be used to explore events other than mass extinction—such as the number of
tree-wide diversification-rate shifts, the timing of those events, and the rate pa-
rameters (e.g., speciation and extinction rates) associated with those events. We
describe how to use TESS and CoMET to explore mass-extinction events in Section
4.3 of this guide.

1.3 Empirical data

Rates of lineage diversification are typically estimated from phylogenies that, in
turn, have been inferred from molecular sequence data. For example, consider the
conifer phylogeny that is included with the TESS distribution:

library(TESS)
data(conifers)

More information on this phylogeny can be found in Leslie et al. (2012). You will,
of course, want to use your own tree for your diversification-rate analyses. You
can do this using the read.nexus function and read.tree provided in the ape
package:

myTree <- read.nexus("data/myTree.nex")

You can extract the node ages from the tree using the ape function branching. times.
We often use the node ages for estimating parameters of birth-death processes, so
we’ll extract them and store them in a variable for later use.

times <- as.numeric( branching.times(conifers) )

You then can view the phylogeny (Figure 1).
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plot(conifers,show.tip.label=FALSE,no.margin=TRUE)

|

q

Figure 1: Conifer phylogeny from Leslie et al. (2012) without taxon labels.

Notice that this is an ultrametric tree; that is, it is rooted and all of the tips are
sampled at the same time horizon (i.e., the present). The models implemented in
TESS are only valid for ultrametric trees. Other trees—e.g., where tips are sampled
sequentially through time (Stadler, 2010; Heath et al., 2014)—are currently not
supported.

Additionally, you can look at the lineage-through-time (LTT) plot (Figure 2).
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1tt.plot(conifers,log="y")
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Figure 2: Lineage-through-time plot of the conifer phylogeny.

The LTT plot allows us to visualize the phylogenetic information that is used for
estimating diversification rates. For example, it appears that the slope of the LTT
plot changes slightly at ~ 175,70, and 20 million years ago.
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2 Models

We begin this section with a general introduction to the stochastic birth-death
branching process that underlies inference of diversification rates in TESS. This
primer will provide some details on the relevant theory of stochastic-branching
process models. We appreciate that some readers may want to skip this somewhat
technical primer; however, we believe that a better understanding of the relevant
theory provides a foundation for performing better inferences. We then disscuss a
variety of specific birth-death models, but emphasize that these examples represent

only a tiny fraction of the possible diversification-rate models that can be specified
in TESS.

2.1 The birth-death branching process

Our approach is based on the reconstructed evolutionary process described by Nee
et al. (1994); a birth-death process in which only sampled, extant lineages are
observed. Let N(t¢) denote the number of species at time ¢. Assume the process
starts at time ¢; (the ‘crown’ age of the most recent common ancestor of the study
group, tyrea) when there are two species. Thus, the process is initiated with two
species, N(t1) = 2. We condition the process on sampling at least one descendant
from each of these initial two lineages; otherwise ¢; would not correspond to the
tmrea of our study group. Each lineage evolves independently of all other lineages,
giving rise to exactly one new lineage with rate b(¢) and losing one existing lineage
with rate d(t) (Figure 3 and Figure 4). Note that although each lineage evolves
independently, all lineages share both a common (tree-wide) speciation rate b(t)
and a common extinction rate d(t) (Nee et al., 1994; Hohna, 2015). Additionally,
at certain times, ty;, a mass-extinction event occurs and each species existing at
that time has the same probability, p, of survival. Finally, all extinct lineages are
pruned and only the reconstructed tree remains (Figure 3).

To condition the probability of observing the branching times on the survival
of both lineages that descend from the root, we divide by P(N(T') > 0|N(0) = 1)2.
Then, the probability density of the branching times, T, becomes

both initial lineages have one descendant

speciation rate lineage has one descendant

B P(N(T):lA|N(O):1)5 T .- —
P(T) = POV(T) = 0| N(0) = 1 xH i x b(t;) xP(N(T)=1|N(t)=1),

both initial lineages survive

and the probability density of the reconstructed tree (topology and branching
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Extinction event ~ Mass-extinction event  Speciation event

Figure 3: A realization of the birth-death process with mass extinction. Lineages that
have no extant or sampled descendant are shown in gray and surviving lineages are
shown in a thicker black line.

a) b) d)

2 1L ﬁfi(ﬁTTW

Figure 4: Examples of trees produced under a birth-death process. The
process is initiated at the first speciation event (the ‘crown-age’ of the MRCA) when
there are two initial lineages. At each speciation event the ancestral lineage is replaced
by two descendant lineages. At an extinction event one lineage simply terminates. (A)
A complete tree including extinct lineages. (B) The reconstructed tree of tree from A
with extinct lineages pruned away. (C) A uniform subsample of the tree from B, where
each species was sampled with equal probability, p. (D) A diversified subsample of the
tree from B, where the species were selected so as to maximize diversity.

Time

times) is then

oot P(N(T)=1| N(0) =1)\"
PO = =1 (P(N(T) > 0| N(0) = 1)>
x ﬁz X b(t)) x P(N(T) =1 | N(t;) = 1) (1)

We can expand Equation (1) by substituting P(N(T') > 0 | N(t) = 1)2exp(r(t,T))
for P(N(T) = 1| N(t) = 1), where r(u,v) = [ d(t) — b(t)dt; the above equation
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becomes

g P(N(T) > 0| N(0) = 1)*exp(r(0,T))
P(¥) n!(n—l)!x< P(N(T) > 0] N(0) =1) )

x ]:[@ % b(t;) x P(N(T) > 0 | N(t;) = 1)? exp(r(t:;, T))

_ 2:; x <P(N(T) > 0| N(0) = 1)exp(r(0,T))>2
v 1:[ b(t) x P(N(T) > 0| N(t;) = 1) exp(r(t;, T). 2)

For a detailed description of this substitution, see Hohna (2015). Additional infor-
mation regarding the underlying birth-death process can be found in (Thompson,
1975, Equation 3.4.6) and Nee et al. (1994) for constant rates and Lambert (2010);
Lambert and Stadler (2013); Hohna (2013, 2014, 2015) for arbitrary rate functions.

To Compute the equation above we need to know the rate function, r(¢,s) =
J7d( x)dx, and the probability of survival, P(N(T) > 0|N(t) = 1). Yule
(1925) and later Kendall (1948) derived the probability that a process survives
(N(T') > 0) and the probability of obtaining exactly n species at time T (N(T") =
n) when the process started at time ¢ with one species. Kendall’s results were
summarized in Equation (3) and Equation (24) in Nee et al. (1994)

P(N(T)>0|N(t)=1) = 1+/(u(s)exp(r(t,s)))ds (3)
P(N(T)=n|N(t)=1) = (1—P(N(T)>0[N(t)=1)exp(r(t,T)))" "
x P(N(T)>0|N(t)=1)%exp(r(t, T)) (4)

An overview for different diversification models is given in Hohna (2015).

2.2 The space of birth-death branching-process models

Our preceding discussion of the birth-death process makes it clear that we can de-
fine countless birth-death models that specify different speciation- and extinction-
rate functions over time. We could assume, for example, that the extinction rate is
constant over time, d(t) = u, or that the speciation rate decreases exponentially,
b(t) = A x exp(—a * t). Furthermore, the constant-rate birth-death process can
be parameterized in various ways, for example, by adopting parameters for the
rate of speciation, b(t) = A, and extinction, d(t) = p. Alternatively, we could
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describe the birth-death process using parameters for the net-diversification rate,
d = A — p, and relative-extinction rate, € = p/A, such that b(t) = 6/(1 — €) and
d(t) = ex (0/(1 —¢€)). Finally, we could describe the birth-death process using
parameters for the net-diversification rate, 6 = A — u, and turnover rate, 7 = pu,
such that b(t) = § + 7 and d(t) = 7. Depending on the inference scenario, each of
these parameterizations may offer advantages in terms of interpretation.

Below, we list several birth-death process models (e.g., used in Héhna, 2014)
to provide a sense of the types of models that can be specified and how they are
parametrized in TESS (Table 1).

Table 1: Six different birth-death models with the corresponding parameters.

Model b(t) d(t)
Model 1 Ag 0
Model 2 Ay * exp(—a * t) 0
Model 3 Ag 7
Model 4 Ao+ Ay xexp(—a*t) 0
Model 5 Ay * exp(—a x t) I
Model 6 Ao+ Ay xexp(—a *t) pu

e Model 1: A constant-rate pure-birth (Yule) process (Yule, 1925). Under this
process, the number of species increases monotonically and exponentially.

e Model 2: A decreasing-rate pure-birth process where the speciation rate
declines toward zero. This process is equivalent to the decreasing-rate pure-
birth process used in Rabosky and Lovette (2008). Under this process, the
number of species increases monotonically.

e Model 3: A constant-rate birth-death process, as used in Thompson (1975).
Under this process, the expected number of species increases exponentially.

e Model 4: A pure-birth process with a decaying rate of speciation but a
constant, non-zero speciation rate the longer the process continues (A(t) =
Ao + A1 % exp(—a x t)). Thus, the process does not stop producing new
species after the initial burst, as in Model 2. As in the other two pure-birth
processes, the number of species increases monotonically.

e Model 5: A birth-death process with an initial expansion phase (where the
speciation rate exceeds the extinction rate) that subsequently converges to
a critical-branching process, i.e., where the speciation and extinction rates
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are equal, A(t) = p+ Ay xexp(—a*t) and p(t) = p. Although one might as-
sume that the expected number of species will remain constant for a critical-
branching process, this does not hold if the process is conditioned on survival.

e Model 6: A birth-death process where the extinction rate remains constant,
but speciation rate has an initially constant phase followed by a decreasing
phase. This model corresponds to an early phase of radiation, followed by a
phase of steady increase, A\(t) = A\g + A1 x exp(—a * t) and pu(t) = p.

The parametrizations of these models are listed in Table 1, and the expected
number of species, E[N(T')], at time 7" under each model is depicted in Figure 5.
We derive E[N(T)] analytically by using the fact that N(T) is geometrically dis-
tributed (see Equation 5 in Héhna, 2013). Note that the process is conditioned on
survival to the present, such that E[N(T')] increases even if A(t) = u(t).

Model 1 Model 2 Model 3

= speciation rate
- extinction rate
— EIN@]

nt  past present  past present

Species Number

past present  past Time present  past present
Figure 5: Six possible birth-death models. Each plot shows the speciation and extinc-
tion rates over time, and also the expected number of species (E[N(t)]). Model 1: A
constant-rate pure-birth process. Model 2: A decreasing-rate pure-birth process with
speciation rate declining to zero. Model 3: A constant-rate birth-death process. Model
4: A pure-birth process, where the speciation rate passes through a constant phase to
a decreasing phase. Model 5: A birth-death process with an initial expansion phase
(speciation rate > extinction rate) that later converges to a critical-branching process.
Model 6: A birth-death process with a constant extinction rate, where the speciation
rate is initially constant and later decreases.
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2.3 Simulating data

Simulating phylogenies is critical for validating methods/models of lineage diver-
sification, and is also invaluable for developing our intuition about the behavior
of these models. Simulations are also crucial for assessing the adequacy (absolute
fit) of a model for a given dataset, which we will describe later. In the previ-
ous section we described the expected form of lineage-accumulation curves under
different branching-process models. We will now briefly explain how to simulate
phylogenies using TESS.

We will explore some common diversification models, including the constant-
rate pure-birth process, the constant-rate birth-death process, and the exponen-
tially decaying pure-birth process. Specifically, we will use TESS to simulate 50
trees under these models and look at the corresponding LTT plots. You can ex-
periment with the parameter settings to better understand their impact, e.g., the
influence of the extinction rate.

We will first simulate trees under a constant-rate pure-birth process, where we
specify a speciation rate of 1.0 and the duration of the process as 3.0 time units.

speciation <- 1.0
extinction <- 0.0
tmrca <- 3.0

Here, we are explicitly conditioning the simulation on the time of the process.

Because it is a stochastic process, this will result in simulated trees of different

sizes (number of species), which may be relevant to our question. We might, for

example, wish to know whether the observed species diversity in our study tree is

improbable under the current model and parameterization. In the next subsection

we will show how to simulate trees conditioned on the number of extant species.
We simulate 50 trees under the specified model as follows:

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

Note that we are initializing the simulation with two species; i.e., from the ‘crown
age’ of the most recent common ancestor (MRCA). Accordingly, the resulting
trees will not have ‘stem’ branches subtending their root nodes; instead, these
trees begin at the root node that corresponds to the first speciation event in each
tree (c.f., Figure 4). This scenario corresponds well with empirical trees, where (by
definition) at least one species from both of these two initial lineages will survive
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to the present (otherwise we would not recognize this node as the root of our study
tree).
Next, we will generate the lineage-through-time plots for all 50 simulated trees.

mltt.plot(trees,
log = "y",
dcol = FALSE,
legend = FALSE,
backward = FALSE)

For a fully specified model, TESS can calculate the expected number of lineages
through time. We will overlay a curve describing the the expected number of
lineages on the LTT plot.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =t,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=FALSE,col="red",1ty=2,1wd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of this simulation are shown in Figure 6A. Here, you can see that the
shape of the LTT curve is clearly linear (in log-scale) under a constant-rate pure-
birth process. All other curves will be rendered in log-scale for convenience. Notice
also that we used the argument reconstructed = TRUE which means that we com-
pute the expected number of species (diversity) of a reconstructed phylogeny. This
must be a monotonically increasing function. You could plot the expected diversity
at any given time and compare it to the diversity of reconstructed phylogeny.

We will now repeat the above simulation under a constant-rate birth-death
process. First, we set the parameters of the model.

speciation <- 5.0

extinction <- 4.0
tmrca <- 3.0
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Then simulate 50 trees under these parameters.

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

Next, we plot the lineage-through-time curves for the simulated trees:

mltt.plot(trees,

legend = FALSE,
backward = FALSE)

Finally, we overlay the expected number of lineages on our LTT plot. In this
example you may notice that the expected number of lineages under the birth-
death process diverges from the expected number of lineages in the reconstructed
tree. This is simply because the expected number of lineages in the reconstructed
tree only considers lineages that have at least one descendant sampled at the
present time, whereas the expected number of lineages gives the expected diversity
at the time without that constraint.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =t,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=TRUE,col="red",1ty=2,1wd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of this simulation are shown in Figure 6B. Notice that the slope of the
LTT plot increases sharply near the present: this is commonly referred the ‘pull-of-
the-present’ effect. This effect becomes more pronounced as the relative-extinction
rate (i.e., extinction + speciation) increases.
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Finally, we will consider a pure-birth process with exponentially decreasing
speciation rate. In TESS you can either specify a simple numeric value for the
speciation and extinction rates or you can specify a function that takes the time ¢
as a parameter. Here, we will use the second option.

speciation <- function(t) 0.5 + 2 * exp(-1.0%t)
extinction <- 0.0
tmrca <- 3.0

We again simulate 50 trees conditioned on the survival of the two initial lineages.

trees <- tess.sim.age(n = 50,
age = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE)

We generate the LTT plots for the simulated trees.

mltt.plot(trees,
log = n u’
dcol = FALSE,
legend = FALSE,
backward = FALSE)

And then add the expected number of lineages in the reconstructed phylogeny.

expected <- function(t)
tess.nTaxa.expected(begin = 0,

t =1,
end = tmrca,
lambda = speciation,
mu = extinction,
MRCA = TRUE,
reconstructed = TRUE)

curve (expected,add=TRUE, col="red",1ty=2,1wd=5)
legend("topleft",col="red",1ty=2,"Expected Diversity")

The results of the three simulations are shown in Figure 6. We will return to
simulating reconstructed trees in Section 4.2 when we discuss model adequacy
testing.
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Figure 6: Lineage-through-time curves for pure-birth trees (panel A), birth-death trees
(panel B), and pure-birth trees with exponentially decreasing speciation rate (panel C).

2.4 Estimating parameters using Markov chain Monte Carlo
(MCMC)

In the previous section we introduced some stochastic-branching process models,
and demonstrated how to simulate trees under those models. Here, we turn to the
issue of estimating parameters of branching-process models from empirical data.
We estimate parameters within a Bayesian statistical framework, which adopts the
perspective that parameters are random variables. Accordingly, it is necessary to
specify a probability distribution for each parameter that describes the nature of
that random variation. These prior probability distributions describe our beliefs
about the parameter values before evaluating the data at hand. Prior probabilities
are updated by the information in the data (via the likelihood function) to provide
the corresponding posterior probability distributions. These posterior probability
distributions reflect our belief about the parameter values after incorporating the
new information in our data. We estimate the joint posterior probability density
of the model parameters from the data using numerical methods—Markov chain
Monte Carlo (MCMC) algorithms.

2.4.1 Birth-death processes with constant rates

We first consider the constant-rate birth-death process. Although we do not ex-
plicitly consider the constant-rate pure-birth process, it can easily be specifed by
simply setting the extinction rate of the constant-rate birth-death process to zero.

First, we specify prior distributions for our parameters. The constant-rate
birth-death process has two parameters; the speciation rate and extinction rate.
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There are many possible prior distributions that we might adopt for these two
parameters, e.g., the exponential, gamma, lognormal distributions. Here, we will
use an exponential distribution, which has a single parameter (the rate parameter)
that describes the shape of the distribution. We will specify a value of 0.1 for the
rate parameter (such that the mean of the exponential is 1/rate = 10.0). We will
use identical priors for both the speciation- and extinction-rate parameters.

In TESS the prior distribution must be functions that can be computed for all
values that can be realized by the corresponding parameter (e.g., priors for rates
must only include positive-real values). Furthermore, the prior distributions need
to return log-transformed probabilities (this is a standard convention adopted to
avoid underflow in computer memory).

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }

priorsConstBD <- c("diversification"=prior_delta,
"turnover"=prior_tau)

If you provide names for the prior distributions, as we did here, then these names
will be used to label that parameters in the MCMC output. Currently, only the
names of the priors are used.

Next, we set up the likelihood of the constant-rate birth-death process as an
R function. Here, the actual likelihood computation is performed by the function
tess.likelihood. It is necessary to wrap the TESS likelihood into another R
function because you need to specify how the speciation and extinction rates are
assembled and which assumptions/conditions are applied. This approach enables
maximal flexibility for using TESS.

likelihoodConstBD <- function(params) {

speciation <- params[1] + params[2]
extinction <- params/[2]

1nl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
log = TRUE)

return (1nl)
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It is also possible to specify prior distributions on other parameterizations of the
constant-rate birth-death model, e.g., using parameters for the net-diversification
rate (speciation—extinction) and the relative-extinction rate (extinction/speciation).
This alternative parmaterization of the model would, of course, require modifica-
tion of the likelihood function.

Next, we use the function tess.mcmc to run an MCMC simulation. The func-
tion takes in several arguments to describe the MCMC algorithm. Specifically,
you must specify the likelihoodFunction, priors, and initial values for the
parameters. Additionally, you can specify whether the MCMC proposal mech-
anisms should operate on the log-transformed parameters, which is advisable for
rate parameters but not for location parameters.

We will also specify the value for the delta parameter, which defines the (ini-
tial) width of the sliding-window proposal mechanism. This delta tuning param-
eter determines the scale (severity) of the proposal mechanism: larger values will
specify more severe changes to the current parameter value when that parameter
is being updated during the MCMC. We will discuss these issues in more detail
in Section 5 of this guide. The remaining parameters specify the number of itera-
tions of the MCMC simulation, the number of iterations for the pre-burnin phase,
the thinning schedule, and whether the scale of the poposal mechanisms are to be
automatically tuned.

set.seed(12345)

samplesConstBD <- tess.mcmc(likelihoodFunction = likelihoodConstBD,
priors = priorsConstBD,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

Note that we have specified a starting seed for the random-number generator.
We have done this only to ensure that your results will be identical to those in
this guide. However, you should not specify the starting seed for your analyses,
but instead use a random starting seed that is automatically generated from the
system clock (i.e., just delete or comment out the line that sets the seed). This is
important, as you will want to perform multiple independent MCMC simulations
to assess convergence. The basic idea is to compare parameter estimates from
multiple independent analyses: if the chains have converged to the target (joint
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posterior probability) distribution, then the parameter estimates from the repli-
cate chains should be identical up to some stochastic uncertainty. However, this
important diagnostic would be rendered meaningless if the replicate analyses were
performed under the same starting seed; in this case, the results are guaranteed
to be identical.

Note that we ran a short MCMC simulation above for covenience. In practice,
MCMC simulations are commonly run for 10° to 10® iterations. We will use the R
package coda (which is automatically loaded with TESS) to summarize the samples
from our MCMC simulation. TESS saves samples in the coda format, which allows
us to easily summarize our samples:

summary (samplesConstBD)

##

## Iterations = 1:1001

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1001

#

## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:

##

H## Mean SD Naive SE Time-series SE
## diversification 0.006218 0.00230 7.269e-05 7.269e-05
## turnover 0.149091 0.01237 3.908e-04 3.908e-04
#

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75%  97.5%
## diversification 0.001992 0.004586 0.006133 0.007725 0.01094
## turnover 0.126253 0.140378 0.148587 0.157682 0.17364

We can also visualize the trace plots and marginal posterior probability densities
for these samples (Figure 7).

plot (samplesConstBD)

2.4.2 Birth-death processes with continuously varying rates

Here we consider a birth-death process with an exponentially decreasing speciation
rate. Specifically, we define the speciation rate as A(t) = 0 + Aexp(—a * t) and
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Figure 7: Trace plots (left) and marginal posterior probability densities (right) for the
diversification rate (top) and turnover rate (bottom) from the MCMC simulation under
the constant-rate birth-death process.

extinction rate as u(t) = 6 (Hohna, 2014). It is not possible to analytically compute
the probability density (or likelihood) under this process. Instead, we approximate
these quantities using numerical integration techniques. These numerical methods
are implemented in TESS and will be performed automatically if you provide
functions instead of numerical arguments for the speciation and /or extinction rate.
The numerical integration is very convenient but, of course, imposes a higher
computational cost that will make these analyses run more slowly.
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The decreasing speciation rate birth-death model has three parameters: §, Ay,
and a. We will use an exponential prior probability distribution with a rate of
0.1 (i.e., with a mean of 10.0) for all three parameters. As before, the prior
distributions must be functions that return the log-transformed probability for a
given value of the parameter.

prior_delta <- function(x) { dexp(x,rate=0.1,log=TRUE) }
prior_lambda <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_alpha <- function(x) { dexp(x,rate=0.1,10g=TRUE) }
priorsDecrBD <- c("turnover"=prior_delta,
"initial speciation'"=prior_lambda,
"speciation decay"=prior_alpha)

We now specify the speciation and extinction rates as functions and pass them
into the likelihood, which again must be provided as a function.

likelihoodDecrBD <- function(params) {

speciation <- function(t) params[1] + params[2] * exp(-params[3]*t)
extinction <- function(t) params[1]

1nl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
log = TRUE)

return (1nl)

}

Next, we start the analysis by calling the MCMC function in TESS. (The details
of this MCMC simulation are similar to those described in the constant-rate birth-
death example, above.)

set.seed(12345)

samplesDecrBD <- tess.mcmc(likelihoodFunction = likelihoodDecrBD,
priors = priorsDecrBD,
parameters = runif(3,0,1),
logTransforms = c(TRUE,TRUE,TRUE),
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delta = c(1,1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

We then summarize the parameter estimates from our MCMC samples:

summary (samplesDecrBD)

##

## Iterations = 1:1001

## Thinning interval = 1

## Number of chains =1

## Sample size per chain = 1001

##

## 1. Empirical mean and standard deviation for each variable,
#i# plus standard error of the mean:

##

#i Mean SD Naive SE Time-series SE

## turnover 0.1616 0.01192 0.0003767 0.0003767

## initial speciation 0.0986 0.09446 0.0029856 0.0029856

## speciation decay 9.8532 9.89787 0.3128419 0.3128419

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75%  97.5%
## turnover 0.139719 0.15374 0.16101 0.1695 0.1857

## initial speciation 0.003187 0.02881 0.07291 0.1396 0.3490
## speciation decay  0.142774 2.79831 6.96848 13.4007 36.5878

We can also visualize the trace plots and marginal posterior probability densities
for these samples:

plot (samplesDecrBD)

2.4.3 Birth-death processes with episodically varying rates

The next model we consider is a birth-death process with piecewise-constant rates.
Under this model, rates of speciation and extinction change at some (discrete)
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Figure 8: Trace plots and estimated posterior distribution of the parameter under the

decreasing speciation rate birth-death model.
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number of events; between these rate-shift events, however, the diversification-
rate parameters remain constant (Stadler, 2011a; Hohna, 2015).

The number of parameters included in the episodic model varies depending
on the number of rate-shift events. In general, there are kg + 1 speciation-rate
parameters and kp + 1 extinction-rate parameters, where kg is the number of
speciation-rate shifts and kp is the number of extinction-rate shifts.

In this example, we will assume there is a single speciation-rate shift and a single
extinction-rate shift, both occurring at the mid-point of the duration spanned by
the conifer tree. First, we specify the time of the rate-shift event.

rateChangeTime <- max( times ) / 2

Next, we specify priors for the parameters. There are a total of four parameters
(the speciation and extinction rates before and after the rate-shift event). Accord-
ingly, we specify four identical exponential priors for these parameters, all with a
rate of 10.0 (and a mean of 0.1).

prior_delta_before <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau_before <- function(x) { dexp(x,rate=10.0,10g=TRUE) }

prior_delta_after <- function(x) { dexp(x,rate=10.0,1log=TRUE) }

prior_tau_after <- function(x) { dexp(x,rate=10.0,1log=TRUE) }

priorsEpisodicBD <- c("diversification before"=prior_delta_before,
"turnover before'"=prior_tau_before,
"diversification after'"=prior_delta_after,
"turnover after'"=prior_tau_after)

Next, we specify a likelihood function using the rate-shift model implemented in
TESS, tess.likelihood.rateshift.

likelihoodEpisodicBD <- function(params) {

speciation <- c(params[1]+params[2],params[3]+params[4])
extinction <- c(params[2],params([4])

1nl <- tess.likelihood.rateshift(times,
lambda = speciation,
mu = extinction,
rateChangeTimesLambda = rateChangeTime,
rateChangeTimesMu = rateChangeTime,
samplingProbability = 1.0,
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log = TRUE)

return (1nl)

}

Now we can start the analysis by calling the MCMC function in TESS. (The details
of this MCMC simulation are similar to those described in the constant-rate birth-
death example, above.)

set.seed(12345)

samplesEpisodicBD <- tess.mcmc(likelihoodFunction = likelihoodEpisodicBD,
priors = priorsEpisodicBD,
parameters = runif(4,0,1),
logTransforms = c(TRUE,TRUE, TRUE,TRUE),
delta = c(1,1,1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

We then summarize the parameter estimates from our MCMC samples:

summary (samplesEpisodicBD)

##

## Iterations = 1:1001

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1001

##

## 1. Empirical mean and standard deviation for each variable,

#it plus standard error of the mean:

##

#i# Mean SD Naive SE Time-series SE
## diversification before 0.011450 0.006883 2.175e-04 2.443e-04
## turnover before 0.119879 0.081695 2.582e-03 2.729e-03
## diversification after 0.006041 0.002725 8.613e-05 9.921e-05
## turnover after 0.148364 0.012362 3.907e-04 4.495e-04
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##
## 2. Quantiles for each variable:

it

#i 2.5% 25% 50% 75%  97.5%
## diversification before 0.0007131 0.006239 0.010795 0.015865 0.02693
## turnover before 0.0152805 0.061084 0.103623 0.158882 0.32575
## diversification after 0.0012304 0.004041 0.005865 0.007869 0.01168
## turnover after 0.1243451 0.140137 0.148350 0.156782 0.17259

Finally, we can visualize the trace plots and marginal posterior probability densities
for these samples:

plot(samplesEpisodicBD)

2.4.4 Birth-death processes with explicit mass-extinction events

The final model we consider is one where speciation and extinction rates are con-
stant, but where there is a single mass-extinction event at some unknown time.
We'll assume that 10% of the species survive the mass-extinction event.

survivalProbability <- 0.1

There are three parameters in the model: the speciation rate, the extinction rate,
and the mass-extinction time. We must specify priors for each of these parameters.
For simplicity, we’ll assume a prior: that the mass-extinction event could happen
at any time in the most recent half of the tree with equal probability.

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }
prior_time <- function(x) { dunif (x,min=max(times)/2,max=max(times),log=TRUE)}
priorsMassExtinctionBD <- c("diversification"=prior_delta,
"turnover"=prior_tau,
"mass-extinction time"=prior_time)

Next, we specify a likelihood function. We can use either the standard likeli-

hood function tess.likelihood or the likelihood function of the rate-shift model
tess.likelihood.rateshift.
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likelihoodMassExtinctionBD <- function(params) {

speciation <- params[1]+params[2]
extinction <- params[2]
time <- params [3]

Inl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
massExtinctionTimes = time,
massExtinctionSurvivalProbabilities =

survivalProbability,

samplingProbability = 1.0,
log = TRUE)

return (1nl)

}

Now we can start the analysis by calling the MCMC function in TESS. (The details
of this MCMC simulation are similar to those described in the constant-rate birth-
death example, above.)

set.seed(12345)

samplesMassExtinctionBD <- tess.mcmc(likelihoodFunction =
likelihoodMassExtinctionBD,
priors = priorsMassExtinctionBD,
parameters = c(runif(2,0,1) ,max(times)*3/4)
logTransforms = c(TRUE,TRUE,FALSE),
delta = c(1,1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

We then summarize the parameter estimates from our MCMC samples:
summary (samplesMassExtinctionBD)

#it
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#i#
#i#
#Hit
##
##
#i#
#i#
#Hit
##
##
#i#
#i#
#Hit
##
##
#i#
#i#t
#Hit
#t

Iterations 1:1001
Thinning interval = 1
Number of chains = 1
Sample size per chain

1001

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD
diversification 0.01906 0.002448
turnover 0.12733 0.012369
mass—-extinction time 262.74704 2.569482
2. Quantiles for each variable:

2.5% 25%
diversification 0.01446 0.0175
turnover 0.10407 0.1190
mass-extinction time 254.77080 262.2503

Naive SE Time-series SE
7.737e-05 8.239e-05
3.909e-04 3.895e-04
8.121e-02 4.031e-01

50% 75% 97.5%
0.01891 0.02061 0.02424
0.12698 0.13496 0.15198

262.96772 263.36666 271.51602

Finally, we visualize the trace plots and marginal posterior probability densities
for these samples:

plot(samplesMassExtinctionBD)
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3 Accommodating Incomplete Taxon Sampling

Most phylogenies do not contain all species of the group under study. Instead, only
an incomplete sample—or subsample—of all described species are included. As-
suming complete taxon sampling for trees that are actually incomplete is known to
bias estimates of diversification rates (Cusimano and Renner, 2010). Additionally,
the sampling strategy (e.g., whether species are sampled uniformly at random or to
maximize diversity) also influences the parameter estimates (Hohna et al., 2011).
Fortunately, methods for modeling incomplete taxon sampling exist to correct for
the introduced bias (Cusimano and Renner, 2010; Héhna et al., 2011; Cusimano
et al., 2012; Stadler and Bokma, 2013; Hohna, 2014).

Here we consider two approach of incomplete taxon sampling: wuniform sam-
pling and diversified sampling. A sketch of the two sampling methods was provided
in Figure 4. As we will demonstrate below, the sampling strategy has a substan-
tial influence on the distribution of branching times in the tree, which results in
different patterns in the lineage-through-time curves for the different sampling
schemes. Additionally, we note that the patterns induced by incomplete sampling
can mimic patterns of decreasing rates of lineage diversification (Pybus and Har-
vey, 2000; Cusimano and Renner, 2010; Hohna et al., 2011), and thus it is critical
to incorporate incomplete sampling in any study of lineage diversification rates.

We will begin by simulating trees under different kinds of sampling schemes,
and then demonstrate how we can incorporate these sampling schemes into branching-
process models in TESS.

3.1 Patterns of incomplete sampling

To demonstrate the impact of incomplete taxon sampling, we will simulate trees
under each sampling strategy and plot the resulting LTT curves. We simulate
n = 50 trees, each conditioned on the specified age. First, we simulate trees with
complete taxon sampling to compare against the other sampling schemes. Next,
we simulate trees under uniform taxon sampling with a sampling probability of
p = 0.25 (which means that each species at the present has the same probability
of p = 0.25 being included in the phylogeny; if a species is not sampled then its
lineage is removed from the reconstructed tree). Finally, we simulate trees under
diversified taxon sampling with a sampling probability of p = 0.25 (i.e., only the
oldest 25% of divergence events are included in the reconstructed phylogeny, and
all later divergence events are excluded).

birthDeathSpeciationSampling <- 2.0
birthDeathExtinctionSampling <- 1.0
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birthDeathTreesComplete <- tess.sim.age(n = 50,
age = 3.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
MRCA = TRUE)

birthDeathTreesUniform <- tess.sim.age(n = 50,
age = 4.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
samplingProbability = 0.25,
samplingStrategy = "uniform",
MRCA = TRUE)

birthDeathTreesDiversified <- tess.sim.age(n = 50,
age = 4.0,
lambda = birthDeathSpeciationSampling,
mu = birthDeathExtinctionSampling,
samplingProbability = 0.25,
samplingStrategy = "diversified",
MRCA = TRUE)

par (mfrow=c(1,3) ,mar=c(5,4,3,0.1),las=1)

# Plot the trees

mltt.plot(birthDeathTreesComplete,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)

mtext("A", line = 1)

mltt.plot(birthDeathTreesUniform,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)

mtext("B", line = 1)

mltt.plot(birthDeathTreesDiversified,log = "y",dcol = FALSE,
legend = FALSE,backward = FALSE)

mtext("C", line = 1)

For the remainder of this section, we focus on the biases stemming from incomplete
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Figure 10: Lineage-through-time plots for completely sampled trees (panel A), in-
complete trees with uniform sampling (panel B), and incomplete trees with diversified
sampling (panel C).

taxon sampling. We will simulate a single incompletely sampled tree under a
diversified sampling strategy with sampling fraction p = 0.25, and in the following
sections we will estimate parameters under various birth-death processes from this
tree. We have simulated the tree under diversified sampling with known speciation
and extinction rates, which allows us to compare estimates of parameter values
using various approaches to the true parameter values in order to better understand
the influence of the sampling strategy on parameter estimates.

tree.diversified <- tess.sim.age(n = 1

age = 4.0,
lambda = 2.0,
mu = 1.0,

samplingProbability = 0.25,
samplingStrategy = "diversified",
MRCA = TRUE) [[1]]

times.diversified <- as.numeric( branching.times(tree.diversified) )

First, we will take a look at the simulated tree: it looks similar to many empirical
phylogenies.

40



plot(tree.diversified,show.tip.label=FALSE, no.margin=TRUE)

Figure 11: The simulated tree under diversified sampling with sampling fraction p =
0.25.

In the following sections we will infer diversification rates on this simulated tree.

3.2 Uniform taxon sampling

Uniform taxon sampling, which is sometimes also called random taxon sampling,
assumes that every species at present has the same probability p of being included
in the sample (Nee et al., 1994; Yang and Rannala, 1997; Stadler, 2009; Hohna
et al., 2011; Hohna, 2014). That is, regardless of age or phylogenetic relationship,
this method assumes that a researcher flips a coin for each species to decide whether
it will be included in the analysis. This sampling scheme may not be realistic, as
many factors typically influence the probability that a researcher will include a
species in their study. However, the uniform taxon sampling scheme was initially
adopted because it is mathematically convenient. Moroever, the approximation
to uniform sampling scheme improves when the sampling fraction is large, i.e., if
more than 80% of the species are included.
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In principle, we could treat the sampling probablity p as a random variable and
estimate it from the data. However, estimating all three parameters of the sampled
constant-rate birth-death process model—the speciation rate, the extinction rate
and the sampling probability—is not possible because the parameters are noniden-
tifiable (Stadler, 2009). Therefore, we use the empirical sampling fraction; simply
the number of included species divided by the total number of known species (630
for conifers).

samplingFraction <- (conifers$Nnode + 1) / 630

We can then use this empirical sampling fraction as our sampling probability.
All the likelihood functions in TESS, as described in the previous sections, have
an argument called samplingProbability. You can incorporate incomplete sam-
pling in any of these analyses by setting this argument to the empirical sampling
probability.

How well does the uniform taxon sampling scheme perform on our simulated
phylogeny? We will assess the performance of this method by estimating the joint
posterior density of the diversification-rate parameters by performing an MCMC
simulation. As usual, we start by specifying the prior distributions. Here, we use
the constant-rate birth-death process with the net-diversification rate (speciation
— extinction) and turnover rate (extinction). We choose exponential prior distri-
butions with a mean of 1.0, which corresponds to the true value. Notice that this
is essentially an ideal setting, as the true parameter values are clearly unknown for
empirical analyses. Therefore, this represents a best case scenario for the impact
of taxon sampling on parameter estimates.

prior_delta <- function(x) { dexp(x,rate=1.0,1og=TRUE) }

prior_tau <- function(x) { dexp(x,rate=1.0,log=TRUE) }

priorsSampling <- c("diversifiation"=prior_delta,
"turnover"=prior_tau)

We then define the likelihood function. This is similar to the likelihood function
used previously for the constant-rate birth-death process. However, in this case

we will specify the sampling probability (p = 0.25) and the sampling strategy.

likelihoodUniform <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

42



1nl <- tess.likelihood(times.diversified,
lambda = speciation,
mu = extinction,
samplingProbability = 0.25,
samplingStrategy = "uniform",
log = TRUE)

return (1nl)

}

Now we are ready to estimate the diversification-rate parameters. The settings for
the MCMC simulation are the same as those used previously (c.f., Section 2.4).

set.seed(12345)

samplesUniform <- tess.mcmc(likelihoodFunction = likelihoodUniform,
priors = priorsSampling,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

Recall that the true parameter values are A = 2.0 and p = 1.0. This correspods to
a diversification rate of 1.0 and a turnover rate of 1.0. The estimated parameters
under uniform taxon sampling are

summary (samplesUniform)

##

## Iterations = 1:1001

## Thinning interval = 1

## Number of chains =1

## Sample size per chain = 1001

##
## 1. Empirical mean and standard deviation for each variable,
#i# plus standard error of the mean:
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##

## Mean SD Naive SE Time-series SE
## diversifiation 0.8048 0.1641 0.005186 0.005614
## turnover 0.2726 0.2686 0.008489 0.008988
#

## 2. Quantiles for each variable:

##

# 2.5% 25% 50% 75% 97.5%
## diversifiation 0.470512 0.70908 0.8002 0.9150 1.121
## turnover 0.007851 0.08001 0.1977 0.3699 1.009
plot(samplesUniform)

Our estimate of the diversification rate is actually quite good. This is because most
information about the diversification rate comes from the age of the phylogeny and
the number of sampled species, which does not depend on the sampling scheme
or the divergence times. However, the estimated turnover rate is quite biased. As
a result, the speciation- and extinction-rate estimates are both biased. This is
caused by the underestimation of the extinction rate (Hohna et al., 2011). The
bias is quite severe: the true values are not even contained in the 95% credible
interval (see Figure 12).

3.3 Diversified taxon sampling

Now we will consider diversified sampling in more detail. We assume that our
study group contains m species from which we have n sampled species. Under
diversified sampling, this means that the most recent m — n speciation events
have been discarded. This is the strictly mathematical interpretation of diversified
sampling (Hohna et al., 2011; Hohna, 2014).

This sampling strategy is intended to mimic empirical datasets where species
were selected to include “representatives” from some number of distinct lineages
(e.g., all families or all genera). This sampling implicitly maximizes species di-
versity and comes close to the mathematical description of diversified sampling.
However, diversified taxon sampling is not a perfect mathematical description of
this sort of sampling. For example, not all “major lineages” are of the same age and
size, and we may therefore sometimes include species that are recently diverged.

As we did for uniform taxon sampling, we want to test how well the method
performs in estimating parameters given the simulated phylogeny. We will use the
same constant-rate birth-death process with the only difference being the sampling
strategy. We therefore use the same prior distributions as in the uniform sampling
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Figure 12: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (speciation - extinction) and turnover rate (extinction) under
uniform sampling from the MCMC simulation.

analysis. The likelihood function is adapted by changing the samplingStrategy
to “diversified”.

likelihoodDiversified <- function(params) {

speciation <- params[1] + params[2]
extinction <- params/[2]
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1nl <- tess.likelihood(times.diversified,
lambda = speciation,
mu = extinction,
samplingProbability = 0.25,
samplingStrategy = "diversified",
log = TRUE)

return (1nl)

}

Then, we perform a (short) MCMC simulation to sample from the posterior dis-
tribution of the parameters.

samplesDiversified <- tess.mcmc(likelihoodFunction = likelihoodDiversified,
priors = priorsSampling,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 10000,
burnin = 1000,
thinning = 10,
adaptive = TRUE,
verbose = TRUE)

Finally, our estimates of the diversification rate and turnover rate under diversified
taxon sampling are

summary (samplesDiversified)

##

## Iterations = 1:1001

## Thinning interval = 1

## Number of chains =1

## Sample size per chain = 1001

##

## 1. Empirical mean and standard deviation for each variable,
#it plus standard error of the mean:

##

#i# Mean SD Naive SE Time-series SE

## diversifiation 0.465 0.2903 0.009174 0.01462
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## turnover 1.106 0.5884 0.018599 0.02829
##

## 2. Quantiles for each variable:

#

#i# 2.5% 25% 50% 75% 97.5%
## diversifiation 0.03026 0.2277 0.4298 0.6754 1.052
## turnover 0.07549 0.6671 1.1259 1.4815 2.319

plot(samplesDiversified)

Here we see that the true values fall within the 95% credible interval. The mean
estimate of the diversification rate might be slightly worse, but the transformed
speciation and extinction rate estimates are significantly better. Thus, we can
conclude that only if we know the true sampling strategy, and sampling fraction,
are we able to make unbiased estimates the speciation and extinction rates.

You may wish to repeat the above experiment for the case when you simulate
the tree under uniform taxon sampling, and/or when you assume an incorrect
sampling fraction (i.e., that is either too large or too small). For more information
about incomplete taxon sampling, we refer the reader to Hohna et al. (2011) and
Hohna (2014).
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Figure 13: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (speciation - extinction) and turnover rate (extinction) under
diversified sampling from the MCMC simulation.

4 Model Evaluation

Model-based inference is, by definition, based on the model. The model describes
the process that gave rise to our observed data—in the present case, it describes
the stochastic-branching process that gave rise to our study tree. Accordingly, if
the model provides a ‘poor fit’ to the data—i.e., provides a poor description of
the process that gave rise to the observed data—then all bets are off.
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The model must balance two competing criteria: (1) it must include the rele-
vant parameters to describe important aspects of the diversification process, but;
(2) it must exclude any superfluous parameters that only capture stochastic fluc-
tuations in the data. Failure to satisfy criterion (1) will result in biased estimates
of parameters; e.g., speciation and extinction rates. Failure to satisfy criterion (2)
will inflate the variance in the error of the parameter estimates (overconfidence in
estimates).

Accordingly, we must be mindful both regarding our choice of model and also
with respect to assessing our ability to perform reliable inference under the chosen
model. Model evaluation entails three closely related issues. Model selection entails
assessing the relative fit of our dataset to the pool of candidate models. In a
Bayesian statistical framework, we compare the relative fit of candidate models
based on their marginal likelihood (which measures the average fit of the candidate
models to the data). Model adequacy entails assessing the absolute fit of the dataset
to a given model. Model uncertainty is related to the common scenario when
multiple candidate models provide a similar fit to the data and model averaging
provides a method to (a) estimate the probability of a model being true given
the set of available models, and (b) infers the parameters of interest by averaging
over all specified models. Below, we demonstrate how to address each of these
model-evaluation issues using TESS.

4.1 Comparing models with Bayes factors

For most groups of species, several (possibly many) branching-process models of
varying complexity are plausible a priori. We therefore need a way to objectively
identify the model that balances estimation bias and inflated error variance as-
sociated with under- and over-parameterized models, respectively. Increasingly,
model selection is based on Bayes factors (e.g., Kass and Raftery, 1995; Suchard
et al., 2001; Lartillot and Philippe, 2006; Xie et al., 2011; Fan et al., 2011; Baele
et al., 2012, 2013). This procedure requires that we first calculate the marginal
likelihood of each candidate model, and we then compare the ratio of the marginal
likelihoods for the set of candidate models.

Note that interpreting Bayes factors (BF) involves a measure of subjectivity.
That is, it is up to you to decide what BF values appropriately reflect the level
of significance in the competing models. Despite the absence of an absolutely
objective model-selection threshold, we can refer to the scale (outlined by Jeffreys,
1961) that provides a “rule-of-thumb” for interpreting these measures (Table 2).

Given two candidate models, My and M;, the Bayes-factor comparison to assess
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Table 2: The scale for interpreting Bayes factors by Harold Jeffreys (1961).

Strength of evidence BF (Mo, M) In(BF (Mo, My)) log,o(BF (Mo, M))
Negative (supports M) <1 <0 <0

Barely worth mentioning 1to 3.2 0to 1.16 0 to 0.5
Substantial 3.2 to 10 1.16 to 2.3 0.5to1
Strong 10 to 100 2.3 to 4.6 1to 2
Decisive > 100 > 4.6 > 2

For a detailed description of Bayes factors see Kass and Raftery (1995)

the relative fit of each model to the data, BF (M, M), is:

P(My | X)  P(My) P(X | My)
BF(My, M) = P(M, | X) P(M)P(X| M)’

where P(X | M;) is the marginal likelihood of the data (this may be familiar to
you as the denominator of Bayes Theorem, which is variously referred to as the
model evidence or integrated likelihood). Formally, the marginal likelihood is the
probability of the observed data (X) under a given model (M;) that is averaged
over all possible values of the parameters of the model (6;) with respect to the
prior density on 6;

POX| M) = [ POX| 620 (5)

This makes it clear that more complex (parameter-rich) models are penalized by
virtue of the associated prior: each additional parameter entails integration of the
likelihood over the corresponding prior density.

Exact solutions for calculating marginal likelihoods are not avaiable for most
models, which requires that we resort to numerical integration methods to ap-
proximate these values. Below, we first provide a brief description of a robust
method for estimating marginal likelihoods—stepping-stone simulation (Xie et al.,
2011; Fan et al., 2011)—and then demonstrate how to use the implementation of
the stepping-stone algorithm in TESS to estimate the marginal likelihoods for two
birth-death branching-process models.

4.1.1 Stepping-stone simulation

Recent developments provide robust methods for estimating marginal likelihoods,
including stepping-stone (Xie et al., 2011; Fan et al., 2011) and path-sampling
estimators (Lartillot and Philippe, 2006; Baele et al., 2012). These algorithms
are similar to the familiar MCMC algorithms, which are intended to sample from

20



(and estimate) the joint posterior probability of the model parameters. Stepping-
stone algorithms are like a series of MCMC simulations that iteratively sample
from a specified number of discrete steps between the posterior and the prior
probability distributions. The basic idea is to estimate the probability of the
data for all points between the posterior and the prior—effectively summing the
probability of the data over the prior probability of the parameters to estimate
the marginal likelihood. Technically, the steps correspond to a series of power-
posteriors: a series of numbers between 1 and 0 that are iteratively applied to the
posterior. When the posterior probability is raised to the power of 1 (typically the
first stepping stone), samples are drawn from the (untransformed) posterior. By
contrast, when the posterior probability is raised to the power of 0 (typically the
last stepping stone), samples are drawn from the prior (Figure 14).
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Figure 14: Estimating marginal likelihoods using stepping-stone simulation. Estimat-
ing the marginal likelihood involves integrating the likelihood of the data over the entire
prior probability density for the model parameters. MCMC algorithms target the pos-
terior probability density, which is typically concentrated in a small region of the prior
probability density (A). Accordingly, standard MCMC simulation cannot provide unbi-
ased estimates of the marginal likelihood because it will typically fail to explore most
of the prior density. (B) Stepping-stone algorithms estimate the marginal likelihood by
means of a series of MCMC-like simulations, where the likelihood is iterativey raised to a
series of powers, effectivey forcing the simulation to more fully explore the prior density
of the model parameters. Six uniformly spaced stones span the posterior, where the
power posterior is f = 6/6 = 1, to the prior, where the power posterior is § = 0/6 = 0.

To perform a stepping-stone simulation, we need to specify (1) the number of
stepping stones (power posteriors) that we will use to traverse the path between
the posterior and the prior (e.g., we specify 50 or 100 stones), (2) the spacing of
the stones between the posterior and prior (e.g., we may specify that the stones
are distributed according to a beta distribution), (3) the number (and thinning)
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of samples to be drawn from each stepping stone, and

This method computes a vector of powers from a beta distribution, then exe-
cutes an MCMC run for each power step while raising the likelihood to that power.
As implementated in TESS, the vector of powers starts with 1, initially sampling
the likelihood close to the posterior, and incrementally sampling closer and closer
to the prior as the simulation progresses across the stepping stones.

4.1.2 Estimating marginal likelihoods of birth-death models

To estimate the marginal likelihoods of the branching-process models, we will
again make use of the corresponding likelihood functions that we defined in the
previous section. However, rather than using the tess.mcmc function to sample
from (and so estimate) the posterior distribution of model parameters, we will use
the tess.steppingStoneSampling function to estimate the marginal likelihood
of the data under the various models. The commands to execute this function for
each of the three branching-process models are as follows:

set.seed(12345)
marginalLikelihoodConstBD <- tess.steppingStoneSampling/(
likelihoodFunction = likelihoodConstBD,
priors = priorsConstBD,
parameters = runif(2,0,1),
logTransforms = c(TRUE,TRUE),
iterations = 1000,
burnin = 100,
K = 50)

marginalLikelihoodDecrBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodDecrBD,
priors = priorsDecrBD,
parameters = runif(3,0,1),
logTransforms = c(TRUE,TRUE,TRUE),
iterations = 1000,
burnin = 100,
K = 50)

marginalLikelihoodEpisodicBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodEpisodicBD,
priors = priorsEpisodicBD,
parameters = runif(4,0,1),
logTransforms = c(TRUE,TRUE, TRUE,TRUE),
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iterations = 1000,
burnin = 100,
K = 50)

marginalLikelihoodMassExtinctionBD <- tess.steppingStoneSampling(
likelihoodFunction = likelihoodMassExtinctionBD,
priors = priorsMassExtinctionBD,
parameters = c(runif(2,0,1) ,max(times)*3/4),
logTransforms = c(TRUE,TRUE,FALSE),
iterations = 1000,
burnin = 100,
K = 50)

We can now use the estimated marginal likelihoods to perform Bayes factor com-
parisons of these three candidate branching-process models.

# First, construct a wvector of the marginal likelhoods named by the

# model to which they refer.

candidateModels <- c("ConstBD"=marginallikelihoodConstBD,
"DecrBD"=marginallLikelihoodDecrBD,
"EpisodicBD"=marginallLikelihoodEpisodicBD,
"MassExtinctionBD"=marginallLikelihoodMassExtinctionBD)

# Make all possible combinations of the models.
marginallLikelihoodGrid <- expand.grid(MO=names(candidateModels),
Mi=names (candidateModels))

# Add a column that ts the 2 ln BF for each pair of models.
marginallLikelihoodGrid$BF <- 2 * (candidateModels[marginallLikelihoodGrid$MO] -
candidateModels [marginallLikelihoodGrid$M1])

# Sort the comparisons by their 2 ln BF in descending order.
marginallLikelihoodGrid <- marginalLikelihoodGrid[order (marginallikelihoodGrid$BF,
decreasing=TRUE),]

marginallikelihoodGrid

#i# MO M1 BF
## 13 ConstBD MassExtinctionBD 29.362497
## 15 EpisodicBD MassExtinctionBD 24.678734
## 14 DecrBD MassExtinctionBD 21.509682
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## 5 ConstBD DecrBD 7.852815
## 9 ConstBD EpisodicBD 4.683763
## 7 EpisodicBD DecrBD  3.169052
## 1 ConstBD ConstBD 0.000000
## 6 DecrBD DecrBD 0.000000
## 11 EpisodicBD EpisodicBD 0.000000
## 16 MassExtinctionBD MassExtinctionBD 0.000000
## 10 DecrBD EpisodicBD -3.169052
## 3 EpisodicBD ConstBD -4.683763
##t 2 DecrBD ConstBD -7.852815
## 8 MassExtinctionBD DecrBD -21.509682
## 12 MassExtinctionBD EpisodicBD -24.678734
## 4 MassExtinctionBD ConstBD -29.362497

If we compare these computed Bayes factor values to the thresholds in Table
2, we see that there is decisive support for the constant-rate model (e.g., this
model is decisively preferred over either of the variable-rate models; BF > 4.6).
Furthermore, we see that the decreasing-rate model is decisively preferred over the
episodic model.

4.2 Assessing model adequacy with posterior predictive
simulation

Bayes factors, dicussed in the previous section, allow us to assess the relative fit
of two or more competing models to a given dataset. However, even the very best
of the competing models may nevertheless be inadequate in an absolute sense.
Fortunately, we can assess the absolute fit of a candidate model to a given dataset
using posterior-predictive simulation. The basic premise of this approach is as
folows: if the model under consideration provides an adequate description of the
process that gave rise to our observed dataset, then we should be able to use that
model generate new datasets that are in some sense ‘similar’ to our dataset.

4.2.1 Posterior-predictive simulation

Posterior-predictive simulation involves six main steps:

1. We first calculate a summary statistic for our observed dataset. This is
intended to capture—in a single number—a relevant feature of our dataset.
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For models of lineage diversification, for example, we might use number
of species in the tree or the ~-statistic (Pybus and Harvey, 2000) as our
summary statistic.

. We then estimate parameters of the candidate model from our oberved
dataset. This simply involves performing an MCMC simulation to estimate
the posterior probability distribution of the candidate model parameters.

. Next, we specify parameters of the candidate model by drawing values from
the inferred joint posterior probability distributions. For example, we would
parameterize the diversification model under consideration by drawing rate
parameters from the joint posterior densities that we inferred from the study
tree.

. We then use this parameterized model to simulate a tree, and calculate the
summary statistic for the resulting tree.

. We repeat steps 3 — 4 many times to generate a distribution of the summary
statistic. This is the distribution that is predicted by simulating datasets
under the candidate model that has been parameterized using posterior es-
timates on the observed dataset.

. Finally, we compare the summary statistic calculated for the observed dataset
to the posterior-predictive distribution. If the candidate model provides an
adequate description of the process that gave rise to the original dataset,
then the statistic for the observed dataset will fall near the center of the
simulated distribution. Otherwise, the statistic from the observed data will
fall near the tails of the null distribution, indicating that the model cannot
be used to predict future data that look like the observed dataset.

We can formalize the relative position of the statistic for the observed data
to the posterior-predictive distribution by calculating the posterior-predictive p-
value. To do so, we simply sum the number of simulated summary statistics that
are greater than or equal to the observed value, and divide this by the number of
simulated values.

4.2.2 Assessing the adequacy of branching-process models

To assess the adequacy of branching-process models in TESS, we will use the
number of species and the v-statistic (Pybus and Harvey, 2000) as our example
test statistics. We will demonstrate how to perform posterior-predictive simulation
to assess the absolute fit of the constant-rate birth-death process model to the
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conifer dataset. Note that we have already estimated the joint posterior probability
distribution of this model using MCMC (described in Section 2.4.1, above).
We will condition our simulated trees on the age of conifer phylogeny.

tmrca <- max( times )

We first define the function that will perform the simulation. This is analogous
to the specification of the likelihood function, which means that it is possible to
perform posterior-predictive simulation under any birth-death model.

simConstBD <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

repeat {

tree <- tess.sim.age(n = 1,
age = tmrca,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
MRCA = TRUE) [[1]1]

if (tree$Nnode > 1) break

}

return (tree)

}

Note that the simulation function needs to return a single tree. The next step is
to simulate trees by sampling parameter values (for the speciation and extinction
rate) from the corresponding posterior probability distributions that we inferred
from the conifer tree (these are referred to as the ‘posterior-predictive samples’).

treesConstBD <- tess.PosteriorPrediction(simConstBD,samplesConstBD)
We will specify the number of species as the summary statistic:
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# compute the number of species in each simulate tree
numTaxaConstBD <- c()
for (i in 1:length(treesConstBD)){

numTaxaConstBD[i] <- treesConstBD[[i]]$Nnode + 1

}

We then compute the posterior-predictive quantiles for the number of species and
plot the posterior-predictive distribution and quantiles. Finally, we compare the
observed number of species to the posterior-predictive distribution.

# Compute the 95) posterior-predictive interval of the
# number of taza.
numTaxaPPDI <- quantile(numTaxaConstBD,prob=c(0.025,0.975))

# Plot the posterior—-predictive distribution with the

# quantiles. Then, compare it to the observed number

# of species, x.

plot(density(numTaxaConstBD) ,main="Number of taxa",xlab="",
ylab="Posterior Predictive Density",lwd=2)

abline (v=numTaxaPPDI,1lty=2,col="gray",lwd=2)
points(conifers$Nnode+1,0,pch="x")

We can plot the posterior-predictive distribution of the lineage-accumulation curves
(i.e., the LTT plots for the simulated trees), and compare this predictive distribu-
tion to the LTT plot for the observed tree.

1tt.plot(treesConstBD[[1]],backward=FALSE,col="gray",log="y",
ylim=c(1,max(numTaxaConstBD)) ,main="LTT-plot")

for (i in 2:min(100,length(treesConstBD))) 1ltt.lines(treesConstBD[[i]],
backward=FALSE, col="gray")

1tt.lines(conifers,backward=FALSE, 1wd=3)

Additional to using species number as the summary statistic, we can also use the
gamma statistic. To do so, we simply compute the value of the gamma statistic
for the observed tree, and then compare it to the posterior-predictive distribution
of the gamma statistic (i.e., the distribution of ~-statistics computed from the
simulated trees).
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# Compute the observed gamma statistic.
observedGamma <- gammaStat(conifers)

# Perform the posterior predictive test, and compute

# the 957 postertior predictive interval.

ppt <- tess.PosteriorPredictiveTest(treesConstBD,conifers,
gammaStat)

gammaPPDI <- quantile(ppt[[1]],prob=c(0.025,0.975))

# Compare the observed statistic to the posterior

# predictive density.

plot(density(ppt[[1]]) ,main="Gamma Statistic",xlab="",
ylab="Posterior Predictive Density",lwd=2)

abline (v=gammaPPDI,1ty=2,col="gray",6lwd=2)

points(observedGamma,0,pch="x")

Encouragingly, the observed values for both summary statistics—the number of
species and the gamma statistic—fall near the center of their respective posterior-
predictive distributions (see Figure 15 A and C, respectively). This means that
the model under consideration—the constant-rate birth-death model-—can be used
to simulate trees that look like our conifer study tree, indicating that it provides
a good absolute fit to our dataset. Conversely, if we had found that the observed
values for the summary statistics fell outside the 95% credible intervals of the
posterior-predictive distributions, we would conclude that the contant-rate birth-
death model cannot be used to predict trees that look like our conifer stuy tree.

We could further quantify the relative position of the observed summary statis-
tic within the posterior-predictive distribution by calculatig the posterior-predictive
p-value as follows:

mean (ppt [[1]] >= observedGamma)
## [1] 0.2396804

These posterior-predictive p-values can be used to assess the absolute fit of one or
more models to a given dataset.
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Figure 15: Assessing the absolute fit of the conifer tree to the constant-rate birth-death
model using posterior-predictive simulation. (A) The posterior-predictive distribution
for the number of species; the dashed gray lines indicate the 95% credible interval,
and the ‘x’ indicates the location of the observed species number. (B) LTT plots for
the simulated trees (gray) and for the conifer study tree (black). (C) The posterior-
predictive distribution for the gamma statistic; the dashed gray lines indicate the 95%
credible interval, and the ‘x’ indicates the location of the value of the gamma statistic
calculated for the conifer tree.
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4.3 Model selection with reversible-jump MCMC and CoMET

In the preceding sections, we assessed the relative and absolute fit of birth-death
process models using Bayes factors and posterior-predictive simulation. These
methods are computationally intensive and so are only practical when the set of
candidate branching-process models is quite small; however, the number of to-
tal birth-death models is vast. Consider, for example, the episodic birth-death
process models: there is an infinite number of nested models that differ in the
number of events, and for a specific number of events, there is an infite number
of times at which those events could occur. Clearly, the vast space of possible
branching-process models precludes their exhaustive pairwise comparison using
Bayes factors. This issue may be addressed by means of reversible-jump MCMC
(rjMCMC) approaches that treat the model as a random variable (i.e., the num-
ber of mass-extinction events). Additionally, the rjMCMC approach in CoMET
integrates over the (model) uncertainty of the nuisance parameters: the number of
diversification rate shifts is integrated over if you are interested only in the number
of mass-extinction events.

The CoMET method performs rjMCMC simulation over all possible episodi-
cally varying birth-death processes with explicitly modeled mass-extinction events.
Briefly, this method treats the number of specation-rate shifts, extinction-rate
shifts, and mass-extinction events—as well as the parameters associated with these
events—as random variables, and estimates their joint posterior distribution. To
perform a full CoMET analysis, we must therefore specify values for the following
quantities: (1) the expected number of speciation-rate shifts, extinction-rate shifts,
and mass-extinction events (Ag, Ap, Am, respectively); (2) the hyperpriors describ-
ing the speciation and extinction rates (up, o and pp, op, respectively); and (3)
the hyperpriors describing the mass-extinction survival probability («, 5). The
settings and accompanying arguments are summarized in Table 3. Note that the
method currently assumes that A\g = Ap, although the actual number, timing and
magnitude of speciation- and extinction-rate shifts are independent of each other.
For the full details of this method, and a more complete description of the model
parameters, see May et al. (2015).

4.3.1 Specifying hyperpiors a priori

Before we can run a CoMET analysis, we must specify prior distributions for each
of the parameters in the model. We will begin with the most complex model in
this section, and then show how to specify special cases of the full model in later
sections.

We will start by specifying the prior distributions for the expected number
of speciation- and extinction-rate shifts, Az = Ap, and mass-extinction events
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Table 3: Settings for the CoMET model. The left column lists the priors and hyperpriors
used by the CoMET model. The middle column lists the associated arguments for use with
the tess.analysis command. The right column lists the interpretation of the prior or
hyperprior.

Prior Argument Interpretation
Expected number of
E h .. .
As numExpectedRateChanges speciation-rate shifts
Expected number of
AD numExpectedRateChanges extinction-rate shifts
E ted ber of
AM numExpectedMassExtinctions Xpectec nimbet o

mass-extinction events
UB speciationRatePriorMean Mean speciation rate
Standard deviation of the
speciation rate

UD extinctionRatePriorMean Mean extinction rate
Standard deviation of the

op speciationRatePriorStDev

oD extinctionRatePriorStDev ..
extinction rate
h ter of th ted
o} pMassExtinctionPriorShapel > FID DR S SRR
survival probability
Sh ter of th ted
I6] pMassExtinctionPriorShape?2 abe DATariever oL The expecte

survival probability

Am.  As it turns out, the prior expectation of the number of events does not
impact our conclusions because we will use Bayes factors which cancel out the prior
assumptions. Thus, the specific prior choices only tweak the performance of the
method but should not result in qualitatively different conclusions. Accordingly,
we specify Ay to reflect the fossil record as follows:

numExpectedMassExtinctions <- 2

Similarly, we specify the prior expectation on the number of rate-shift events:

numExpectedRateChanges <- 2

Next, we consider the prior densities for the diversification-rate parameters them-
selves. Speciation and extinction rates must be greater than 0, so we will use
lognormal prior densities to reflect this fact. We must therefore specify the mean
and standard deviation hyperparameters of each lognormal distribution. We start
by specifying the hyperparameters in real space, i.e., the mean and standard de-
viation of the actual speciation and extinction rates.
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# Specify the mean and standard deviation of the lognormal
# prior on the speciation rate in rTeal Space
speciationPriorMu <- 0.2

speciationPriorSigma <- 0.5

# Specify the mean and standard deviation of the lognormal
# prior on the extinction rate in real sSpace
extinctionPriorMu <- 0.15

extinctionPriorSigma <- 0.5

We then transform the hyperparameters to reflect the mean and standard of the
log-transformed speciation and extinction rates. These are the y and o parameters
of the lognormal priors on speciation and extinction rates.

# Transform the priors on the speciation rate into log space.

speciationRatePriorMean <- log((speciationPriorMu~2)
/sqrt(speciationPriorSigma”2+
speciationPriorMu~2))

speciationRatePriorStDev <- sqrt( log(l+speciationPriorSigma”2
/ (speciationPriorMu~2)))

# Transform the priors on the extinction rate into log sSpace.

extinctionRatePriorMean <- log((extinctionPriorMu~2)
/sqrt(extinctionPriorSigma~2+
extinctionPriorMu~2))

extinctionRatePriorStDev <- sqrt( log(l+extinctionPriorSigma“~2
/(extinctionPriorMu~2)))

Finally, we need to specify the prior density on the survival probability of a mass-
extinction event. This value reflects the probability that a lineage survives a
particular mass-extinction event, and therefore must be between 0 (each lineage
will always go extinct) and 1 (each lineage will always survive). A convenient prior
density for this parameter is the beta distribution, which has two shape parameters,
«a and . We use the definition of what constitutes to a mass extinction to inform
our prior density on this parameter.

We begin parameterizing this distribution by specifying the expected survival
probability. The fossil record suggests that between 95% of species diversity was
lost during the a major mass-extinction events and 70% during a minor mass-
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extinction event. Therefore, the expected survival probability should be quite low.
In this example, we assume a priori a survival probability of 5%.

expectedSurvivalProbability <- 0.05

Using the expected survival probability, we compute the o and [ parameters of
the beta distribution. We set the value of 5 to be large, which focuses the prior
density more tightly around the expected survival probability. Then, we compute
« based on the expected survival probability and the specified 8 value.

pMassExtinctionPriorShape2 <- 100

pMassExtinctionPriorShapel <- - pMassExtinctionPriorShape2 *
expectedSurvivalProbability /
(expectedSurvivalProbability - 1)

We can inspect this beta distribution to confirm that it accurately reflects our
prior belief regarding the survival probability (Figure 16).

# Plot the density function of our beta distribution.

curve (dbeta(x,shapel=pMassExtinctionPriorShapel,
shape2=pMassExtinctionPriorShape?2) ,n=1001,
xlab='survival probability',ylab='density',las=1)

# Plot the 95J prior interval on the survival probability.
abline(v = gbeta(c(0.025,0.975),shapel=pMassExtinctionPriorShapel,
shape2=pMassExtinctionPriorShape2),1ty=2)

This beta distribution seems to reflect our prior belief that the survival probability
is expected to be ~ 5%, but can range from about 1% to about 10%.

Having specified prior distributions for all of the parameters of the CoOMET model,
we can now perform an analysis.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = FALSE,
initialSpeciationRate = speciationPriorMu,
speciationRatePriorMean = speciationRatePriorMean,
speciationRatePriorStDev = speciationRatePriorStDev,
initialExtinctionRate = extinctionPriorMu,
extinctionRatePriorMean = extinctionRatePriorMean,
extinctionRatePriorStDev = extinctionRatePriorStDev,
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Figure 16: Our prior density on the survival probability of a mass-extinction event.

samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2,

pMassExtinctionPriorShapel
pMassExtinctionPriorShape?2
MAX_ITERATIONS = 10000,
dir = "tess_analysis")

Now, we process the output using the function tess.process.output

output <- tess.process.output("tess_analysis",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

and visualize the results using tess.plot.output (Figure 17).

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
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"mass extinction Bayes factors",
"mass extinction times"),
las=2)

There appears to be nearly decisive support for a mass-extinction event about 27
million years ago (2In BF = 10), as well as strong support for a mass-extinction
event about 173 million year ago (21n BF ~ 6). Additionally, there is support for
an extinction-rate shift near the present; however, we caution against interpreting
these rate shifts based on a single analysis and recommend assessing the sensitivity
of this conclusion to different priors on the expected number of diversification-rate
shifts.
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Figure 17: Visualizing the results of a CoMET analysis when diversification hyperpriors
are specified a priori.
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4.3.2 Empirical hyperpiors

As mentioned above, it can be difficult to specify the prior distributions for the
speciation- and extinction-rate parameters. TESS implements an automatic em-
pirical hyperprior procedure which performs an initial Bayesian MCMC analysis
under a constant-rate birth-death process model to determine reasonable values for
the hyperparameters of the diversification priors. To perform a hyperprior analy-
sis, we simply have to set empiricalHyperPriors = TRUE. Additionally, we may
omit the parameters of the lognormal distributions, since they will automatically
be estimated from the data.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape?2
MAX_ITERATIONS = 10000,
dir = "comet_hyperpriors")

pMassExtinctionPriorShape?2,

As before, we process

output <- tess.process.output("comet_hyperpriors",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

and visualize the output using tess.process.output and tess.plot.output
(Figure 18).

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
"mass extinction Bayes factors",
"mass extinction times"),
las=2)
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Figure 18: Visualizing the results of a CoMET analysis with empirically estimated di-
versification hyperpriors.
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Interestingly, these results are quite similar to those from our a priori analysis
(Figure 17).

69



4.3.3 Without diversification-rate shifts

Based on the results of the Bayes factor comparisons (Section 4.1.2) and posterior-
predictive tests (Section 4.2.2)—which found support for a constant-rate birth-
death process—we may also be interested in performing a CoMET analysis without
diversification-rate shifts (i.e., where speciation and extinction rates are constant
through time). To do so, we use the argument estimateNumberRateChanges =
FALSE.

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
estimateNumberRateChanges = FALSE,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2 = pMassExtinctionPriorShape2,
MAX_ITERATIONS = 10000,
dir = "comet_no_rateshifts")

output <- tess.process.output("comet_no_rateshifts",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

We visualize the output as before. However, since there are no diversification-rate
shifts, we only plot estimates related to mass-extinction events (Figure 19).

layout.mat <- matrix(1:2,nrow=2,ncol=1)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("mass extinction Bayes factors",
"mass extinction times"),
las=2)
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4.3.4 Without mass-extinction events

Finally, we can also perform a CoMET analysis where mass-extinction events are
disallowed. This scenario is particularly interesting if you are interested in the di-
versification rates through time and are certain that there were no mass-extinction
events. Nevertheless, the full COMET analyses might be preferred because it includes
the case without mass extinction and the data should support this (if true).
We do this with the argument estimateNumberMassExtinctions = FALSE.
Because mass-extinction events are precluded, we can omit the corresponding pa-
rameters for survival probability, pMassExtinctionPriorShapel and pMassExtinctionPriorShape

set.seed(12345)

tess.analysis(conifers,
empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
estimateNumberMassExtinctions = FALSE,
MAX_ITERATIONS = 10000,
dir = "comet_no_mass_extinctions")

output <- tess.process.output("comet_no_mass_extinctions",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

We visualize the output as before, this time omitting estimates of the number and
timing of mass-extinction events (Figure 20).

layout.mat <- matrix(1:4,nrow=2,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.output (output,
fig.types = c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times"),
las=2)
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Figure 20: Visualizing the results of a CoMET analysis with empirically estimated di-
versification hyperpriors and without mass-extinction events.
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5 MOCMC Diagnosis, auto-tuning and auto-stopping

In any analysis we should be mindful about our ability to obtain reliable estimates,
especially when complex models and stochastic algorithms are used. Bayesian in-
ference is focussed on the joint posterior probability density of the model parame-
ters, which must be approximated using numerical methods (MCMC simulation).
It may be comforting to know that, in theory, an appropriately constructed and
adequately run MCMC simulation is guaranteed to provide an arbitrarily precise
description of the joint posterior probability density. In practice, however, even
a given MCMC algorithm that provides reliable estimates in most cases will nev-
ertheless fail in some cases and is not guaranteed to work for any given dataset.
This raises an obvious question: “When do we know that an MCMC simulation
provides reliable estimates for a given empirical analyses”. Convergence can never
be established with certainty, only non-convergence may be detected. We will il-
lustrate how to assess convergence of MCMC simulations for two examples: 1) for
analyses under a constant-rate birth-death process and 2) for analyses under the
CoMET model.

5.1 MCMC diagnosis for a constant-rate birth-death model

In order to properly assess convergence, we need to perform at least two indepen-
dent MCMC simulations. Otherwise, we run the risk in erroneously concluding
that an MCMC has converged when it may have been stuck in a subregion of the
joint posterior probability density.

We will use the same likelihood functions an MCMC methods described in
Section 2.4. We will first run two short MCMC simulations. For the sake of this
demonstration we will use a pre-burnin value of 0, a thinning of 1, and a chain
length of 200 cycles to highlight that the runs have not converged.

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }

my_priors <- c("diversification"=prior_delta,
"turnover"=prior_tau)

my_likelihood <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

1nl <- tess.likelihood(times,

lambda = speciation,
mu = extinction,
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samplingProbability = 1.0,
log = TRUE)

return (1nl)

}

samples_run_1 <- tess.mcmc(likelihoodFunction = my_likelihood,
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 200,
burnin = 0,
thinning = 1,
adaptive = TRUE,
verbose = TRUE)

samples_run_2 <- tess.mcmc(likelihoodFunction = my_likelihood,
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),
delta = c(1,1),
iterations = 200,
burnin = 0,
thinning = 1,
adaptive = TRUE,
verbose = TRUE)

We assess convergence using three diagnostics: the effective sample size, the
Geweke statistic, and the Gelman-Rubin statistic.

First, we compute the effective sample size (ESS). Samples drawn from an
MCMC simulation are correlated. Accordingly, each sample is not independent,
and so provides less information. We can compute the number of effectively in-
dependent samples by computing the ESS. This is important because we want to
draw statistical conclusions from the samples, such as the sample mean. Higher
ESS values should provide more precise inferences from the posterior sample. As
a rule of thumb, the ESS should be larger than 200.
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effectiveSize(samples_run_1)

## diversification turnover
#it 13.352224 7.931362

effectiveSize(samples_run_2)

## diversification turnover
#i 48.88930 17.18969

Next, we compute the Geweke diagnostic, which assesses convergence by com-
puting the probability that the samples collected during an early window of the
MCMC simulation are drawn from the same distribution as samples collected from
a later window.

geweke.diag(samples_run_1)

##

## Fraction in 1st window =
## Fraction in 2nd window
##

## diversification turnover
## 1.080 2.385

o O
(Ol

geweke.diag(samples_run_2)

##
## Fraction in 1st window
## Fraction in 2nd window
#
## diversification turnover
## 1.017 1.002

Il
o O
gl =

Hence, we only need to test if the computed values is smaller than

qnorm(0.05/2)
## [1] -1.959964

and larger than
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qnorm(1-0.05/2)

## [1] 1.959964

If this is the case, then we reject convergence. Note that we used a significance
threshold of a = 0.05, but you might use some other threshold, such as a = 0.01.
The final MCMC diagnostic—the Gelman-Rubin test—compares samples from
two independent simulations. This test compares the variance of sampled param-
eter values within each simulation to that between two simulations. This test
effectively assesses whether we can reject the null hypothesis that samples from
the two independent MCMC simulations are drawn from the same distribution.

gelman.diag(x=list(runl = samples_run_1,run2 = samples_run_2),
confidence = 0.95, transform = FALSE,
autoburnin = FALSE, multivariate=TRUE)$mpsrf

## [1] 1.067948

If the two independent MCMC simulations have converged to the stationary dis-
tribution, the ratio of the within-sample variance to the between-sample variance
(R) should be close to 1.0.

In general it is unlikely that those very short MCMC runs have converged.
You may observe this by the very low ESS values. Depending on the starting
values and your random seed, they actually may or may not have converged; and
thus we can not say anything definitely. As a rule-of-thumb, you should run your
MCMC simulations a bit longer, especially for more complex models than the
simple constant-rate birth-death process model.

5.2 MCMC diagnosis for the CoMET model
5.2.1 Single-chain diagnostics

Proper MCMC diagnosis for a CoMET analysis requires examining the convergence
and effective sample size of a large number of parameters, including the number of
diversification-rate shifts, the number of mass-extinction events, and the interval-
specific diversification-rate parameters. We will explore the single chain diagnostics
on the hyperprior example. Thus, we read in again the output to be sure that we
have it in memory.

output <- tess.process.output("comet_hyperpriors",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)
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First, we will assess the MCMC performance for the numerical parameters
of the COMET model (i.e., the number of diversification-rate shifts and mass-
extinction events).

# Compute the effective sample size and Geweke diagnostic for
# the number of speciation-rate shifts.
effectiveSize (output$numSpeciationCategories)

#it varil
##t 44.34624

geweke.diag(output$numSpeciationCategories)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varil

## 0.4795

o O
g =

# Compute the effective sample size and Geweke diagnostic for
# the number of extinction-rate shifts.
effectiveSize (output$numExtinctionCategories)

#t varil
## 34.1116

geweke.diag(output$numExtinctionCategories)

##

## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##

#i# varl

## -0.7937

# Compute the effective sample size and Geweke diagnostic for
# the number of mass—-extinctionevents.
effectiveSize (output$numMassExtinctions)

#it varil
## 54.3984
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geweke.diag(output$numMassExtinctions)

it
## Fraction in 1st window =

o O
(G2l

## Fraction in 2nd window
#t

## varil

## 0.2699

Next, we will use the function tess.plot.singlechain.diagnostics to examine
the effective sample size and Geweke diagnostic for the interval-specific speciation-
and extinction-rate parameters.

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.singlechain.diagnostics(output,
parameters = c("speciation rates",
"extinction rates",
"mass extinction times"),
las=2)

We can see from this single run that the ESS values for the interval-specific rate-
parameter estimates are quite low. The Geweke statistics does not pick up any non-
convergence, but this may be entirely due to the large uncertainty in the estimated
mean (a low ESS means a large standard error of the mean). We therefore need
to extend the length of this MCMC simulation to obtain adequate ESS values (we
recommend a minimum ESS of 500) and achieve satisfactory Geweke statistics.
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Figure 21: Visualizing the single-chain MCMC diagnostics for a CoMET analysis with
empirically estimated diversification hyperpriors. Blue bars/dots represent passed tests
and red bars/dots mean failed tests (failed convergence).
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5.2.2 Multiple-chain diagnostics

To perform multiple-chain diagnostics, we must first obtain samples from multiple
MCMC simulations. Accordingly, we will begin by repeating the above CoMET
analysis with empirically estimated hyperpriors four times, each time with the
same settings.

set.seed(12345)
posterior_directories <- paste('"comet_posterior_",
1:4,sep="")

for(dir in posterior_directories) {
tess.analysis(conifers,

empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel = pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2 = pMassExtinctionPriorShape2,
MAX_ITERATIONS = 10000,
dir = dir)

}

We use the function tess.plot.multichain.diagnostics to compute the Gelman-
Rubin convergence diagnostic for the interval-specific parameter estimates. First,
we have to process each of the CoMET outputs individually.

output_1 <- tess.process.output("comet_posterior_1",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

output_2 <- tess.process.output("comet_posterior_2",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

output_3 <- tess.process.output("comet_posterior_3",
numExpectedRateChanges = numExpectedRateChanges,

numExpectedMassExtinctions = numExpectedMassExtinctions)

output_4 <- tess.process.output("comet_posterior_4",
numExpectedRateChanges = numExpectedRateChanges,
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numExpectedMassExtinctions = numExpectedMassExtinctions)

Next, we make a list of the MCMC outputs and use the Gelman-Rubin diagnostic
on the parameters. For brevity, we analyze only a few of the parameters; you
should check each parameter to make sure they have all converged to the same
posterior distribution!

output_list <- list(output_1,output_2,output_3,output_4)

layout.mat <- matrix(1:3,nrow=3,ncol=1,byrow=TRUE)
layout (layout.mat)
tess.plot.multichain.diagnostics(output_list,
parameters = c("speciation rates",
"extinction rates",
"mass extinction times"),
las=2)

Generally speaking, those very short independent MCMC runs are unlikely to have
converged to their posterior distributions. Depending on the starting values and
your random seed, they may or may not have converged; and thus we can not
say anything definitely. We recommend running the chains until the PSRF values
have converged for all of the intervals.

5.3 Auto-tuning MCMC proposals

Convergence of an MCMC simulation and the ESS depend strongly on the effi-
ciency of the MCMC proposals. In our MCMC algorithm, we use a simple sliding
window proposal which is sufficient for these continuous parameters. The sliding
window proposal draws a new parameter value 2’ from a normal distribution with
mean z (the current parameter value) and standard deviation § (2’ ~ norm(z, d)).
You can imagine that with large values of § we are more likely to propose more
different values from the current value than if 9 is small. It is very difficult to know
what good values for ¢ are. To demonstrate, we will first run an MCMC with a
very small value of §. We will again use the constant rate birth-death process as
an example.

prior_delta <- function(x) { dexp(x,rate=10.0,log=TRUE) }

prior_tau <- function(x) { dexp(x,rate=10.0,log=TRUE) }

my_priors <- c("diversification"=prior_delta,
"turnover"=prior_tau)
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my_likelihood <- function(params) {

speciation <- params[1] + params[2]
extinction <- params[2]

1nl <- tess.likelihood(times,
lambda = speciation,
mu = extinction,
samplingProbability = 1.0,
log = TRUE)

return (1nl)

Specifically, we choose §; = 0.1 for the proposal on the net-diversification rate and
09 = 0.02 for the turn-over rate.

samples_run_small <- tess.mcmc(likelihoodFunction = my_likelihood,
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),
delta = c(0.1,0.02),
iterations = 1000,
burnin = 200,
thinning = 1,
adaptive = FALSE,
verbose = TRUE)

The particular behavior from small § values is that proposals are frequently ac-
cepted but the parameter changes very small, leading to slow convergence and
high between-sample correlations (auto-correlation). You can see this in the trace
plots of the MCMC.

plot(samples_run_small)
As a second demonstration we will use intermediate values (which are more ap-

proriate for this dataset). Specifically, we choose §; = 1.0 for the proposal on the
net-diversification rate and d; = 0.2 for the turn-over rate.
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Figure 23: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (top) and turnover rate (bottom) from the MCMC simulation
under the constant-rate birth-death process.

samples_run_good <- tess.mcmc(likelihoodFunction =

priors

my_likelihood,

my_priors,

parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),
delta = c(1,0.2),

iterations = 1000,
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burnin = 200,
thinning = 1,
adaptive = FALSE,
verbose = TRUE)

Good MCMC simulations accept between 20% to 50% of the proposals on contin-
uous parameters. If the chain is run long enough the trace plot will look like a
fuzzy caterpillar.

plot (samples_run_good)

As a third demonstration we will very large values for §. Specifically, we choose
01 = 1.0 for the proposal on the net-diversification rate and d, = 2.0 for the
turn-over rate.

samples_run_large <- tess.mcmc(likelihoodFunction = my_likelihood,
priors = my_priors,
parameters = runif(2,0,10),
logTransforms = c(TRUE,TRUE),
delta = c(10,2),
iterations = 1000,
burnin = 200,
thinning = 1,
adaptive = FALSE,
verbose = TRUE)

Because the MCMC proposes values that are very different from the current values,
very few proposals are accepted. That is, the MCMC moves very slowly from one
parameter value to another, which leads to long periods where the MCMC appears
to be stuck.

plot(samples_run_large)

We showed that both large and small values of § lead to poor mixing in the
MCMC simulation. Unfortunately, there is no way to know which values of ¢ are
good for the specific study tree ahead of time. Luckily, we can use methods like
auto-tuning (?) to overcome this problem. Auto-tuning the MCMC means that
we adjust the tuning parameter (0) during the burnin phase. In TESS, you need
to specify ADAPTIVE = TRUE. Then, you must specify the number of generations
to perform burnin with the burnin argument; additionally, you must choose the
frequency at which auto-tuning is performed with the CONVERGENCE_FREQUENCY
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Figure 24: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (top) and turnover rate (bottom) from the MCMC simulation
under the constant-rate birth-death process.

argument. During the burnin phase, every CONVERGENCE _FREQUENCY generations,
0 values are updated so that proposals are accepted approximately 44% of the time:
proposals that are accepted too frequently have their § values increased, wherease
proposals that are accepted too infrequently have their § values decreased. Once
the burnin phase is over, the chain begins logging samples from the MCMC and
stops adjusting the ¢ values.
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Figure 25: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (top) and turnover rate (bottom) from the MCMC simulation
under the constant-rate birth-death process.

samples_run_auto_tuned <- tess.mcmc(likelihoodFunction =
my_priors,

runif (2,0,10),

c (TRUE, TRUE) ,

my_likelihood,
priors =
parameters =
logTransforms =
delta = c(1,1),
iterations = 1000,
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burnin = 200,
thinning = 1,
adaptive = TRUE,
verbose = TRUE)

At the end of the MCMC simulation, TESS provides some information about the
values of 9. You can see that they were tuned roughly to the good values which we
chose “arbitrarily” above. You can also see the acceptance rate which is somewhere
between 20% and 50%. The trace plot also looks acceptable.

plot(samples_run_auto_tuned)

We recommend that you always use auto-tuning, and we include it as the de-
fault behavior of MCMC algorithms in TESS (with auto-tuning every 1000 burnin
generations).

5.4 Auto-stopping MCMC simulations

CoMET analyses are more complicated than the analyses which we showed in the
previous section. Auto-tuning helps to improve efficiency, but since a CoMET
analyses includes reversible-jump MCMC it intrinsically needs more iterations for
convergence. Nowing how long to run the MCMC to acheive sufficient convergence
is quite difficult. We have implemented automatic stopping functionality to ensure
that MCMCs are run sufficiently long to acheive good convergence. Auto-stopping
checks every k iterations to determine if the MCMC simulation has failed to con-
verge (as we described in the MCMC diagnosis section above). For example, we
can specify that the minimum number of effective samples should be 500 (MIN_ESS
= 500) for each parameter; the MCMC will stop once this threshold has been
reached. We also provide other hard stopping rules, for example, the maximum
number of iterations and the maximum running time; these hard stopping rules
are enforced even if the MCMC has not converged. This is particularly useful
when the MCMC does not seem to work and would, potentially, never converge.

In our small example we set the maximum number of iterations and the max-
imum time to large values so that they will not be reached.

set.seed(12345)
tess.analysis(conifers,

empiricalHyperPriors = TRUE,
samplingProbability = samplingFraction,
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Figure 26: Trace plots (left) and marginal posterior probability densities (right) for
the diversification rate (top) and turnover rate (bottom) from the MCMC simulation
under the constant-rate birth-death process.

numExpectedRateChanges = numExpectedRateChanges,

numExpectedMassExtinctions = numExpectedMassExtinctions,
pMassExtinctionPriorShapel,
pMassExtinctionPriorShape2,

pMassExtinctionPriorShapel
pMassExtinctionPriorShape?2
MAX_ITERATIONS = 100000000,
MAX_TIME = 24*60%*60,
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MIN_ESS = 500,
dir = "comet_auto_stop")

output_auto_stop <- tess.process.output("comet_auto_stop",
numExpectedRateChanges = numExpectedRateChanges,
numExpectedMassExtinctions = numExpectedMassExtinctions)

When we now process the output we see that the chain has converged nicely
compared with the short run we showed before.

# Compute the effective sample size and Geweke diagnostic for
# the number of speciation-rate shifts.
effectiveSize (output_auto_stop$numSpeciationCategories)

#it varil
## 613.7274

geweke.diag(output_auto_stop$numSpeciationCategories)

##

## Fraction in 1st window =
## Fraction in 2nd window
##

## varl

## -0.3335

o O
o=

# Compute the effective sample size and Geweke diagnostic for
# the number of exztinction-rate shifts.
effectiveSize (output_auto_stop$numExtinctionCategories)

## varl
## 622.5807

geweke.diag(output_auto_stop$numExtinctionCategories)

##

## Fraction in 1st window
## Fraction in 2nd window
##

## varil

## 0.8911

o O
gl =

91



# Compute the effective sample size and Geweke diagnostic for
# the number of mass—-extinction events.
effectiveSize (output_auto_stop$numMassExtinctions)

## varl
## 1063.746

geweke.diag(output_auto_stop$numMassExtinctions)

H##

## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##

## varl

## -0.9541

layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE)
layout (layout.mat)
tess.plot.singlechain.diagnostics(output_auto_stop,
parameters = c("speciation rates",
"extinction rates",
"mass extinction times"),
las=2)
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Automatic stopping is the default behavior for a CoMET analysis; by default,
the MCMC will stop once it has acheived 500 effective samples from the posterior.
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