Package 'Sojourn.Data'

January 20, 2025

Type Package

Title Supporting Objects for Sojourn Accelerometer Methods

Version 0.3.0

Depends R (>= 3.1.0)

Description Stores objects (e.g. neural networks) that are needed for using Sojourn accelerometer methods. For more information, see Lyden K, Keadle S, Staudenmayer J, & Freedson P (2014)
<doi:10.1249/MSS.0b013e3182a42a2d>, Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, & Cook DB (2016) <doi:10.1249/MSS.00000000000915>, and Hibbing PR, Ellingson LD, Dixon PM, & Welk GJ (2018)
<doi:10.1249/MSS.000000000001486>.

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.1.1

URL https://github.com/paulhibbing/Sojourn.Data

BugReports https://github.com/paulhibbing/Sojourn.Data/issues

Suggests nnet

NeedsCompilation no

Author Paul R. Hibbing [aut, cre], Kate Lyden [aut]

Maintainer Paul R. Hibbing <paulhibbing@gmail.com>

Repository CRAN

Date/Publication 2021-05-03 14:20:06 UTC

cent

Contents

ALL.reg.nn	
cent	1
cent.1	-
class.nnn.6	1
reg.nn	4
scal	4
scal.1	4
Sojourn.Data	
youth_grids	
youth_hipCounts	
youth_hipRaw	
youth_wristCounts	
youth_wristRaw	

Index

ALL.reg.nn

Uniaxial neural network for use in original triaxial Sojourn method

Description

Uniaxial neural network for use in original triaxial Sojourn method

Usage

ALL.reg.nn

Format

From print(ALL.reg.nn): a 6-25-1 network with 207 weights inputs: X10. X25. X50. X75. X90. acf output(s): oxy.METS.calculated options were - skip-layer connections linear output units

cent

Centering coefficients for uniaxial nnetinputs

Description

Centering coefficients for uniaxial nnetinputs

Usage

cent

Format

A named numeric vector

cent.1

Description

Centering coefficients for triaxial nnetinputs

Usage

cent.1

Format

A named numeric vector

class.nnn.6 Triaxial neural ne

Triaxial neural network for original Sojourn method

Description

Triaxial neural network for original Sojourn method

Usage

class.nnn.6

Format

From print(class.nnn.6):

a 22-25-4 network with 767 weights inputs: X50. X75. X90. acf X10.2 X25.2 X50.2 X75.2 X90.2 acf.2 X25.3 X50.3 X75.3 X90.3 acf.3 X10.vm X25.vm X50.vm X75.vm X90.vm acf.vm inact.durations output(s): train.6\$act.type options were - skip-layer connections softmax modelling decay=0.03

reg.nn

Description

Uniaxial neural network for use in the original uniaxial Sojourn method

Usage

reg.nn

Format

From print(reg.nn): a 6-25-1 network with 207 weights inputs: X10. X25. X50. X75. X90. acf output(s): oxy.METS.calculated options were - skip-layer connections linear output units

scal

Scaling coefficients for uniaxial nnetinputs

Description

Scaling coefficients for uniaxial nnetinputs

Usage

scal

Format

numeric vector of size 6

scal.1

Scaling coefficients for triaxial nnetinputs

Description

Scaling coefficients for triaxial nnetinputs

Usage

scal.1

Format

numeric vector of size 25

Sojourn.Data

Description

Sojourn methods rely on large objects, which take up too much space in an ordinary package. Thus, the objects are stored in this data-only package, meant to complement the Sojourn package.

youth_grids

Data frame containing grid values for the youth Sojourn method

Description

Data frame containing grid values for the youth Sojourn method

Usage

youth_grids

Format

data frame with 4 rows and 14 columns

youth_hipCounts	Neural network for youth Sojourn method, taking activity count data
	from hip-worn monitors

Description

Neural network for youth Sojourn method, taking activity count data from hip-worn monitors

Usage

youth_hipCounts

Format

From print(youth_hipCounts):

a 9-15-3 network with 198 weights inputs: Age SexM BMI VM_Q10 VM_Q25 VM_Q50 VM_Q75 VM_Q90 VM_lag1 output(s): .outcome options were - softmax modelling

youth_hipRaw

Neural network for youth Sojourn method, taking raw accelerometer data from hip-worn monitors

Description

Neural network for youth Sojourn method, taking raw accelerometer data from hip-worn monitors

Usage

youth_hipRaw

Format

From print(youth_hipRaw):

a 9-20-3 network with 263 weights inputs: Age SexM BMI ENMO_Q10 ENMO_Q25 ENMO_Q50 ENMO_Q75 ENMO_Q90 ENMO_lag1 output(s): .outcome options were - softmax modelling decay=0.1

youth_wristCounts	Neural network for youth Sojourn method, taking activity count data
	from non-dominant-wrist-worn monitors

Description

Neural network for youth Sojourn method, taking activity count data from non-dominant-wristworn monitors

Usage

youth_wristCounts

Format

From print(youth_wristCounts):

a 9-15-3 network with 198 weights inputs: Age SexM BMI VM_Q10 VM_Q25 VM_Q50 VM_Q75 VM_Q90 VM_lag1 output(s): .outcome options were - softmax modelling decay=0.1

youth_wristRaw

Neural network for youth Sojourn method, taking raw accelerometer data from non-dominant-wrist-worn monitors

Description

Neural network for youth Sojourn method, taking raw accelerometer data from non-dominant-wristworn monitors

Usage

youth_wristRaw

Format

From print(youth_wristRaw):

a 9-15-3 network with 198 weights inputs: Age SexM BMI ENMO_Q10 ENMO_Q25 ENMO_Q50 ENMO_Q75 ENMO_Q90 ENMO_lag1 output(s): .outcome options were - softmax modelling decay=0.1

Index

* datasets ALL.reg.nn, 2 $\operatorname{cent}, 2$ cent.1,3 class.nnn.6,3 reg.nn, 4scal, 4 scal.1,4 youth_grids, 5 youth_hipCounts, 5 youth_hipRaw, 6 youth_wristCounts,6 youth_wristRaw,7 ALL.reg.nn,2cent, 2 cent.1, 3class.nnn.6,3 reg.nn,4 scal, 4 scal.1,4 Sojourn.Data,5 youth_grids, 5 youth_hipCounts, 5 youth_hipRaw, 6 youth_wristCounts,6 youth_wristRaw,7