Package ‘StanHeaders’

January 20, 2025

Title C++ Header Files for Stan
Version 2.32.10

URL https://mc-stan.org/

Description The C++ header files of the Stan project are provided by this package, but it contains lit-
tle R code or documentation. The main reference is the vignette. There is a shared object contain-
ing part of the 'CVODES' library, but its functionality is not accessible from R. 'StanHead-
ers' is primarily useful for developers who want to utilize the 'LinkingTo' directive of their pack-
age's DESCRIPTION file to build on the Stan library without incurring unnecessary dependen-
cies. The Stan project develops a probabilistic programming language that implements full or ap-
proximate Bayesian statistical inference via Markov Chain Monte Carlo or 'variational' meth-
ods and implements (optionally penalized) maximum likelihood estimation via optimiza-
tion. The Stan library includes an advanced automatic differentiation scheme, 'templated’ statisti-
cal and linear algebra functions that can handle the automatically 'differen-
tiable' scalar types (and doubles, 'ints', etc.), and a parser for the Stan language. The 'rstan' pack-
age provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.

Imports RcppParallel (>=5.1.4)

Suggests Rcpp, BH (>= 1.75.0-0), knitr (>= 1.36), rmarkdown, Matrix,
methods, rstan, withr

LinkingTo RcppEigen (>= 0.3.4.0.0), RcppParallel (>=5.1.4)
VignetteBuilder knitr

SystemRequirements GNU make, pandoc

Depends R (>=3.4.0)

License BSD_3 clause + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation yes

Author Ben Goodrich [cre, aut],
Joshua Pritikin [ctb],
Andrew Gelman [aut],
Bob Carpenter [aut],

Matt Hoffman [aut],

https://mc-stan.org/

2 CxxFlags

Daniel Lee [aut],

Michael Betancourt [aut],

Marcus Brubaker [aut],

Jigiang Guo [aut],

Peter Li [aut],

Allen Riddell [aut],

Marco Inacio [aut],

Mitzi Morris [aut],

Jeffrey Arnold [aut],

Rob Goedman [aut],

Brian Lau [aut],

Rob Trangucci [aut],

Jonah Gabry [aut],

Alp Kucukelbir [aut],

Robert Grant [aut],

Dustin Tran [aut],

Michael Malecki [aut],

Yuanjun Gao [aut],

Hamada S. Badr [aut] (<https://orcid.org/0000-0002-9808-2344>),
Trustees of Columbia University [cph],

Lawrence Livermore National Security [cph] (CVODES),
The Regents of the University of California [cph] (CVODES),
Southern Methodist University [cph] (CVODES)

Maintainer Ben Goodrich <benjamin.goodrich@columbia.edu>
Repository CRAN
Date/Publication 2024-07-15 08:50:02 UTC

Contents
CxxFlags e 2
stanFunction e 3
Index 6
CxxFlags Compilation flags for StanHeaders
Description

Output the compiler or linker flags required to build with the StanHeaders package

Usage

CxxFlags(as_character = FALSE)
LdFlags(as_character = FALSE)

https://orcid.org/0000-0002-9808-2344

stanFunction 3

Arguments

as_character A logical scalar that defaults to FALSE that indicates whether to return the com-
piler or linker flags as a character vector of length one. Otherwise, the com-
piler or linker flags are merely output to the screen, which is appropriate when
called from a Makevars or Makevars.win file

Details

These functions are currently not exported and are typically called from a Makevars or a Make-
vars.win file of another package.

Value

If as_character is TRUE, then these functions return a character vector of length one. Otherwise,
(which is the default) these functions return NULL invisibly after outputing the compiler or linker
flags to the screen.

stanFunction Compile and Call a Stan Math Function

Description

Call a function defined in the Stan Math Library from R using this wrapper around cppFunction.

Usage
stanFunction(function_name, ..., env = parent.frame(), rebuild = FALSE,
cacheDir = getOption("rcpp.cache.dir”, tempdir()),
showOutput = verbose, verbose = getOption("verbose"))
Arguments

function_name A character vector of length one that is the unscoped basename of a C++
function under the prim/ directory of the Stan Math Library that you would
like to evaluate. Functions (such as integrate_1d) of other functions are not
permitted and neither are functions (such as reject) of characters.

Further arguments that are passed to function_name in tag = value form, which
are passed to function_name by position. See the Details and Examples sec-
tions.

env, rebuild, cacheDir, showOutput, verbose
The same as in cppFunction

4 stanFunction
Details

The stanFunction function essentially compiles and evaluates a C++ function of the form

auto function_name(...) { return stan::math::function_name(...); }

It is essential to pass all arguments to function_name through the ...in order for the C++ wrapper
to know what the argument types are. The mapping between R types and Stan types is

R type Stan type
double real
integer int
complex complex
vector vector or complex_vector
matrix(x, nrow=1) row_vector or complex_row_vector
matrix matrix or complex_matrix

and, in addition, lists of the aforementioned R types map to arrays of Stan types and thus must not
be ragged if they are nested. The Stan version of the function is called with arguments specified
by position, i.e. in the order that they appear in the However, the R wrapper function has
arguments whose names are the same as the names passed through the

Value

The result of function_name evaluated at the arguments that are passed through the ..., which
could be of various R types. It also has the side effect of defining a function named function_name
in the environment given by the env argument that can subsequently be called with inputs of the
same type (but not necessarily the same value) that were passed through the

Examples

files <- dir(system.file("include”, "stan”, "math", "prim"”,
package = "StanHeaders"),
pattern = "hpp$", recursive = TRUE)
functions <- sub(”\\.hpp$", "",
sort(unique(basename(files[dirname(files) != "."1))))
length(functions) # you could call most of these Stan functions

Not run:
log(sum(exp(exp(1)), exp(pi))) # true value

stanFunction("log_sum_exp"”, x = exp(1), y = pi)
args(log_sum_exp) # now exists in .GlobalEnv
log_sum_exp(x = pi, y = exp(1))

but log_sum_exp() was not defined for a vector or matrix
x <= c(exp(1), pi)

try(log_sum_exp(x))

stanFunction("log_sum_exp”, x = x) # now it is

log_sum_exp() is now also defined for a matrix

stanFunction

log_sum_exp(as.matrix(x))
log_sum_exp(t(as.matrix(x)))
log_sum_exp(rbind(x, x))

but log_sum_exp() was not defined for a list
try(log_sum_exp(as.list(x)))
stanFunction("log_sum_exp”, x = as.list(x)) # now it is

in rare cases, passing a nested list is needed
stanFunction("dims"”, x = list(list(1:3)))

functions of complex arguments work
stanFunction("eigenvalues”, # different ordering than base:eigen()
x = matrix(complex(real = 1:9, imaginary = pi),
nrow = 3, ncol = 3))

nullary functions work but are not that interesting
stanFunction("negative_infinity")

PRNG functions work by adding a seed argument
stanFunction("lkj_corr_rng", K = 3L, eta = 1)

args(lkj_corr_rng) # has a seed argument

End(Not run)

Index

character, 3
cppFunction, 3
CxxFlags, 2

FALSE, 3

LdFlags (CxxFlags), 2
NULL, 3
stanFunction, 3

TRUE, 3

	CxxFlags
	stanFunction
	Index

