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calc_final_corr Calculate Final Correlation Matrix

Description

This function calculates the final correlation matrix based on simulated variable type (ordinal, con-
tinuous, Poisson, and/or Negative Binomial). The function is used in rcorrvar and rcorrvar2.
This would not ordinarily be called directly by the user.

Usage

calc_final_corr(k_cat, k_cont, k_pois, k_nb, Y_cat, Yb, Y_pois, Y_nb)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables

k_cont the number of continuous variables

k_pois the number of Poisson variables

k_nb the number of Negative Binomial variables

Y_cat the ordinal (r >= 2 categories) variables

Yb the continuous variables

Y_pois the Poisson variables

Y_nb the Negative Binomial variables
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Value

a correlation matrix

See Also

rcorrvar, rcorrvar2

calc_fisherk Find Standardized Cumulants of Data based on Fisher’s k-statistics

Description

This function uses Fisher’s k-statistics to calculate the mean, standard deviation, skewness, stan-
dardized kurtosis, and standardized fifth and sixth cumulants given a vector of data. The result can
be used as input to find_constants or for data simulation.

Usage

calc_fisherk(x)

Arguments

x a vector of data

Value

A vector of the mean, standard deviation, skewness, standardized kurtosis, and standardized fifth
and sixth cumulants

References

Fisher RA (1928). Moments and Product Moments of Sampling Distributions. Proc. London Math.
Soc. 30, 199-238. doi: 10.1112/plms/s230.1.199.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03

See Also

calc_theory, calc_moments, find_constants

Examples

x <- rgamma(n = 10000, 10, 10)
calc_fisherk(x)

http://doi.org/10.1112/plms/s2-30.1.199
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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calc_lower_skurt Find Lower Boundary of Standardized Kurtosis for Polynomial Trans-
formation

Description

This function calculates the lower boundary of standardized kurtosis for Fleishman’s Third-Order
(method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s Fifth-Order (method = "Polyno-
mial", doi: 10.1016/S01679473(02)000725), given values of skewness and standardized fifth and
sixth cumulants. It uses nleqslv to search for solutions to the multi-constraint Lagrangean ex-
pression in either fleish_skurt_check or poly_skurt_check. When Headrick’s method is used
(method = "Polynomial"), if no solutions converge and a vector of sixth cumulant correction values
(Six) is provided, the smallest value is found that yields solutions. Otherwise, the function stops
with an error.

Each set of constants is checked for a positive correlation with the underlying normal variable (using
power_norm_corr) and a valid power method pdf (using pdf_check). If the correlation is <= 0,
the signs of c1 and c3 are reversed (for method = "Fleishman"), or c1, c3, and c5 (for method =
"Polynomial"). It will return a kurtosis value with constants that yield in invalid pdf if no other
solutions can be found (valid.pdf = "FALSE"). If a vector of kurtosis correction values (Skurt)
is provided, the function finds the smallest value that produces a kurtosis with constants that yield a
valid pdf. If valid pdf constants still can not be found, the original invalid pdf constants (calculated
without a correction) will be provided. If no solutions can be found, an error is given and the
function stops. Please note that this function can take considerable computation time, depending on
the number of starting values (n) and lengths of kurtosis (Skurt) and sixth cumulant (Six) correction
vectors. Different seeds should be tested to see if a lower boundary can be found.

Usage

calc_lower_skurt(method = c("Fleishman", "Polynomial"), skews = NULL,
fifths = NULL, sixths = NULL, Skurt = NULL, Six = NULL,
xstart = NULL, seed = 104, n = 50)

Arguments

method the method used to find the constants. "Fleishman" uses a third-order poly-
nomial transformation and requires only a skewness input. "Polynomial" uses
Headrick’s fifth-order transformation and requires skewness plus standardized
fifth and sixth cumulants.

skews the skewness value

fifths the standardized fifth cumulant (if method = "Fleishman", keep NULL)

sixths the standardized sixth cumulant (if method = "Fleishman", keep NULL)

Skurt a vector of correction values to add to the lower kurtosis boundary if the con-
stants yield an invalid pdf, ex: Skurt = seq(0.1, 10, by = 0.1)

Six a vector of correction values to add to the sixth cumulant if no solutions con-
verged, ex: Six = seq(0.05, 2, by = 0.05)

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
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xstart initial value for root-solving algorithm (see nleqslv). If user specified, must
be input as a matrix. If NULL generates n sets of random starting values from
uniform distributions.

seed the seed value for random starting value generation (default = 104)

n the number of initial starting values to use (default = 50). More starting values
require more calculation time.

Value

A list with components:

Min a data.frame containing the skewness, fifth and sixth standardized cumulants (if method =
"Polynomial"), constants, a valid.pdf column indicating whether or not the constants generate a
valid power method pdf, and the minimum value of standardized kurtosis ("skurtosis")

C a data.frame of valid power method pdf solutions, containing the skewness, fifth and sixth stan-
dardized cumulants (if method = "Polynomial"), constants, a valid.pdf column indicating TRUE,
and all values of standardized kurtosis ("skurtosis"). If the Lagrangean equations yielded valid pdf
solutions, this will also include the lambda values, and for method = "Fleishman", the Hessian de-
terminant and a minimum column indicating TRUE if the solutions give a minimum kurtosis. If the
Lagrangean equations yielded invalid pdf solutions, this data.frame contains constants calculated
from find_constants using the kurtosis correction.

Invalid.C if the Lagrangean equations yielded invalid pdf solutions, a data.frame containing the
skewness, fifth and sixth standardized cumulants (if method = "Polynomial"), constants, lambda
values, a valid.pdf column indicating FALSE, and all values of standardized kurtosis ("skurtosis").
If method = "Fleishman", also the Hessian determinant and a minimum column indicating TRUE if
the solutions give a minimum kurtosis.

Time the total calculation time in minutes

start a matrix of starting values used in root-solver

SixCorr1 if Six is specified, the sixth cumulant correction required to achieve converged solutions

SkurtCorr1 if Skurt is specified, the kurtosis correction required to achieve a valid power method
pdf (or the maximum value attempted if no valid pdf solutions could be found)

Notes on Fleishman Method

The Fleishman method can not generate valid power method distributions with a ratio of skew2/skurtosis >
9/14, where skurtosis is kurtosis - 3. This prevents the method from being used for any of the Chi-
squared distributions, which have a constant ratio of skew2/skurtosis = 2/3.

Symmetric Distributions: All symmetric distributions (which have skew = 0) possess the same
lower kurtosis boundary. This is solved for using optimize and the equations in Headrick &
Sawilowsky (2002, doi: 10.3102/10769986025004417). The result will always be: c0 = 0, c1 =
1.341159, c2 = 0, c3 = -0.1314796, and minimum standardized kurtosis = -1.151323. Note that
this set of constants does NOT generate a valid power method pdf. If a Skurt vector of kurtosis
correction values is provided, the function will find the smallest addition that yields a valid pdf.
This value is 1.16, giving a lower kurtosis boundary of 0.008676821.

Asymmetric Distributions: Due to the square roots involved in the calculation of the lower kur-
tosis boundary (see Headrick & Sawilowsky, 2002), this function uses the absolute value of the

http://doi.org/10.3102/10769986025004417
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skewness. If the true skewness is less than zero, the signs on the constants c0 and c2 are switched
after calculations (which changes skewness from positive to negative without affecting kurtosis).

Verification of Minimum Kurtosis: Since differentiability is a local property, it is possible to
obtain a local, instead of a global, minimum. For the Fleishman method, Headrick & Sawilowsky
(2002) explain that since the equation for kurtosis is not "quasiconvex on the domain consisting only
of the nonnegative orthant," second-order conditions must be verified. The solutions for lambda,
c1, and c3 generate a global kurtosis minimum if and only if the determinant of a bordered Hessian
is less than zero. Therefore, this function first obtains the solutions to the Lagrangean expression
in fleish_skurt_check for a given skewness value. These are used to calculate the standardized
kurtosis, the constants c1 and c3, and the Hessian determinant (using fleish_Hessian). If this
determinant is less than zero, the kurtosis is indicated as a minimum. The constants c0, c1, c2,
and c3 are checked to see if they yield a continuous variable with a positive correlation with the
generating standard normal variable (using power_norm_corr). If not, the signs of c1 and c3 are
switched. The final set of constants is checked to see if they generate a valid power method pdf
(using pdf_check). If a Skurt vector of kurtosis correction values is provided, the function will
find the smallest value that yields a valid pdf.

Notes on Headrick’s Method

The sixth cumulant correction vector (Six) may be used in order to aid in obtaining solutions which
converge. The calculation methods are the same for symmetric or asymmetric distributions, and for
positive or negative skew.

Verification of Minimum Kurtosis: For the fifth-order approximation, Headrick (2002, doi: 10.1016/
S01679473(02)000725) states "it is assumed that the hypersurface of the objective function [for the
kurtosis equation] has the appropriate (quasiconvex) configuration." This assumption alleviates the
need to check second-order conditions. Headrick discusses steps he took to verify the kurtosis so-
lution was in fact a minimum, including: 1) substituting the constant solutions back into the 1st
four Lagrangean constraints to ensure the results are zero, 2) substituting the skewness, kurtosis
solution, and standardized fifth and sixth cumulants back into the fifth-order equations to ensure
the same constants are produced (i.e. using find_constants), and 3) searching for values below
the kurtosis solution that solve the Lagrangean equation. This function ensures steps 1 and 2 by
the nature of the root-solving algorithm of nleqslv. Using a sufficiently large n (and, if necessary,
executing the function for different seeds) makes step 3 unnecessary.

Reasons for Function Errors

The most likely cause for function errors is that no solutions to fleish_skurt_check or poly_skurt_check
converged. If this happens, the simulation will stop. Possible solutions include: a) increasing the
number of initial starting values (n), b) using a different seed, or c) specifying a Six vector of
sixth cumulant correction values (for method = "Polynomial"). If the standardized cumulants are
obtained from calc_theory, the user may need to use rounded values as inputs (i.e. skews =
round(skews, 8)). Due to the nature of the integration involved in calc_theory, the results are
approximations. Greater accuracy can be achieved by increasing the number of subdivisions (sub)
used in the integration process. For example, in order to ensure that skew is exactly 0 for symmetric
distributions.

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
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See Also

nleqslv, fleish_skurt_check, fleish_Hessian, poly_skurt_check, power_norm_corr, pdf_check,
find_constants

Examples

# Normal distribution with Fleishman transformation
calc_lower_skurt("Fleishman", 0, 0, 0)

## Not run:

# This example takes considerable computation time.

# Reproduce Headrick's Table 2 (2002, p.698): note the seed here is 104.
# If you use seed = 1234, you get higher Headrick kurtosis values for V7 and V9.
# This shows the importance of trying different seeds.

options(scipen = 999)

V1 <- c(0, 0, 28.5)
V2 <- c(0.24, -1, 11)
V3 <- c(0.48, -2, 6.25)
V4 <- c(0.72, -2.5, 2.5)
V5 <- c(0.96, -2.25, -0.25)

http://doi.org/10.1007/BF02293811
https://CRAN.R-project.org/package=nleqslv
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.3102/10769986025004417
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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V6 <- c(1.20, -1.20, -3.08)
V7 <- c(1.44, 0.40, 6)
V8 <- c(1.68, 2.38, 6)
V9 <- c(1.92, 11, 195)
V10 <- c(2.16, 10, 37)
V11 <- c(2.40, 15, 200)

G <- as.data.frame(rbind(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11))
colnames(G) <- c("g1", "g3", "g4")

# kurtosis correction vector (used in case of invalid power method pdf constants)
Skurt <- seq(0.01, 2, 0.01)

# sixth cumulant correction vector (used in case of no converged solutions for
# method = "Polynomial")
Six <- seq(0.1, 10, 0.1)

# Fleishman's Third-order transformation
F_lower <- list()
for (i in 1:nrow(G)) {

F_lower[[i]] <- calc_lower_skurt("Fleishman", G[i, 1], Skurt = Skurt,
seed = 104)

}

# Headrick's Fifth-order transformation
H_lower <- list()
for (i in 1:nrow(G)) {

H_lower[[i]] <- calc_lower_skurt("Polynomial", G[i, 1], G[i, 2], G[i, 3],
Skurt = Skurt, Six = Six, seed = 104)

}

# Approximate boundary from PoisBinOrdNonNor
PBON_lower <- G$g1^2 - 2

# Compare results:
# Note: 1) the lower Headrick kurtosis boundary for V4 is slightly lower than the
# value found by Headrick (-0.480129), and
# 2) the approximate lower kurtosis boundaries used in PoisBinOrdNonNor are
# much lower than the actual Fleishman boundaries, indicating that the
# guideline is not accurate.
Lower <- matrix(1, nrow = nrow(G), ncol = 12)
colnames(Lower) <- c("skew", "fifth", "sixth", "H_valid.skurt",

"F_valid.skurt", "H_invalid.skurt", "F_invalid.skurt",
"PBON_skurt", "H_skurt_corr", "F_skurt_corr",
"H_time", "F_time")

for (i in 1:nrow(G)) {
Lower[i, 1:3] <- as.numeric(G[i, 1:3])
Lower[i, 4] <- ifelse(H_lower[[i]]$Min[1, "valid.pdf"] == "TRUE",

H_lower[[i]]$Min[1, "skurtosis"], NA)
Lower[i, 5] <- ifelse(F_lower[[i]]$Min[1, "valid.pdf"] == "TRUE",

F_lower[[i]]$Min[1, "skurtosis"], NA)
Lower[i, 6] <- min(H_lower[[i]]$Invalid.C[, "skurtosis"])
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Lower[i, 7] <- min(F_lower[[i]]$Invalid.C[, "skurtosis"])
Lower[i, 8:12] <- c(PBON_lower[i], H_lower[[i]]$SkurtCorr1,

F_lower[[i]]$SkurtCorr1,
H_lower[[i]]$Time, F_lower[[i]]$Time)

}
Lower <- as.data.frame(Lower)
print(Lower[, 1:8], digits = 4)

# skew fifth sixth H_valid.skurt F_valid.skurt H_invalid.skurt F_invalid.skurt PBON_skurt
# 1 0.00 0.00 28.50 -1.0551 0.008677 -1.3851 -1.1513 -2.0000
# 2 0.24 -1.00 11.00 -0.8600 0.096715 -1.2100 -1.0533 -1.9424
# 3 0.48 -2.00 6.25 -0.5766 0.367177 -0.9266 -0.7728 -1.7696
# 4 0.72 -2.50 2.50 -0.1319 0.808779 -0.4819 -0.3212 -1.4816
# 5 0.96 -2.25 -0.25 0.4934 1.443567 0.1334 0.3036 -1.0784
# 6 1.20 -1.20 -3.08 1.2575 2.256908 0.9075 1.1069 -0.5600
# 7 1.44 0.40 6.00 NA 3.264374 1.7758 2.0944 0.0736
# 8 1.68 2.38 6.00 NA 4.452011 2.7624 3.2720 0.8224
# 9 1.92 11.00 195.00 5.7229 5.837442 4.1729 4.6474 1.6864
# 10 2.16 10.00 37.00 NA 7.411697 5.1993 6.2317 2.6656
# 11 2.40 15.00 200.00 NA 9.182819 6.6066 8.0428 3.7600

Lower[, 9:12]

# H_skurt_corr F_skurt_corr H_time F_time
# 1 0.33 1.16 1.757 8.227
# 2 0.35 1.15 1.566 8.164
# 3 0.35 1.14 1.630 6.321
# 4 0.35 1.13 1.537 5.568
# 5 0.36 1.14 1.558 5.540
# 6 0.35 1.15 1.602 6.619
# 7 2.00 1.17 9.088 8.835
# 8 2.00 1.18 9.425 11.103
# 9 1.55 1.19 6.776 14.364
# 10 2.00 1.18 11.174 15.382
# 11 2.00 1.14 10.567 18.184

# The 1st 3 columns give the skewness and standardized fifth and sixth cumulants.
# "H_valid.skurt" gives the lower kurtosis boundary that produces a valid power method pdf
# using Headrick's approximation, with the kurtosis addition given in the "H_skurt_corr"
# column if necessary.
# "F_valid.skurt" gives the lower kurtosis boundary that produces a valid power method pdf
# using Fleishman's approximation, with the kurtosis addition given in the "F_skurt_corr"
# column if necessary.
# "H_invalid.skurt" gives the lower kurtosis boundary that produces an invalid power method
# pdf using Headrick's approximation, without the use of a kurtosis correction.
# "F_valid.skurt" gives the lower kurtosis boundary that produces an invalid power method
# pdf using Fleishman's approximation, without the use of a kurtosis correction.
# "PBON_skurt" gives the lower kurtosis boundary approximation used in the PoisBinOrdNonNor
# package.
# "H_time" gives the computation time (minutes) for Headrick's method.
# "F_time" gives the computation time (minutes) for Fleishman's method.



calc_moments 11

## End(Not run)

calc_moments Find Standardized Cumulants of Data by Method of Moments

Description

This function uses the method of moments to calculate the mean, standard deviation, skewness,
standardized kurtosis, and standardized fifth and sixth cumulants given a vector of data. The result
can be used as input to find_constants or for data simulation.

Usage

calc_moments(x)

Arguments

x a vector of data

Value

A vector of the mean, standard deviation, skewness, standardized kurtosis, and standardized fifth
and sixth cumulants

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

Kendall M & Stuart A (1977). The Advanced Theory of Statistics, 4th Edition. Macmillan, New
York.

See Also

calc_fisherk, calc_theory, find_constants

Examples

x <- rgamma(n = 10000, 10, 10)
calc_moments(x)

http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.1080/10629360600605065
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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calc_theory Find Theoretical Standardized Cumulants for Continuous Distribu-
tions

Description

This function calculates the theoretical mean, standard deviation, skewness, standardized kurtosis,
and standardized fifth and sixth cumulants given either a Distribution name (plus up to 4 parame-
ters) or a pdf (with specified lower and upper support bounds). The result can be used as input to
find_constants or for data simulation.
Note: Due to the nature of the integration involved in calculating the standardized cumulants, the
results are approximations. Greater accuracy can be achieved by increasing the number of sub-
divisions (sub) used in the integration process. However, the user may need to round the cu-
mulants (i.e. using round(x, 8)) before using them in other functions (i.e. find_constants,
calc_lower_skurt, nonnormvar1, rcorrvar, rcorrvar2) in order to achieve the desired results.
For example, in order to ensure that skew is exactly 0 for symmetric distributions.

Usage

calc_theory(Dist = c("Benini", "Beta", "Beta-Normal", "Birnbaum-Saunders",
"Chisq", "Dagum", "Exponential", "Exp-Geometric", "Exp-Logarithmic",
"Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian", "Gompertz",
"Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma",
"Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic",
"Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t",
"Topp-Leone", "Triangular", "Uniform", "Weibull"), params = NULL,
fx = NULL, lower = NULL, upper = NULL, sub = 1000)

Arguments

Dist name of the distribution. The possible values are: "Benini", "Beta", "Beta-
Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma",
"Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic",
"Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t",
"Topp-Leone", "Triangular", "Uniform", "Weibull". Please refer to the docu-
mentation for each package (either stats-package, VGAM-package, or triangle)
for information on appropriate parameter inputs.

params a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead)

fx a pdf input as a function of x only, i.e. fx <- function(x) 0.5*(x-1)^2; must return
a scalar (keep NULL if Dist supplied instead)

lower the lower support bound for a supplied fx, else keep NULL
upper the upper support bound for a supplied fx, else keep NULL
sub the number of subdivisions to use in the integration; if no result, try increasing

sub (requires longer computation time)
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Value

A vector of the mean, standard deviation, skewness, standardized kurtosis, and standardized fifth
and sixth cumulants

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03

Thomas W. Yee (2018). VGAM: Vector Generalized Linear and Additive Models. R package
version 1.0-5. https://CRAN.R-project.org/package=VGAM

Rob Carnell (2017). triangle: Provides the Standard Distribution Functions for the Triangle Distri-
bution. R package version 0.11. https://CRAN.R-project.org/package=triangle

See Also

calc_fisherk, calc_moments, find_constants

Examples

options(scipen = 999)

# Pareto Distribution: params = c(alpha = scale, theta = shape)
calc_theory(Dist = "Pareto", params = c(1, 10))

# Generalized Rayleigh Distribution: params = c(alpha = scale, mu/sqrt(pi/2) = shape)
calc_theory(Dist = "Rayleigh", params = c(0.5, 1))

# Laplace Distribution: params = c(location, scale)
calc_theory(Dist = "Laplace", params = c(0, 1))

# Triangle Distribution: params = c(a, b)
calc_theory(Dist = "Triangular", params = c(0, 1))

cdf_prob Calculate Theoretical Cumulative Probability for Continuous Vari-
ables

http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.1080/10629360600605065
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=triangle
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Description

This function calculates a cumulative probability using the theoretical power method cdf Fp(Z)(p(z)) =
Fp(Z)(p(z), FZ(z)) up to sigma∗y+mu = delta, where y = p(z), after using pdf_check. If the
given constants do not produce a valid power method pdf, a warning is given. The formulas were
obtained from Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065).

Usage

cdf_prob(c, method = c("Fleishman", "Polynomial"), delta = 0.5, mu = 0,
sigma = 1, lower = -1000000, upper = 1000000)

Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to find the constants. "Fleishman" uses a third-order polyno-
mial transformation and "Polynomial" uses Headrick’s fifth-order transforma-
tion.

delta the value sigma ∗ y+mu, where y = p(z), at which to evaluate the cumulative
probability

mu mean for the continuous variable

sigma standard deviation for the continuous variable

lower lower bound for integration of the standard normal variable Z that generates the
continuous variable

upper upper bound for integration

Value

A list with components:

cumulative probability the theoretical cumulative probability up to delta

roots the roots z that make sigma ∗ p(z) +mu = delta

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
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Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

See Also

find_constants, pdf_check

Examples

# Normal distribution with Headrick's fifth-order PMT:
cdf_prob(c = c(0, 1, 0, 0, 0, 0), "Polynomial", delta = qnorm(0.05))

## Not run:
# Beta(a = 4, b = 2) Distribution:
con <- find_constants(method = "Polynomial", skews = -0.467707, skurts = -0.375,

fifths = 1.403122, sixths = -0.426136)$constants
cdf_prob(c = con, method = "Polynomial", delta = 0.5)

## End(Not run)

chat_nb Calculate Upper Frechet-Hoeffding Correlation Bound: Negative Bi-
nomial - Normal Variables

Description

This function calculates the upper Frechet-Hoeffding bound on the correlation between a Negative
Binomial variable and the normal variable used to generate it. It is used in findintercorr_cat_nb
and findintercorr_cont_nb in calculating the intermediate MVN correlations. This extends the
method of Amatya & Demirtas (2015, doi: 10.1080/00949655.2014.953534) to Negative Binomial
variables. This function would not ordinarily be called directly by the user.

Usage

chat_nb(size, prob = NULL, mu = NULL, n_unif = 10000, seed = 1234)

Arguments

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

n_unif the number of uniform random numbers to generate in calculating the bound
(default = 10000)

seed the seed used in random number generation (default = 1234)

http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1080/00949655.2014.953534
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Value

A scalar equal to the correlation upper bound.

References

Please see references for chat_pois.

See Also

findintercorr_cat_nb, findintercorr_cont_nb, findintercorr

chat_pois Calculate Upper Frechet-Hoeffding Correlation Bound: Poisson -
Normal Variables

Description

This function calculates the upper Frechet-Hoeffding bound on the correlation between a Pois-
son variable and the normal variable used to generate it. It is used in findintercorr_cat_pois
and findintercorr_cont_pois in calculating the intermediate MVN correlations. This uses the
method of Amatya & Demirtas (2015, doi: 10.1080/00949655.2014.953534). This function would
not ordinarily be called directly by the user.

Usage

chat_pois(lam, n_unif = 10000, seed = 1234)

Arguments

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

n_unif the number of uniform random numbers to generate in calculating the bound
(default = 10000)

seed the seed used in random number generation (default = 1234)

Value

A scalar equal to the correlation upper bound.

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15): 3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2): 104-109. doi: 10.1198/tast.2011.10090.

Frechet M. Sur les tableaux de correlation dont les marges sont donnees. Ann. l’Univ. Lyon SectA.
1951;14:53-77.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090


denom_corr_cat 17

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1): 91-102. doi: 10.1002/
asmb.901.

See Also

findintercorr_cat_pois, findintercorr_cont_pois, findintercorr

denom_corr_cat Calculate Denominator Used in Intercorrelations Involving Ordinal
Variables

Description

This function calculates part of the the denominator used to find intercorrelations involving ordi-
nal variables or variables that are treated as ordinal (i.e. count variables in the method used in
rcorrvar2). It uses the formula given by Olsson et al. (1982, doi: 10.1007/BF02294164) in de-
scribing polyserial and point-polyserial correlations. For an ordinal variable with r >= 2 categories,
the value is given by:

r−1∑
j=1

ϕ(τj) ∗ (yj+1 − yj),

where
ϕ(τ) = (2π)−1/2 ∗ exp(−0.5 ∗ τ2).

Here, yj is the j-th support value and τj is Φ−1(
∑j

i=1 Pr(Y = yi)). This function would not
ordinarily be called directly by the user.

Usage

denom_corr_cat(marginal, support)

Arguments

marginal a vector of cumulative probabilities defining the marginal distribution of the
variable; if the variable can take r values, the vector will contain r - 1 probabili-
ties (the r-th is assumed to be 1)

support a vector of containing the ordered support values

Value

A scalar

References

Olsson U, Drasgow F, & Dorans NJ (1982). The Polyserial Correlation Coefficient. Psychometrika,
47(3): 337-47. doi: 10.1007/BF02294164.

http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
http://doi.org/10.1007/BF02294164
http://doi.org/10.1007/BF02294164
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See Also

ordnorm, rcorrvar, rcorrvar2, findintercorr_cont_cat, findintercorr_cont_pois2,
findintercorr_cont_nb2

error_loop Error Loop to Correct Final Correlation of Simulated Variables

Description

This function corrects the final correlation of simulated variables to be within a precision value
(epsilon) of the target correlation. It updates the pairwise intermediate MVN correlation iteratively
in a loop until either the maximum error is less than epsilon or the number of iterations exceeds
the maximum number set by the user (maxit). It uses error_vars to simulate all variables and
calculate the correlation of all variables in each iteration. This function would not ordinarily be
called directly by the user. The function is a modification of Barbiero & Ferrari’s ordcont function
in GenOrd-package. The ordcont has been modified in the following ways:

1) It works for continuous, ordinal (r >= 2 categories), and count variables.

2) The initial correlation check has been removed because this intermediate correlation Sigma from
rcorrvar or rcorrvar2 has already been checked for positive-definiteness and used to generate
variables.

3) Eigenvalue decomposition is done on Sigma to impose the correct interemdiate correlations on
the normal variables. If Sigma is not positive-definite, the negative eigen values are replaced with
0.

4) The final positive-definite check has been removed.

5) The intermediate correlation update function was changed to accommodate more situations.

6) A final "fail-safe" check was added at the end of the iteration loop where if the absolute error
between the final and target pairwise correlation is still > 0.1, the intermediate correlation is set
equal to the target correlation (if extra_correct = "TRUE").

7) Allowing specifications for the sample size and the seed for reproducibility.

Usage

error_loop(k_cat, k_cont, k_pois, k_nb, Y_cat, Y, Yb, Y_pois, Y_nb, marginal,
support, method, means, vars, constants, lam, size, prob, mu, n, seed,
epsilon, maxit, rho0, Sigma, rho_calc, extra_correct)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables

k_cont the number of continuous variables

k_pois the number of Poisson variables

k_nb the number of Negative Binomial variables

Y_cat the ordinal variables generated from rcorrvar or rcorrvar2
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Y the continuous (mean 0, variance 1) variables

Yb the continuous variables with desired mean and variance

Y_pois the Poisson variables

Y_nb the Negative Binomial variables

marginal a list of length equal k_cat; the i-th element is a vector of the cumulative proba-
bilities defining the marginal distribution of the i-th variable; if the variable can
take r values, the vector will contain r - 1 probabilities (the r-th is assumed to be
1)

support a list of length equal k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided, the default is for the i-th element to be
the vector 1, ..., r

method the method used to generate the continuous variables. "Fleishman" uses a third-
order polynomial transformation and "Polynomial" uses Headrick’s fifth-order
transformation.

means a vector of means for the continuous variables

vars a vector of variances

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture)

n the sample size

seed the seed value for random number generation

epsilon the maximum acceptable error between the final and target correlation matrices;
smaller epsilons take more time

maxit the maximum number of iterations to use to find the intermediate correlation; the
correction loop stops when either the iteration number passes maxit or epsilon
is reached

rho0 the target correlation matrix

Sigma the intermediate correlation matrix previously used in rcorrvar or rcorrvar2

rho_calc the final correlation matrix calculated in rcorrvar or rcorrvar2

extra_correct if "TRUE", a final "fail-safe" check is used at the end of the iteration loop where
if the absolute error between the final and target pairwise correlation is still >
0.1, the intermediate correlation is set equal to the target correlation



20 error_loop

Value

A list with the following components:

Sigma the intermediate MVN correlation matrix resulting from the error loop

rho_calc the calculated final correlation matrix generated from Sigma

Y_cat the ordinal variables

Y the continuous (mean 0, variance 1) variables

Yb the continuous variables with desired mean and variance

Y_pois the Poisson variables

Y_nb the Negative Binomial variables

niter a matrix containing the number of iterations required for each variable pair

References

Barbiero A, Ferrari PA (2015). GenOrd: Simulation of Discrete Random Variables with Given Cor-
relation Matrix and Marginal Distributions. R package version 1.4.0. https://CRAN.R-project.
org/package=GenOrd

Ferrari PA, Barbiero A (2012). Simulating ordinal data. Multivariate Behavioral Research, 47(4):
566-589. doi: 10.1080/00273171.2012.692630.

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

Higham N (2002). Computing the nearest correlation matrix - a problem from finance; IMA Journal
of Numerical Analysis 22: 329-343.

See Also

ordcont, rcorrvar, rcorrvar2, findintercorr, findintercorr2

https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=GenOrd
http://doi.org/10.1080/00273171.2012.692630
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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error_vars Generate Variables for Error Loop

Description

This function simulates the continuous, ordinal (r >= 2 categories), Poisson, or Negative Binomial
variables used in error_loop. It is called in each iteration, regenerates all variables, and calculates
the resulting correlation matrix. This function would not ordinarily be called directly by the user.

Usage

error_vars(marginal, support, method, means, vars, constants, lam, size, prob,
mu, Sigma, rho_calc, q, r, k_cat, k_cont, k_pois, k_nb, Y_cat, Y, Yb, Y_pois,
Y_nb, n, seed)

Arguments

marginal a list of length equal k_cat; the i-th element is a vector of the cumulative proba-
bilities defining the marginal distribution of the i-th variable; if the variable can
take r values, the vector will contain r - 1 probabilities (the r-th is assumed to be
1)

support a list of length equal k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided, the default is for the i-th element to be
the vector 1, ..., r

method the method used to generate the continuous variables. "Fleishman" uses a third-
order polynomial transformation and "Polynomial" uses Headrick’s fifth-order
transformation.

means a vector of means for the continuous variables

vars a vector of variances

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture)

Sigma the 2 x 2 intermediate correlation matrix generated by error_loop

rho_calc the 2 x 2 final correlation matrix calculated in error_loop

q the row index of the 1st variable

r the column index of the 2nd variable

k_cat the number of ordinal (r >= 2 categories) variables
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k_cont the number of continuous variables
k_pois the number of Poisson variables
k_nb the number of Negative Binomial variables
Y_cat the ordinal variables generated from error_loop

Y the continuous (mean 0, variance 1) variables
Yb the continuous variables with desired mean and variance
Y_pois the Poisson variables
Y_nb the Negative Binomial variables
n the sample size
seed the seed value for random number generation

Value

A list with the following components:
Sigma the intermediate MVN correlation matrix
rho_calc the calculated final correlation matrix generated from Sigma
Y_cat the ordinal variables
Y the continuous (mean 0, variance 1) variables
Yb the continuous variables with desired mean and variance
Y_pois the Poisson variables
Y_nb the Negative Binomial variables

References

Please see references for error_loop.

See Also

ordcont, rcorrvar, rcorrvar2, error_loop

findintercorr Calculate Intermediate MVN Correlation for Ordinal, Continuous,
Poisson, or Negative Binomial Variables: Correlation Method 1

Description

This function calculates a k x k intermediate matrix of correlations, where k = k_cat + k_cont +
k_pois + k_nb, to be used in simulating variables with rcorrvar. The ordering of the variables
must be ordinal, continuous, Poisson, and Negative Binomial (note that it is possible for k_cat,
k_cont, k_pois, and/or k_nb to be 0). The function first checks that the target correlation ma-
trix rho is positive-definite and the marginal distributions for the ordinal variables are cumulative
probabilities with r - 1 values (for r categories). There is a warning given at the end of simula-
tion if the calculated intermediate correlation matrix Sigma is not positive-definite. This function is
called by the simulation function rcorrvar, and would only be used separately if the user wants to
find the intermediate correlation matrix only. The simulation functions also return the intermediate
correlation matrix.
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Usage

findintercorr(n, k_cont = 0, k_cat = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), constants, marginal = list(),
support = list(), nrand = 100000, lam = NULL, size = NULL,
prob = NULL, mu = NULL, rho = NULL, seed = 1234, epsilon = 0.001,
maxit = 1000)

Arguments

n the sample size (i.e. the length of each simulated variable)

k_cont the number of continuous variables (default = 0)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial") like that
returned by find_constants

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

support a list of length equal to k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided (i.e. support = list()), the default is for
the i-th element to be the vector 1, ..., r

nrand the number of random numbers to generate in calculating the bound (default =
10000)

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

seed the seed value for random number generation (default = 1234)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ordnorm

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ordnorm
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Value

the intermediate MVN correlation matrix

Overview of Correlation Method 1

The intermediate correlations used in correlation method 1 are more simulation based than those
in correlation method 2, which means that accuracy increases with sample size and the number of
repetitions. In addition, specifying the seed allows for reproducibility. In addition, method 1 differs
from method 2 in the following ways:

1) The intermediate correlation for count variables is based on the method of Yahav & Shmueli
(2012, doi: 10.1002/asmb.901), which uses a simulation based, logarithmic transformation of the
target correlation. This method becomes less accurate as the variable mean gets closer to zero.

2) The ordinal - count variable correlations are based on an extension of the method of Amatya &
Demirtas (2015, doi: 10.1080/00949655.2014.953534), in which the correlation correction factor
is the product of the upper Frechet-Hoeffding bound on the correlation between the count variable
and the normal variable used to generate it and a simulated upper bound on the correlation between
an ordinal variable and the normal variable used to generate it (see Demirtas & Hedeker, 2011,
doi: 10.1198/tast.2011.10090).

3) The continuous - count variable correlations are based on an extension of the methods of
Amatya & Demirtas (2015) and Demirtas et al. (2012, doi: 10.1002/sim.5362), in which the cor-
relation correction factor is the product of the upper Frechet-Hoeffding bound on the correlation
between the count variable and the normal variable used to generate it and the power method corre-
lation between the continuous variable and the normal variable used to generate it (see Headrick &
Kowalchuk, 2007, doi: 10.1080/10629360600605065). The intermediate correlations are the ratio
of the target correlations to the correction factor.

The processes used to find the intermediate correlations for each variable type are described below.
Please see the corresponding function help page for more information:

Ordinal Variables

Correlations are computed pairwise. If both variables are binary, the method of Demirtas et al.
(2012, doi: 10.1002/sim.5362) is used to find the tetrachoric correlation (code adapted from Tetra.Corr.BB).
This method is based on Emrich and Piedmonte’s (1991, doi: 10.1080/00031305.1991.10475828)
work, in which the joint binary distribution is determined from the third and higher moments of a
multivariate normal distribution: Let Y1 and Y2 be binary variables with E[Y1] = Pr(Y1 = 1) = p1,
E[Y2] = Pr(Y2 = 1) = p2, and correlation ρy1y2. Let Φ[x1, x2, ρx1x2] be the standard bivariate
normal cumulative distribution function, given by:

Φ[x1, x2, ρx1x2] =

∫ x1

−∞

∫ x2

−∞
f(z1, z2, ρx1x2)dz1dz2

where

f(z1, z2, ρx1x2) = [2π
√

1− ρ2x1x2]
−1 ∗ exp[−0.5(z21 − 2ρx1x2z1z2 + z22)/(1− ρ2x1x2)]

Then solving the equation

Φ[z(p1), z(p2), ρx1x2] = ρy1y2
√
p1(1− p1)p2(1− p2) + p1p2

http://doi.org/10.1002/asmb.901
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
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for ρx1x2 gives the intermediate correlation of the standard normal variables needed to generate
binary variables with correlation ρy1y2. Here z(p) indicates the pth quantile of the standard normal
distribution.

Otherwise, ordnorm is called for each pair. If the resulting intermediate matrix is not positive-
definite, there is a warning given because it may not be possible to find a MVN correlation matrix
that will produce the desired marginal distributions after discretization. Any problems with positive-
definiteness are corrected later.

Continuous Variables

Correlations are computed pairwise. findintercorr_cont is called for each pair.

Poisson Variables

findintercorr_pois is called to calculate the intermediate MVN correlation for all Poisson vari-
ables.

Negative Binomial Variables

findintercorr_nb is called to calculate the intermediate MVN correlation for all Negative Bino-
mial variables.

Continuous - Ordinal Pairs

findintercorr_cont_cat is called to calculate the intermediate MVN correlation for all Contin-
uous and Ordinal combinations.

Ordinal - Poisson Pairs

findintercorr_cat_pois is called to calculate the intermediate MVN correlation for all Ordinal
and Poisson combinations.

Ordinal - Negative Binomial Pairs

findintercorr_cat_nb is called to calculate the intermediate MVN correlation for all Ordinal and
Negative Binomial combinations.

Continuous - Poisson Pairs

findintercorr_cont_pois is called to calculate the intermediate MVN correlation for all Contin-
uous and Poisson combinations.

Continuous - Negative Binomial Pairs

findintercorr_cont_nb is called to calculate the intermediate MVN correlation for all Continu-
ous and Negative Binomial combinations.

Poisson - Negative Binomial Pairs

findintercorr_pois_nb is called to calculate the intermediate MVN correlation for all Poisson
and Negative Binomial combinations.



26 findintercorr

References

Please see rcorrvar for additional references.
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See Also

find_constants, rcorrvar

Examples

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234
n <- 10000

# Continuous Distributions: Normal, t (df = 10), Chisq (df = 4),
# Beta (a = 4, b = 2), Gamma (a = 4, b = 4)
Dist <- c("Gaussian", "t", "Chisq", "Beta", "Gamma")

# calculate standardized cumulants
# those for the normal and t distributions are rounded to ensure the
# correct values (i.e. skew = 0)

M1 <- round(calc_theory(Dist = "Gaussian", params = c(0, 1)), 8)
M2 <- round(calc_theory(Dist = "t", params = 10), 8)
M3 <- calc_theory(Dist = "Chisq", params = 4)
M4 <- calc_theory(Dist = "Beta", params = c(4, 2))
M5 <- calc_theory(Dist = "Gamma", params = c(4, 4))
M <- cbind(M1, M2, M3, M4, M5)
M <- round(M[-c(1:2),], digits = 6)
colnames(M) <- Dist
rownames(M) <- c("skew", "skurtosis", "fifth", "sixth")
means <- rep(0, length(Dist))
vars <- rep(1, length(Dist))

# calculate constants
con <- matrix(1, nrow = ncol(M), ncol = 6)
for (i in 1:ncol(M)) {
con[i, ] <- find_constants(method = "Polynomial", skews = M[1, i],

skurts = M[2, i], fifths = M[3, i],
sixths = M[4, i])

}

http://doi.org/10.1080/00031305.1991.10475828
https://CRAN.R-project.org/package=BinNonNor
http://doi.org/10.1007/BF02293687
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# Binary and Ordinal Distributions
marginal <- list(0.3, 0.4, c(0.1, 0.5), c(0.3, 0.6, 0.9),

c(0.2, 0.4, 0.7, 0.8))
support <- list()

# Poisson Distributions
lam <- c(1, 5, 10)

# Negative Binomial Distributions
size <- c(3, 6)
prob <- c(0.2, 0.8)

ncat <- length(marginal)
ncont <- ncol(M)
npois <- length(lam)
nnb <- length(size)

# Create correlation matrix from a uniform distribution (-0.8, 0.8)
set.seed(seed)
Rey <- diag(1, nrow = (ncat + ncont + npois + nnb))
for (i in 1:nrow(Rey)) {

for (j in 1:ncol(Rey)) {
if (i > j) Rey[i, j] <- runif(1, -0.8, 0.8)
Rey[j, i] <- Rey[i, j]

}
}

# Test for positive-definiteness
library(Matrix)
if(min(eigen(Rey, symmetric = TRUE)$values) < 0) {

Rey <- as.matrix(nearPD(Rey, corr = T, keepDiag = T)$mat)
}

# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr(k_cat = ncat, k_cont = ncont, k_pois = npois,

k_nb = nnb, method = "Polynomial", means = means,
vars = vars, skews = M[1, ], skurts = M[2, ],
fifths = M[3, ], sixths = M[4, ], marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey,
seed = seed)

# Find intermediate correlation
Sigma1 <- findintercorr(n = n, k_cont = ncont, k_cat = ncat, k_pois = npois,

k_nb = nnb, method = "Polynomial", constants = con,
marginal = marginal, lam = lam, size = size,
prob = prob, rho = Rey, seed = seed)

Sigma1

## End(Not run)
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findintercorr2 Calculate Intermediate MVN Correlation for Ordinal, Continuous,
Poisson, or Negative Binomial Variables: Correlation Method 2

Description

This function calculates a k x k intermediate matrix of correlations, where k = k_cat + k_cont +
k_pois + k_nb, to be used in simulating variables with rcorrvar2. The ordering of the variables
must be ordinal, continuous, Poisson, and Negative Binomial (note that it is possible for k_cat,
k_cont, k_pois, and/or k_nb to be 0). The function first checks that the target correlation ma-
trix rho is positive-definite and the marginal distributions for the ordinal variables are cumulative
probabilities with r - 1 values (for r categories). There is a warning given at the end of simula-
tion if the calculated intermediate correlation matrix Sigma is not positive-definite. This function is
called by the simulation function rcorrvar2, and would only be used separately if the user wants to
find the intermediate correlation matrix only. The simulation functions also return the intermediate
correlation matrix.

Usage

findintercorr2(n, k_cont = 0, k_cat = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), constants, marginal = list(),
support = list(), lam = NULL, size = NULL, prob = NULL, mu = NULL,
pois_eps = NULL, nb_eps = NULL, rho = NULL, epsilon = 0.001,
maxit = 1000)

Arguments

n the sample size (i.e. the length of each simulated variable)

k_cont the number of continuous variables (default = 0)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial") like that
returned by find_constants

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

support a list of length equal to k_cat; the i-th element is a vector of containing the r
ordered support values; if not provided (i.e. support = list()), the default is for
the i-th element to be the vector 1, ..., r
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lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

pois_eps a vector of length k_pois containing the truncation values (i.e. = rep(0.0001,
k_pois); default = NULL)

nb_eps a vector of length k_nb containing the truncation values (i.e. = rep(0.0001,
k_nb); default = NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ordnorm

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ordnorm

Value

the intermediate MVN correlation matrix

Overview of Correlation Method 2

The intermediate correlations used in correlation method 2 are less simulation based than those
in correlation method 1, and no seed is needed. Their calculations involve greater utilization of
correction loops which make iterative adjustments until a maximum error has been reached (if
possible). In addition, method 2 differs from method 1 in the following ways:

1) The intermediate correlations involving count variables are based on the methods of Barbiero &
Ferrari (2012, doi: 10.1080/00273171.2012.692630, 2015, doi: 10.1002/asmb.2072). The Poisson
or Negative Binomial support is made finite by removing a small user-specified value (i.e. 1e-06)
from the total cumulative probability. This truncation factor may differ for each count variable.
The count variables are subsequently treated as ordinal and intermediate correlations are calculated
using the correction loop of ordnorm.

2) The continuous - count variable correlations are based on an extension of the method of
Demirtas et al. (2012, doi: 10.1002/sim.5362), and the count variables are treated as ordinal.
The correction factor is the product of the power method correlation between the continuous vari-
able and the normal variable used to generate it (see Headrick & Kowalchuk, 2007, doi: 10.1080/
10629360600605065) and the point-polyserial correlation between the ordinalized count variable
and the normal variable used to generate it (see Olsson et al., 1982, doi: 10.1007/BF02294164).
The intermediate correlations are the ratio of the target correlations to the correction factor.

The processes used to find the intermediate correlations for each variable type are described below.
Please see the corresponding function help page for more information:

http://doi.org/10.1080/00273171.2012.692630
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294164
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Ordinal Variables

Correlations are computed pairwise. If both variables are binary, the method of Demirtas et al.
(2012, doi: 10.1002/sim.5362) is used to find the tetrachoric correlation (code adapted from Tetra.Corr.BB).
This method is based on Emrich and Piedmonte’s (1991, doi: 10.1080/00031305.1991.10475828)
work, in which the joint binary distribution is determined from the third and higher moments of a
multivariate normal distribution: Let Y1 and Y2 be binary variables with E[Y1] = Pr(Y1 = 1) = p1,
E[Y2] = Pr(Y2 = 1) = p2, and correlation ρy1y2. Let Φ[x1, x2, ρx1x2] be the standard bivariate
normal cumulative distribution function, given by:

Φ[x1, x2, ρx1x2] =

∫ x1

−∞

∫ x2

−∞
f(z1, z2, ρx1x2)dz1dz2

where

f(z1, z2, ρx1x2) = [2π
√

1− ρ2x1x2]
−1 ∗ exp[−0.5(z21 − 2ρx1x2z1z2 + z22)/(1− ρ2x1x2)]

Then solving the equation

Φ[z(p1), z(p2), ρx1x2] = ρy1y2
√
p1(1− p1)p2(1− p2) + p1p2

for ρx1x2 gives the intermediate correlation of the standard normal variables needed to generate
binary variables with correlation ρy1y2. Here z(p) indicates the pth quantile of the standard normal
distribution.

Otherwise, ordnorm is called for each pair. If the resulting intermediate matrix is not positive-
definite, there is a warning given because it may not be possible to find a MVN correlation matrix
that will produce the desired marginal distributions after discretization. Any problems with positive-
definiteness are corrected later.

Continuous Variables

Correlations are computed pairwise. findintercorr_cont is called for each pair.

Poisson Variables

max_count_support is used to find the maximum support value given the vector pois_eps of trun-
cation values. This is used to create a Poisson marginal list consisting of cumulative probabilities
for each variable (like that for the ordinal variables). Then ordnorm is called to calculate the inter-
mediate MVN correlation for all Poisson variables.

Negative Binomial Variables

max_count_support is used to find the maximum support value given the vector nb_eps of trun-
cation values. This is used to create a Negative Binomial marginal list consisting of cumulative
probabilities for each variable (like that for the ordinal variables). Then ordnorm is called to calcu-
late the intermediate MVN correlation for all Negative Binomial variables.

Continuous - Ordinal Pairs

findintercorr_cont_cat is called to calculate the intermediate MVN correlation for all Contin-
uous and Ordinal combinations.

http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
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Ordinal - Poisson Pairs

The Poisson marginal list is appended to the ordinal marginal list (similarly for the support lists).
Then ordnorm is called to calculate the intermediate MVN correlation for all Ordinal and Poisson
combinations.

Ordinal - Negative Binomial Pairs

The Negative Binomial marginal list is appended to the ordinal marginal list (similarly for the
support lists). Then ordnorm is called to calculate the intermediate MVN correlation for all Ordinal
and Negative Binomial combinations.

Continuous - Poisson Pairs

findintercorr_cont_pois2 is called to calculate the intermediate MVN correlation for all Con-
tinuous and Poisson combinations.

Continuous - Negative Binomial Pairs

findintercorr_cont_nb2 is called to calculate the intermediate MVN correlation for all Contin-
uous and Negative Binomial combinations.

Poisson - Negative Binomial Pairs

The Negative Binomial marginal list is appended to the Poisson marginal list (similarly for the
support lists). Then ordnorm is called to calculate the intermediate MVN correlation for all Poisson
and Negative Binomial combinations.

References

Please see rcorrvar2 for additional references.

Emrich LJ & Piedmonte MR (1991). A Method for Generating High-Dimensional Multivariate Bi-
nary Variables. The American Statistician, 45(4): 302-4. doi: 10.1080/00031305.1991.10475828.

Inan G & Demirtas H (2016). BinNonNor: Data Generation with Binary and Continuous Non-
Normal Components. R package version 1.3. https://CRAN.R-project.org/package=BinNonNor

Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika,
48, 465-471. doi: 10.1007/BF02293687.

See Also

find_constants, rcorrvar2

Examples

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234

http://doi.org/10.1080/00031305.1991.10475828
https://CRAN.R-project.org/package=BinNonNor
http://doi.org/10.1007/BF02293687
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n <- 10000

# Continuous Distributions: Normal, t (df = 10), Chisq (df = 4),
# Beta (a = 4, b = 2), Gamma (a = 4, b = 4)
Dist <- c("Gaussian", "t", "Chisq", "Beta", "Gamma")

# calculate standardized cumulants
# those for the normal and t distributions are rounded to ensure the
# correct values (i.e. skew = 0)

M1 <- round(calc_theory(Dist = "Gaussian", params = c(0, 1)), 8)
M2 <- round(calc_theory(Dist = "t", params = 10), 8)
M3 <- calc_theory(Dist = "Chisq", params = 4)
M4 <- calc_theory(Dist = "Beta", params = c(4, 2))
M5 <- calc_theory(Dist = "Gamma", params = c(4, 4))
M <- cbind(M1, M2, M3, M4, M5)
M <- round(M[-c(1:2),], digits = 6)
colnames(M) <- Dist
rownames(M) <- c("skew", "skurtosis", "fifth", "sixth")
means <- rep(0, length(Dist))
vars <- rep(1, length(Dist))

# calculate constants
con <- matrix(1, nrow = ncol(M), ncol = 6)
for (i in 1:ncol(M)) {
con[i, ] <- find_constants(method = "Polynomial", skews = M[1, i],

skurts = M[2, i], fifths = M[3, i],
sixths = M[4, i])

}

# Binary and Ordinal Distributions
marginal <- list(0.3, 0.4, c(0.1, 0.5), c(0.3, 0.6, 0.9),

c(0.2, 0.4, 0.7, 0.8))
support <- list()

# Poisson Distributions
lam <- c(1, 5, 10)

# Negative Binomial Distributions
size <- c(3, 6)
prob <- c(0.2, 0.8)

ncat <- length(marginal)
ncont <- ncol(M)
npois <- length(lam)
nnb <- length(size)

# Create correlation matrix from a uniform distribution (-0.8, 0.8)
set.seed(seed)
Rey <- diag(1, nrow = (ncat + ncont + npois + nnb))
for (i in 1:nrow(Rey)) {

for (j in 1:ncol(Rey)) {
if (i > j) Rey[i, j] <- runif(1, -0.8, 0.8)
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Rey[j, i] <- Rey[i, j]
}

}

# Test for positive-definiteness
library(Matrix)
if(min(eigen(Rey, symmetric = TRUE)$values) < 0) {

Rey <- as.matrix(nearPD(Rey, corr = T, keepDiag = T)$mat)
}

# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr2(k_cat = ncat, k_cont = ncont, k_pois = npois,

k_nb = nnb, method = "Polynomial", means = means,
vars = vars, skews = M[1, ], skurts = M[2, ],
fifths = M[3, ], sixths = M[4, ],
marginal = marginal, lam = lam,
pois_eps = rep(0.0001, npois),
size = size, prob = prob,
nb_eps = rep(0.0001, nnb),
rho = Rey, seed = seed)

# Find intermediate correlation
Sigma2 <- findintercorr2(n = n, k_cont = ncont, k_cat = ncat,

k_pois = npois, k_nb = nnb,
method = "Polynomial", constants = con,
marginal = marginal, lam = lam, size = size,
prob = prob, pois_eps = rep(0.0001, npois),
nb_eps = rep(0.0001, nnb), rho = Rey)

Sigma2

## End(Not run)

findintercorr_cat_nb Calculate Intermediate MVN Correlation for Ordinal - Negative Bino-
mial Variables: Correlation Method 1

Description

This function calculates a k_cat x k_nb intermediate matrix of correlations for the k_cat ordinal (r
>= 2 categories) and k_nb Negative Binomial variables. It extends the method of Amatya & Demir-
tas (2015, doi: 10.1080/00949655.2014.953534) to ordinal - Negative Binomial pairs. Here, the
intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable discretized
to produce an ordinal variable Y1, and Z2 is the standard normal variable used to generate a Nega-
tive Binomial variable via the inverse cdf method) is calculated by dividing the target correlation by
a correction factor. The correction factor is the product of the upper Frechet-Hoeffding bound on the
correlation between a Negative Binomial variable and the normal variable used to generate it (see
chat_nb) and a simulated GSC upper bound on the correlation between an ordinal variable and the
normal variable used to generate it (see Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090).
The function is used in findintercorr and rcorrvar. This function would not ordinarily be called
by the user.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
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Usage

findintercorr_cat_nb(rho_cat_nb, marginal, size, prob, mu = NULL,
nrand = 100000, seed = 1234)

Arguments

rho_cat_nb a k_cat x k_nb matrix of target correlations among ordinal and Negative Bino-
mial variables

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

a k_cat x k_nb matrix whose rows represent the k_cat ordinal variables and columns represent the
k_nb Negative Binomial variables

References

Please see references for findintercorr_cat_pois

See Also

chat_nb, findintercorr, rcorrvar

findintercorr_cat_pois

Calculate Intermediate MVN Correlation for Ordinal - Poisson Vari-
ables: Correlation Method 1
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Description

This function calculates a k_cat x k_pois intermediate matrix of correlations for the k_cat ordinal
(r >= 2 categories) and k_pois Poisson variables. It extends the method of Amatya & Demirtas
(2015, doi: 10.1080/00949655.2014.953534) to ordinal - Poisson pairs. Here, the intermediate
correlation between Z1 and Z2 (where Z1 is the standard normal variable discretized to produce an
ordinal variable Y1, and Z2 is the standard normal variable used to generate a Poisson variable via
the inverse cdf method) is calculated by dividing the target correlation by a correction factor. The
correction factor is the product of the upper Frechet-Hoeffding bound on the correlation between
a Poisson variable and the normal variable used to generate it (see chat_pois) and a simulated
GSC upper bound on the correlation between an ordinal variable and the normal variable used to
generate it (see Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090). The function is used in
findintercorr and rcorrvar. This function would not ordinarily be called by the user.

Usage

findintercorr_cat_pois(rho_cat_pois, marginal, lam, nrand = 100000,
seed = 1234)

Arguments

rho_cat_pois a k_cat x k_pois matrix of target correlations among ordinal and Poisson vari-
ables

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1)

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

a k_cat x k_pois matrix whose rows represent the k_cat ordinal variables and columns represent the
k_pois Poisson variables

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15): 3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2): 104-109. doi: 10.1198/tast.2011.10090.

Frechet M. Sur les tableaux de correlation dont les marges sont donnees. Ann. l’Univ. Lyon SectA.
1951;14:53-77.

Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1198/tast.2011.10090
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Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1): 91-102. doi: 10.1002/
asmb.901.

See Also

chat_pois, findintercorr, rcorrvar

findintercorr_cont Calculate Intermediate MVN Correlation for Continuous Variables
Generated by Polynomial Transformation

Description

This function finds the roots to the equations in intercorr_fleish or intercorr_poly using
nleqslv. It is used in findintercorr and findintercorr2 to find the intermediate correlation
for standard normal random variables which are used in Fleishman’s Third-Order (doi: 10.1007/
BF02293811) or Headrick’s Fifth-Order (doi: 10.1016/S01679473(02)000725) Polynomial Trans-
formation. It works for two or three variables in the case of method = "Fleishman", or two, three,
or four variables in the case of method = "Polynomial". Otherwise, Headrick & Sawilowsky (1999,
doi: 10.1007/BF02294317) recommend using the technique of Vale & Maurelli (1983, doi: 10.1007/
BF02293687), in which the intermediate correlations are found pairwise and then eigen value de-
composition is used on the intermediate correlation matrix. This function would not ordinarily be
called by the user.

Usage

findintercorr_cont(method = c("Fleishman", "Polynomial"), constants, rho_cont)

Arguments

method the method used to generate the continuous variables. "Fleishman" uses Fleish-
man’s third-order polynomial transformation and "Polynomial" uses Headrick’s
fifth-order transformation.

constants a matrix with either 2, 3, or 4 rows, each a vector of constants c0, c1, c2, c3 (if
method = "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like
that returned by find_constants

rho_cont a matrix of target correlations among continuous variables; if nrow(rho_cont)
= 1, it represents a pairwise correlation; if nrow(rho_cont) = 2, 3, or 4, it rep-
resents a correlation matrix between two, three, or four variables

Value

a list containing the results from nleqslv

http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
http://doi.org/10.1007/BF02293811
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1007/BF02294317
http://doi.org/10.1007/BF02293687
http://doi.org/10.1007/BF02293687
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References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Hasselman B (2018). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.2.
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Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
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See Also

poly, fleish, power_norm_corr, pdf_check, find_constants, intercorr_fleish,
intercorr_poly, nleqslv

findintercorr_cont_cat

Calculate Intermediate MVN Correlation for Continuous - Ordinal
Variables

Description

This function calculates a k_cont x k_cat intermediate matrix of correlations for the k_cont con-
tinuous and k_cat ordinal (r >= 2 categories) variables. It extends the method of Demirtas et al.
(2012, doi: 10.1198/tast.2011.10090) in simulating binary and non-normal data using the Fleishman
transformation by:

1) allowing the continuous variables to be generated via Fleishman’s third-order or Headrick’s fifth-
order transformation, and

2) allowing for ordinal variables with more than 2 categories.

Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable
transformed using Headrick’s fifth-order or Fleishman’s third-order method to produce a continuous

http://doi.org/10.1007/BF02293811
https://CRAN.R-project.org/package=nleqslv
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1007/BF02293687
http://doi.org/10.1198/tast.2011.10090
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variable Y1, and Z2 is the standard normal variable discretized to produce an ordinal variable Y2)
is calculated by dividing the target correlation by a correction factor. The correction factor is the
product of the point-polyserial correlation between Y2 and Z2 (described in Olsson et al., 1982,
doi: 10.1007/BF02294164) and the power method correlation (described in Headrick & Kowalchuk,
2007, doi: 10.1080/10629360600605065) between Y1 and Z1. The point-polyserial correlation is
given by:

ρy2,z2 = (1/σy2) ∗
r−1∑
j=1

ϕ(τj)(y2j+1 − y2j)

where
ϕ(τ) = (2π)−1/2 ∗ exp(−τ2/2)

Here, yj is the j-th support value and τj is Φ−1(
∑j

i=1 Pr(Y = yi)). The power method correlation
is given by:

ρy1,z1 = c1 + 3c3 + 15c5

where c5 = 0 if method = "Fleishman". The function is used in findintercorr and findintercorr2.
This function would not ordinarily be called by the user.

Usage

findintercorr_cont_cat(method = c("Fleishman", "Polynomial"), constants,
rho_cont_cat, marginal, support)

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_cat a k_cont x k_cat matrix of target correlations among continuous and ordinal
variables

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1)

support a list of length equal to k_cat; the i-th element is a vector of containing the r
ordered support values

Value

a k_cont x k_cat matrix whose rows represent the k_cont continuous variables and columns rep-
resent the k_cat ordinal variables

http://doi.org/10.1007/BF02294164
http://doi.org/10.1080/10629360600605065
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See Also

power_norm_corr, find_constants, findintercorr, findintercorr2

findintercorr_cont_nb Calculate Intermediate MVN Correlation for Continuous - Negative
Binomial Variables: Correlation Method 1

Description

This function calculates a k_cont x k_nb intermediate matrix of correlations for the k_cont con-
tinuous and k_nb Negative Binomial variables. It extends the method of Amatya & Demirtas
(2015, doi: 10.1080/00949655.2014.953534) to continuous variables generated using Headrick’s
fifth-order polynomial transformation and Negative Binomial variables. Here, the intermediate cor-
relation between Z1 and Z2 (where Z1 is the standard normal variable transformed using Headrick’s
fifth-order or Fleishman’s third-order method to produce a continuous variable Y1, and Z2 is the
standard normal variable used to generate a Negative Binomial variable via the inverse cdf method)
is calculated by dividing the target correlation by a correction factor. The correction factor is the
product of the upper Frechet-Hoeffding bound on the correlation between a Negative Binomial vari-
able and the normal variable used to generate it (see chat_nb) and the power method correlation
(described in Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and
Z1. The function is used in findintercorr and rcorrvar. This function would not ordinarily be
called by the user.
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Usage

findintercorr_cont_nb(method, constants, rho_cont_nb, size, prob, mu = NULL,
nrand = 100000, seed = 1234)

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_nb a k_cont x k_nb matrix of target correlations among continuous and Negative
Binomial variables

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

a k_cont x k_nb matrix whose rows represent the k_cont continuous variables and columns repre-
sent the k_nb Negative Binomial variables

References

Please see references for findintercorr_cont_pois.

See Also

chat_nb, power_norm_corr, find_constants, findintercorr, rcorrvar

findintercorr_cont_nb2

Calculate Intermediate MVN Correlation for Continuous - Negative
Binomial Variables: Correlation Method 2
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Description

This function calculates a k_cont x k_nb intermediate matrix of correlations for the k_cont con-
tinuous and k_nb Negative Binomial variables. It extends the methods of Demirtas et al. (2012,
doi: 10.1002/sim.5362) and Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) by:

1) including non-normal continuous and count (Poisson and Negative Binomial) variables

2) allowing the continuous variables to be generated via Fleishman’s third-order or Headrick’s fifth-
order transformation, and

3) since the count variables are treated as ordinal, using the point-polyserial and polyserial correla-
tions to calculate the intermediate correlations (similar to findintercorr_cont_cat).

Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable
transformed using Headrick’s fifth-order or Fleishman’s third-order method to produce a continuous
variable Y1, and Z2 is the standard normal variable used to generate a Negative Binomial variable
via the inverse cdf method) is calculated by dividing the target correlation by a correction factor. The
correction factor is the product of the point-polyserial correlation between Y2 and Z2 (described
in Olsson et al., 1982, doi: 10.1007/BF02294164) and the power method correlation (described in
Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and Z1. After the
maximum support value has been found using max_count_support, the point-polyserial correlation
is given by:

ρy2,z2 = (1/σy2)

r−1∑
j=1

ϕ(τj)(y2j+1 − y2j)

where
ϕ(τ) = (2π)−1/2 ∗ exp(−τ2/2)

Here, yj is the j-th support value and τj is Φ−1(
∑j

i=1 Pr(Y = yi)). The power method correlation
is given by:

ρy1,z1 = c1 + 3c3 + 15c5

, where c5 = 0 if method = "Fleishman". The function is used in findintercorr2 and rcorrvar2.
This function would not ordinarily be called by the user.

Usage

findintercorr_cont_nb2(method, constants, rho_cont_nb, nb_marg, nb_support)

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_nb a k_cont x k_nb matrix of target correlations among continuous and Negative
Binomial variables

http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1007/BF02294164
http://doi.org/10.1080/10629360600605065
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nb_marg a list of length equal to k_nb; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1); this is created within findintercorr2 and rcorrvar2

nb_support a list of length equal to k_nb; the i-th element is a vector of containing the r
ordered support values, with a minimum of 0 and maximum determined via
max_count_support

Value

a k_cont x k_nb matrix whose rows represent the k_cont continuous variables and columns repre-
sent the k_nb Negative Binomial variables

References

Please see additional references in findintercorr_cont_cat.

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31: 669-80. doi: 10.1002/asmb.2072.

See Also

find_constants, power_norm_corr, findintercorr2, rcorrvar2

findintercorr_cont_pois

Calculate Intermediate MVN Correlation for Continuous - Poisson
Variables: Correlation Method 1

Description

This function calculates a k_cont x k_pois intermediate matrix of correlations for the k_cont
continuous and k_pois Poisson variables. It extends the method of Amatya & Demirtas (2015,
doi: 10.1080/00949655.2014.953534) to continuous variables generated using Headrick’s fifth-
order polynomial transformation. Here, the intermediate correlation between Z1 and Z2 (where
Z1 is the standard normal variable transformed using Headrick’s fifth-order or Fleishman’s third-
order method to produce a continuous variable Y1, and Z2 is the standard normal variable used to
generate a Poisson variable via the inverse cdf method) is calculated by dividing the target corre-
lation by a correction factor. The correction factor is the product of the upper Frechet-Hoeffding
bound on the correlation between a Poisson variable and the normal variable used to generate it
(see chat_pois) and the power method correlation (described in Headrick & Kowalchuk, 2007,
doi: 10.1080/10629360600605065) between Y1 and Z1. The function is used in findintercorr
and rcorrvar. This function would not ordinarily be called by the user.

Usage

findintercorr_cont_pois(method, constants, rho_cont_pois, lam, nrand = 100000,
seed = 1234)

http://doi.org/10.1002/asmb.2072
http://doi.org/10.1080/00949655.2014.953534
http://doi.org/10.1080/10629360600605065
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Arguments

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_pois a k_cont x k_pois matrix of target correlations among continuous and Poisson
variables

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

a k_cont x k_pois matrix whose rows represent the k_cont continuous variables and columns
represent the k_pois Poisson variables

References

Amatya A & Demirtas H (2015). Simultaneous generation of multivariate mixed data with Pois-
son and normal marginals. Journal of Statistical Computation and Simulation, 85(15): 3129-39.
doi: 10.1080/00949655.2014.953534.

Demirtas H & Hedeker D (2011). A practical way for computing approximate lower and upper
correlation bounds. American Statistician, 65(2): 104-109. doi: 10.1198/tast.2011.10090.

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Frechet M. Sur les tableaux de correlation dont les marges sont donnees. Ann. l’Univ. Lyon SectA.
1951;14:53-77.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.
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Hoeffding W. Scale-invariant correlation theory. In: Fisher NI, Sen PK, editors. The collected
works of Wassily Hoeffding. New York: Springer-Verlag; 1994. p. 57-107.

Yahav I & Shmueli G (2012). On Generating Multivariate Poisson Data in Management Science
Applications. Applied Stochastic Models in Business and Industry, 28(1): 91-102. doi: 10.1002/
asmb.901.

See Also

chat_pois, power_norm_corr, find_constants, findintercorr, rcorrvar

findintercorr_cont_pois2

Calculate Intermediate MVN Correlation for Continuous - Poisson
Variables: Correlation Method 2

Description

This function calculates a k_cont x k_pois intermediate matrix of correlations for the k_cont con-
tinuous and k_pois Poisson variables. It extends the methods of Demirtas et al. (2012, doi: 10.1002/
sim.5362) and Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) by:

1) including non-normal continuous and count variables

2) allowing the continuous variables to be generated via Fleishman’s third-order or Headrick’s fifth-
order transformation, and

3) since the count variables are treated as ordinal, using the point-polyserial and polyserial correla-
tions to calculate the intermediate correlations (similar to findintercorr_cont_cat).

Here, the intermediate correlation between Z1 and Z2 (where Z1 is the standard normal variable
transformed using Headrick’s fifth-order or Fleishman’s third-order method to produce a continuous
variable Y1, and Z2 is the standard normal variable used to generate a Poisson variable via the
inverse cdf method) is calculated by dividing the target correlation by a correction factor. The
correction factor is the product of the point-polyserial correlation between Y2 and Z2 (described
in Olsson et al., 1982, doi: 10.1007/BF02294164) and the power method correlation (described in
Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065) between Y1 and Z1. After the
maximum support value has been found using max_count_support, the point-polyserial correlation
is given by:

ρy2,z2 = (1/σy2)

r−1∑
j=1

ϕ(τj)(y2j+1 − y2j)

where
ϕ(τ) = (2π)−1/2 ∗ exp(−τ2/2)

Here, yj is the j-th support value and τj is Φ−1(
∑j

i=1 Pr(Y = yi)). The power method correlation
is given by:

ρy1,z1 = c1 + 3c3 + 15c5

, where c5 = 0 if method = "Fleishman". The function is used in findintercorr2 and rcorrvar2.
This function would not ordinarily be called by the user.

http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1007/BF02294164
http://doi.org/10.1080/10629360600605065
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Usage

findintercorr_cont_pois2(method, constants, rho_cont_pois, pois_marg,
pois_support)

Arguments

method the method used to generate the k_cont continuous variables. "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

constants a matrix with k_cont rows, each a vector of constants c0, c1, c2, c3 (if method
= "Fleishman") or c0, c1, c2, c3, c4, c5 (if method = "Polynomial"), like that
returned by find_constants

rho_cont_pois a k_cont x k_pois matrix of target correlations among continuous and Poisson
variables

pois_marg a list of length equal to k_pois; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1); this is created within findintercorr2 and rcorrvar2

pois_support a list of length equal to k_pois; the i-th element is a vector of containing the
r ordered support values, with a minimum of 0 and maximum determined via
max_count_support

Value

a k_cont x k_pois matrix whose rows represent the k_cont continuous variables and columns
represent the k_pois Poisson variables

References

Please see additional references in findintercorr_cont_cat.

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31: 669-80. doi: 10.1002/asmb.2072.

See Also

find_constants, power_norm_corr, findintercorr2, rcorrvar2

findintercorr_nb Calculate Intermediate MVN Correlation for Negative Binomial Vari-
ables: Correlation Method 1

http://doi.org/10.1002/asmb.2072
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Description

This function calculates a k_nb x k_nb intermediate matrix of correlations for the Negative Bino-
mial variables by extending the method of Yahav & Shmueli (2012, doi: 10.1002/asmb.901). The
intermediate correlation between Z1 and Z2 (the standard normal variables used to generate the
Negative Binomial variables Y1 and Y2 via the inverse cdf method) is calculated using a logarith-
mic transformation of the target correlation. First, the upper and lower Frechet-Hoeffding bounds
(mincor, maxcor) on ρy1,y2 are simulated. Then the intermediate correlation is found as follows:

ρz1,z2 = (1/b) ∗ log((ρy1,y2 − c)/a)

, where a = −(maxcor ∗mincor)/(maxcor+mincor), b = log((maxcor+a)/a), and c = −a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:

1) allowing specifications for the number of random variates and the seed for reproducibility

2) providing the following checks: if ρz1,z2 >= 1, ρz1,z2 is set to 0.99; if ρz1,z2 <= -1, ρz1,z2 is set
to -0.99

3) simulating Negative Binomial variables.

The function is used in findintercorr and rcorrvar. This function would not ordinarily be called
by the user.

Usage

findintercorr_nb(rho_nb, size, prob, mu = NULL, nrand = 100000,
seed = 1234)

Arguments

rho_nb a k_nb x k_nb matrix of target correlations

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

the k_nb x k_nb intermediate correlation matrix for the Negative Binomial variables

References

Please see references for findintercorr_pois.

See Also

PoisNor-package, findintercorr_pois, findintercorr_pois_nb, findintercorr, rcorrvar

http://doi.org/10.1002/asmb.901
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findintercorr_pois Calculate Intermediate MVN Correlation for Poisson Variables: Cor-
relation Method 1

Description

This function calculates a k_pois x k_pois intermediate matrix of correlations for the Poisson
variables using the method of Yahav & Shmueli (2012, doi: 10.1002/asmb.901). The intermediate
correlation between Z1 and Z2 (the standard normal variables used to generate the Poisson variables
Y1 and Y2 via the inverse cdf method) is calculated using a logarithmic transformation of the
target correlation. First, the upper and lower Frechet-Hoeffding bounds (mincor, maxcor) ρy1,y2
are simulated. Then the intermediate correlation is found as follows:

ρz1,z2 = (1/b) ∗ log((ρy1,y2 − c)/a)

, where a = −(maxcor ∗mincor)/(maxcor+mincor), b = log((maxcor+a)/a), and c = −a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:

1) allowing specifications for the number of random variates and the seed for reproducibility

2) providing the following checks: if ρz1,z2 >= 1, ρz1,z2 is set to 0.99; if ρz1,z2 <= -1, ρz1,z2 is set
to -0.99.

The function is used in findintercorr and rcorrvar. This function would not ordinarily be called
by the user.

Note: The method used here is also used in the packages PoisBinOrdNor-package and PoisBinOrdNonNor-package
by Demirtas et al. (2017), but without my modifications.

Usage

findintercorr_pois(rho_pois, lam, nrand = 100000, seed = 1234)

Arguments

rho_pois a k_pois x k_pois matrix of target correlations

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

the k_pois x k_pois intermediate correlation matrix for the Poisson variables

http://doi.org/10.1002/asmb.901
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See Also

PoisNor-package, findintercorr_nb, findintercorr_pois_nb, findintercorr, rcorrvar

findintercorr_pois_nb Calculate Intermediate MVN Correlation for Poisson - Negative Bino-
mial Variables: Correlation Method 1

Description

This function calculates a k_pois x k_nb intermediate matrix of correlations for the Poisson and
Negative Binomial variables by extending the method of Yahav & Shmueli (2012, doi: 10.1002/
asmb.901). The intermediate correlation between Z1 and Z2 (the standard normal variables used
to generate the Poisson and Negative Binomial variables Y1 and Y2 via the inverse cdf method) is
calculated using a logarithmic transformation of the target correlation. First, the upper and lower
Frechet-Hoeffding bounds (mincor, maxcor) on ρy1,y2 are simulated. Then the intermediate corre-
lation is found as follows:

ρz1,z2 = (1/b) ∗ log((ρy1,y2 − c)/a)

, where a = −(maxcor ∗mincor)/(maxcor+mincor), b = log((maxcor+a)/a), and c = −a.
The function adapts code from Amatya & Demirtas’ (2016) package PoisNor-package by:

http://doi.org/10.1080/00949655.2014.953534
https://CRAN.R-project.org/package=PoisNor
https://CRAN.R-project.org/package=PoisNor
https://CRAN.R-project.org/package=PoisBinOrdNor
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1) allowing specifications for the number of random variates and the seed for reproducibility

2) providing the following checks: if ρz1,z2 >= 1, ρz1,z2 is set to 0.99; if ρz1,z2 <= -1, ρz1,z2 is set
to -0.99

3) simulating Negative Binomial variables. The function is used in findintercorr and rcorrvar.
This function would not ordinarily be called by the user.

Usage

findintercorr_pois_nb(rho_pois_nb, lam, size, prob, mu = NULL,
nrand = 100000, seed = 1234)

Arguments

rho_pois_nb a k_pois x k_nb matrix of target correlations

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nrand the number of random numbers to generate in calculating the bound (default =
10000)

seed the seed used in random number generation (default = 1234)

Value

the k_pois x k_nb intermediate correlation matrix whose rows represent the k_pois Poisson vari-
ables and columns represent the k_nb Negative Binomial variables

References

Please see references for findintercorr_pois.

See Also

PoisNor-package, findintercorr_pois, findintercorr_nb, findintercorr, rcorrvar
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find_constants Find Power Method Transformation Constants

Description

This function calculates Fleishman’s third or Headrick’s fifth-order constants necessary to trans-
form a standard normal random variable into a continuous variable with the specified skewness,
standardized kurtosis, and standardized fifth and sixth cumulants. It uses multiStart to find solu-
tions to fleish or nleqslv for poly. Multiple starting values are used to ensure the correct solution
is found. If not user-specified and method = "Polynomial", the cumulant values are checked to see
if they fall in Headrick’s Table 1 (2002, p.691-2, doi: 10.1016/S01679473(02)000725) of common
distributions (see Headrick.dist). If so, his solutions are used as starting values. Otherwise, a set
of n values randomly generated from uniform distributions is used to determine the power method
constants.

Each set of constants is checked for a positive correlation with the underlying normal variable (using
power_norm_corr) and a valid power method pdf (using pdf_check). If the correlation is <= 0,
the signs of c1 and c3 are reversed (for method = "Fleishman"), or c1, c3, and c5 (for method =
"Polynomial"). These sign changes have no effect on the cumulants of the resulting distribution.
If only invalid pdf constants are found and a vector of sixth cumulant correction values (Six) is
provided, each is checked for valid pdf constants. The smallest correction that generates a valid
power method pdf is used. If valid pdf constants still can not be found, the original invalid pdf
constants (calculated without a sixth cumulant correction) will be provided if they exist. If not, the
invalid pdf constants calculated with the sixth cumulant correction will be provided. If no solutions
can be found, an error is given and the result is NULL.

Usage

find_constants(method = c("Fleishman", "Polynomial"), skews = NULL,
skurts = NULL, fifths = NULL, sixths = NULL, Six = NULL,
cstart = NULL, n = 25, seed = 1234)

Arguments

method the method used to find the constants. "Fleishman" uses a third-order poly-
nomial transformation and requires skewness and standardized kurtosis inputs.
"Polynomial" uses Headrick’s fifth-order transformation and requires all four
standardized cumulants.

skews the skewness value

skurts the standardized kurtosis value (kurtosis - 3, so that normal variables have a
value of 0)

fifths the standardized fifth cumulant (if method = "Fleishman", keep NULL)

sixths the standardized sixth cumulant (if method = "Fleishman", keep NULL)

Six a vector of correction values to add to the sixth cumulant if no valid pdf con-
stants are found, ex: Six = seq(1.5, 2,by = 0.05); longer vectors take more
computation time

http://doi.org/10.1016/S0167-9473(02)00072-5
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cstart initial value for root-solving algorithm (see multiStart for method = "Fleish-
man" or nleqslv for method = "Polynomial"). If user-specified, must be in-
put as a matrix. If NULL and all 4 standardized cumulants (rounded to 3
digits) are within 0.01 of those in Headrick’s common distribution table (see
Headrick.dist data), uses his constants as starting values; else, generates n
sets of random starting values from uniform distributions.

n the number of initial starting values to use with root-solver. More starting values
require more calculation time (default = 25).

seed the seed value for random starting value generation (default = 1234)

Value

A list with components:

constants a vector of valid or invalid power method solutions, c("c0","c1","c2","c3") for method
= "Fleishman" or c("c0","c1","c2","c3","c4,"c5") for method = "Polynomial"

valid "TRUE" if the constants produce a valid power method pdf, else "FALSE"

SixCorr1 if Six is specified, the sixth cumulant correction required to achieve a valid pdf

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged when
using find_constants. If this happens, the simulation will stop. Possible solutions include: a)
increasing the number of initial starting values (n), b) using a different seed, or c) specifying a
Six vector of sixth cumulant correction values (for method = "Polynomial"). If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs
(i.e. skews = round(skews, 8)). Due to the nature of the integration involved in calc_theory,
the results are approximations. Greater accuracy can be achieved by increasing the number of
subdivisions (sub) used in the integration process. For example, in order to ensure that skew is
exactly 0 for symmetric distributions.

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
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Hasselman B (2018). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.2.
https://CRAN.R-project.org/package=nleqslv

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.
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Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

Varadhan R, Gilbert P (2009). BB: An R Package for Solving a Large System of Nonlinear Equa-
tions and for Optimizing a High-Dimensional Nonlinear Objective Function, J. Statistical Software,
32:4, http://www.jstatsoft.org/v32/i04/

See Also

multiStart, nleqslv, fleish, poly, power_norm_corr, pdf_check

Examples

# Exponential Distribution
find_constants("Fleishman", 2, 6)

## Not run:
# Compute third-order power method constants.

options(scipen = 999) # turn off scientific notation

# Laplace Distribution
find_constants("Fleishman", 0, 3)

# Compute fifth-order power method constants.

# Logistic Distribution
find_constants(method = "Polynomial", skews = 0, skurts = 6/5, fifths = 0,

sixths = 48/7)

# with correction to sixth cumulant
find_constants(method = "Polynomial", skews = 0, skurts = 6/5, fifths = 0,

sixths = 48/7, Six = seq(1.7, 2, by = 0.01))

## End(Not run)

fleish Fleishman’s Third-Order Polynomial Transformation Equations

http://doi.org/10.1080/10629360600605065
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http://doi.org/10.18637/jss.v019.i03
http://www.jstatsoft.org/v32/i04/
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Description

This function contains Fleishman’s third-order polynomial transformation equations (doi: 10.1007/
BF02293811). It is used in find_constants to find the constants c1, c2, and c3 (c0 = -c2) that
satisfy the equations given skewness and standardized kurtosis values. It can be used to verify a set
of constants satisfy the equations. Note that there exist solutions that yield invalid power method
pdfs (see power_norm_corr, pdf_check). This function would not ordinarily be called by the user.

Usage

fleish(c, a)

Arguments

c a vector of constants c1, c2, c3; note that find_constants returns c0, c1, c2, c3

a a vector c(skewness, standardized kurtosis)

Value

a list of length 3; if the constants satisfy the equations, returns 0 for all list elements

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

See Also

poly, power_norm_corr, pdf_check, find_constants

Examples

# Laplace Distribution
fleish(c = c(0.782356, 0, 0.067905), a = c(0, 3))

fleish_Hessian Fleishman’s Third-Order Transformation Hessian Calculation for
Lower Boundary of Standardized Kurtosis in Asymmetric Distribu-
tions

http://doi.org/10.1007/BF02293811
http://doi.org/10.1007/BF02293811
http://doi.org/10.1007/BF02293811
http://doi.org/10.1007/BF02294317
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Description

This function gives the second-order conditions necessary to verify that a kurtosis is a global min-
imum. A kurtosis solution from fleish_skurt_check is a global minimum if and only if the
determinant of the bordered Hessian, H , is less than zero (see Headrick & Sawilowsky, 2002,
doi: 10.3102/10769986025004417), where

|H̄| = matrix(c(0, dg(c1, c3)/dc1, dg(c1, c3)/dc3,

dg(c1, c3)/dc1, d2F (c1, c3, λ)/dc12, d2F (c1, c3, λ)/(dc3dc1),

dg(c1, c3)/dc3, d2F (c1, c3, λ)/(dc1dc3), d2F (c1, c3, λ)/dc32), 3, 3, byrow = TRUE)

Here, F (c1, c3, λ) = f(c1, c3) + λ ∗ [γ1 − g(c1, c3)] is the Fleishman Transformation Lagrangean
expression (see fleish_skurt_check). Headrick & Sawilowsky (2002) gave equations for the
second-order derivatives d2F/dc12, d2F/dc32, and d2F/(dc1dc3). These were verified and dg/dc1
and dg/dc3 were calculated using D (see deriv). This function would not ordinarily be called by
the user.

Usage

fleish_Hessian(c)

Arguments

c a vector of constants c1, c3, lambda

Value

A list with components:

Hessian the Hessian matrix H

H_det the determinant of H

References

Please see references for fleish_skurt_check.

See Also

fleish_skurt_check, calc_lower_skurt

http://doi.org/10.3102/10769986025004417
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fleish_skurt_check Fleishman’s Third-Order Transformation Lagrangean Constraints for
Lower Boundary of Standardized Kurtosis in Asymmetric Distribu-
tions

Description

This function gives the first-order conditions of the Fleishman Transformation Lagrangean expres-
sion F (c1, c3, λ) = f(c1, c3) + λ ∗ [γ1 − g(c1, c3)] used to find the lower kurtosis boundary for a
given non-zero skewness in calc_lower_skurt (see Headrick & Sawilowsky, 2002, doi: 10.3102/
10769986025004417). Here, f(c1, c3) is the equation for standardized kurtosis expressed in terms
of c1 and c3 only, λ is the Lagrangean multiplier, γ1 is skewness, and g(c1, c3) is the equation
for skewness expressed in terms of c1 and c3 only. It should be noted that these equations are for
γ1 > 0. Negative skew values are handled within calc_lower_skurt. Headrick & Sawilowsky
(2002) gave equations for the first-order derivatives dF/dc1 and dF/dc3. These were verified and
dF/dλ was calculated using D (see deriv). The second-order conditions to verify that the kurtosis
is a global minimum are in fleish_Hessian. This function would not ordinarily be called by the
user.

Usage

fleish_skurt_check(c, a)

Arguments

c a vector of constants c1, c3, lambda

a skew value

Value

A list with components:

dF (c1, c3, λ)/dλ = γ1 − g(c1, c3)

dF (c1, c3, λ)/dc1 = df(c1, c3)/dc1− λ ∗ dg(c1, c3)/dc1
dF (c1, c3, λ)/dc3 = df(c1, c3)/dc3− λ ∗ dg(c1, c3)/dc3
If the suppled values for c and skew satisfy the Lagrangean expression, it will return 0 for each
component.

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC, Sawilowsky SS (2002). Weighted Simplex Procedures for Determining Boundary
Points and Constants for the Univariate and Multivariate Power Methods. Journal of Educational
and Behavioral Statistics, 25, 417-436. doi: 10.3102/10769986025004417.

http://doi.org/10.3102/10769986025004417
http://doi.org/10.3102/10769986025004417
http://doi.org/10.1007/BF02293811
http://doi.org/10.3102/10769986025004417
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See Also

fleish_Hessian, calc_lower_skurt

Headrick.dist Examples of Constants Calculated by Headrick’s Fifth-Order Polyno-
mial Transformation

Description

Selected symmetrical and asymmetrical theoretical densities with their associated values of skew-
ness (gamma1), standardized kurtosis (gamma2), and standardized fifth (gamma3) and sixth (gamma4)
cumulants. Constants were calculated by Headrick using his fifth-order polynomial transformation
and given in his Table 1 (2002, p. 691-2, doi: 10.1016/S01679473(02)000725). Note that the stan-
dardized cumulants for the Gamma(10, 10) distribution do not arise from using α = 10, β = 10.
Therefore, either there is a typo in the table or Headrick used a different parameterization.

Usage

data(Headrick.dist)

Format

An object of class "data.frame"; Colnames are distribution names; rownames are standardized
cumulant names followed by c0, ..., c5.

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Examples

z <- rnorm(10000)
g <- Headrick.dist$Gamma_a10b10[-c(1:4)]
gamma_a10b10 <- g[1] + g[2] * z + g[3] * z^2 + g[4] * z^3 + g[5] * z^4 +

g[6] * z^5
summary(gamma_a10b10)

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
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H_params Parameters for Examples of Constants Calculated by Headrick’s Fifth-
Order Polynomial Transformation

Description

These are the parameters for Headrick.dist, which contains selected symmetrical and asymmet-
rical theoretical densities with their associated values of skewness (gamma1), standardized kurto-
sis (gamma2), and standardized fifth (gamma3) and sixth (gamma4) cumulants. Constants were
calculated by Headrick using his fifth-order polynomial transformation and given in his Table 1
(2002, p. 691-2, doi: 10.1016/S01679473(02)000725). Note that the standardized cumulants for
the Gamma(10, 10) distribution do not arise from using α = 10, β = 10. Therefore, either there is
a typo in the table or Headrick used a different parameterization.

Usage

data(H_params)

Format

An object of class "data.frame"; Colnames are distribution names as inputs for calc_theory;
rownames are param1, param2.

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

intercorr_fleish Fleishman’s Third-Order Polynomial Transformation Intermediate
Correlation Equations

Description

This function contains Fleishman’s third-order polynomial transformation intermediate correlation
equations (Headrick & Sawilowsky, 1999, doi: 10.1007/BF02294317). It is used in findintercorr
and findintercorr2 to find the intermediate correlation for standard normal random variables
which are used in the Fleishman polynomial transformation. It can be used to verify a set of con-
stants and an intermediate correlation satisfy the equations for the desired post-transformation cor-
relation. It works for two or three variables. Headrick & Sawilowsky recommended using the
technique of Vale & Maurelli (1983, doi: 10.1007/BF02293687), in the case of more than 3 vari-
ables, in which the intermediate correlations are found pairwise and then eigen value decomposition
is used on the correlation matrix. Note that there exist solutions that yield invalid power method
pdfs (see power_norm_corr, pdf_check). This function would not ordinarily be called by the user.

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.1007/BF02294317
http://doi.org/10.1007/BF02293687
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Usage

intercorr_fleish(r, c, a)

Arguments

r either a scalar, in which case it represents pairwise intermediate correlation be-
tween standard normal variables, or a vector of 3 values, in which case:

r[1] ∗ r[2] = ρz1,z2, r[1] ∗ r[3] = ρz1,z3, r[2] ∗ r[3] = ρz2,z3

c a matrix with either 2 or 3 rows, each a vector of constants c0, c1, c2, c3, like
that returned by find_constants

a a matrix of target correlations among continuous variables; if nrow(a) = 1, it
represents a pairwise correlation; if nrow(a) = 2 or 3, it represents a correlation
matrix between two or three variables

Value

a list of length 1 for pairwise correlations or length 3 for three variables; if the inputs satisfy the
equations, returns 0 for all list elements

References

Please see references for findintercorr_cont.

See Also

fleish, power_norm_corr, pdf_check, find_constants

intercorr_poly Headrick’s Fifth-Order Polynomial Transformation Intermediate Cor-
relation Equations

Description

This function contains Headrick’s fifth-order polynomial transformation intermediate correlation
equations (2002, doi: 10.1016/S01679473(02)000725). It is used in findintercorr and findintercorr2
to find the intermediate correlation for standard normal random variables which are used in the
Headrick polynomial transformation. It can be used to verify a set of constants and an intermediate
correlation satisfy the equations for the desired post-transformation correlation. It works for two,
three, or four variables. Headrick recommended using the technique of Vale & Maurelli (1983,
doi: 10.1007/BF02293687), in the case of more than 4 variables, in which the intermediate correla-
tions are found pairwise and then eigen value decomposition is used on the correlation matrix. Note
that there exist solutions that yield invalid power method pdfs (see power_norm_corr, pdf_check).
This function would not ordinarily be called by the user.

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1007/BF02293687
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Usage

intercorr_poly(r, c, a)

Arguments

r either a scalar, in which case it represents pairwise intermediate correlation be-
tween standard normal variables, or a vector of 3 values, in which case:

r[1] ∗ r[2] = ρz1,z2, r[1] ∗ r[3] = ρz1,z3, r[2] ∗ r[3] = ρz2,z3

or a vector of 4 values, in which case:

r0 = r[5] ∗ r[6], r0 ∗ r[1] ∗ r[2] = ρz1,z2, r0 ∗ r[1] ∗ r[3] = ρz1,z3

r0 ∗ r[2] ∗ r[3] = ρz2,z3, r0 ∗ r[1] ∗ r[4] = ρz1,z4, r0 ∗ r[2] ∗ r[4] = ρz2,z4,

r0 ∗ r[3] ∗ r[4] = ρz3,z4

c a matrix with either 2, 3, or 4 rows, each a vector of constants c0, c1, c2, c3, like
that returned by find_constants

a a matrix of target correlations among continuous variables; if nrow(a) = 1, it
represents a pairwise correlation; if nrow(a) = 2, 3, or 4, it represents a corre-
lation matrix between two, three, or four variables

Value

a list of length 1 for pairwise correlations, length 3 for three variables, or length 6 for four variables;
if the inputs satisfy the equations, returns 0 for all list elements

References

Please see references for findintercorr_cont.

See Also

poly, power_norm_corr, pdf_check, find_constants

max_count_support Calculate Maximum Support Value for Count Variables: Correlation
Method 2

Description

This function calculates the maximum support value for count variables by extending the method of
Barbiero & Ferrari (2015, doi: 10.1002/asmb.2072) to include Negative Binomial variables. In order
for count variables to be treated as ordinal in the calculation of the intermediate MVN correlation
matrix, their infinite support must be truncated (made finite). This is done by setting the total cu-
mulative probability equal to 1 - a small user-specified value (pois_eps or nb_eps. The maximum
support value equals the inverse cdf applied to this result. The values pois_eps and nb_eps may
differ for each variable. The function is used in findintercorr2 and rcorrvar2. This function
would not ordinarily be called by the user.

http://doi.org/10.1002/asmb.2072
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Usage

max_count_support(k_pois, k_nb, lam, pois_eps = NULL, size, prob, mu = NULL,
nb_eps = NULL)

Arguments

k_pois the number of Poisson variables

k_nb the number of Negative Binomial variables

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

pois_eps a vector of length k_pois containing the truncation values (i.e. = rep(0.0001,
k_pois); default = NULL)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nb_eps a vector of length k_nb containing the truncation values (i.e. = rep(0.0001,
k_nb); default = NULL)

Value

a data.frame with k_pois + k_nb rows; the column names are:

Distribution Poisson or Negative Binomial

Number the variable index

Max the maximum support value

References

Barbiero A & Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31: 669-80. doi: 10.1002/asmb.2072.

Ferrari PA, Barbiero A (2012). Simulating ordinal data, Multivariate Behavioral Research, 47(4):
566-589. doi: 10.1080/00273171.2012.692630.

See Also

findintercorr2, rcorrvar2

http://doi.org/10.1002/asmb.2072
http://doi.org/10.1080/00273171.2012.692630
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nonnormvar1 Generation of One Non-Normal Continuous Variable Using the Power
Method

Description

This function simulates one non-normal continuous variable using either Fleishman’s Third-Order
(method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s Fifth-Order (method = "Poly-
nomial", doi: 10.1016/S01679473(02)000725) Polynomial Transformation. If only one variable is
desired and that variable is continuous, this function should be used. The power method transfor-
mation is a computationally efficient algorithm that simulates continuous distributions through the
method of moments. It works by matching standardized cumulants – the first four (mean, vari-
ance, skew, and standardized kurtosis) for Fleishman’s method, or the first six (mean, variance,
skew, standardized kurtosis, and standardized fifth and sixth cumulants) for Headrick’s method.
The transformation is expressed as follows:

Y = c0 + c1 ∗ Z + c2 ∗ Z2 + c3 ∗ Z3 + c4 ∗ Z4 + c5 ∗ Z5,

where Z N(0, 1), and c4 and c5 both equal 0 for Fleishman’s method. The real constants are
calculated by find_constants. All variables are simulated with mean 0 and variance 1, and then
transformed to the specified mean and variance at the end.

The required parameters for simulating continuous variables include: mean, variance, skewness,
standardized kurtosis (kurtosis - 3), and standardized fifth and sixth cumulants (for method = "Poly-
nomial"). If the goal is to simulate a theoretical distribution (i.e. Gamma, Beta, Logistic, etc.), these
values can be obtained using calc_theory. If the goal is to mimic an empirical data set, these val-
ues can be found using calc_moments (using the method of moments) or calc_fisherk (using
Fisher’s k-statistics). If the standardized cumulants are obtained from calc_theory, the user may
need to use rounded values as inputs (i.e. skews = round(skews, 8)). Due to the nature of the inte-
gration involved in calc_theory, the results are approximations. Greater accuracy can be achieved
by increasing the number of subdivisions (sub) used in the integration process. For example, in
order to ensure that skew is exactly 0 for symmetric distributions.

For some sets of cumulants, it is either not possible to find power method constants or the calcu-
lated constants do not generate valid power method pdfs. In these situations, adding a value to the
sixth cumulant may provide solutions (see find_constants). If simulation results indicate that a
continuous variable does not generate a valid pdf, the user can try find_constants with various
sixth cumulant correction vectors to determine if a valid pdf can be found.

Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065) outlined a general method for
comparing a simulated distribution Y to a given theoretical distribution Y ∗. These steps can be
found in the example and the Comparison of Simulated Distribution to Theoretical Distribution
or Empirical Data vignette.

Usage

nonnormvar1(method = c("Fleishman", "Polynomial"), means = 0, vars = 1,
skews = 0, skurts = 0, fifths = 0, sixths = 0, Six = NULL,
cstart = NULL, n = 10000, seed = 1234)

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1080/10629360600605065
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Arguments

method the method used to generate the continuous variable. "Fleishman" uses Fleish-
man’s third-order polynomial transformation and "Polynomial" uses Headrick’s
fifth-order transformation.

means mean for the continuous variable (default = 0)

vars variance (default = 1)

skews skewness value (default = 0)

skurts standardized kurtosis (kurtosis - 3, so that normal variables have a value of 0;
default = 0)

fifths standardized fifth cumulant (not necessary for method = "Fleishman"; default =
0)

sixths standardized sixth cumulant (not necessary for method = "Fleishman"; default
= 0)

Six a vector of correction values to add to the sixth cumulant if no valid pdf constants
are found, ex: Six = seq(0.01, 2, by = 0.01); if no correction is desired, set
Six = NULL (default)

cstart initial values for root-solving algorithm (see multiStart for method = "Fleish-
man" or nleqslv for method = "Polynomial"). If user specified, must be in-
put as a matrix. If NULL and all 4 standardized cumulants (rounded to 3
digits) are within 0.01 of those in Headrick’s common distribution table (see
Headrick.dist data), uses his constants as starting values; else, generates n
sets of random starting values from uniform distributions.

n the sample size (i.e. the length of the simulated variable; default = 10000)

seed the seed value for random number generation (default = 1234)

Value

A list with the following components:

constants a data.frame of the constants

continuous_variable a data.frame of the generated continuous variable

summary_continuous a data.frame containing a summary of the variable

summary_targetcont a data.frame containing a summary of the target variable

sixth_correction the sixth cumulant correction value

valid.pdf "TRUE" if constants generate a valid pdf, else "FALSE"

Constants_Time the time in minutes required to calculate the constants

Simulation_Time the total simulation time in minutes

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of
the generated distribution, improving accuracy. In addition, the range of feasible standardized
kurtosis values, given skew and standardized fifth (γ3) and sixth (γ4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
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be used to generate a non-normal distribution with a ratio of γ2
3/γ4 > 9/14 (see Headrick &

Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of γ2

3/γ4 = 2/3. However, if the fifth and sixth cumulants do not exist, the Fleishman approx-
imation should be used.

Overview of Simulation Process

1) The constants are calculated for the continuous variable using find_constants. If no solutions
are found that generate a valid power method pdf, the function will return constants that produce an
invalid pdf (or a stop error if no solutions can be found). Possible solutions include: 1) changing
the seed, or 2) using a Six vector of sixth cumulant correction values (if method = "Polynomial").
Errors regarding constant calculation are the most probable cause of function failure.

2) An intermediate standard normal variate X of length n is generated.

3) Summary statistics are calculated.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a vector of sixth cumulant correction
values is needed. The solutions can be used as starting values (see cstart below). If the standard-
ized cumulants are obtained from calc_theory, the user may need to use rounded values as inputs
(i.e. skews = round(skews, 8)).

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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See Also

find_constants

Examples

# Normal distribution with Headrick's fifth-order PMT:
N <- nonnormvar1("Polynomial", 0, 1, 0, 0, 0, 0)

## Not run:
# Use Headrick & Kowalchuk's (2007) steps to compare a simulated exponential
# (mean = 2) variable to the theoretical exponential(mean = 2) density:

# 1) Obtain the standardized cumulants:
stcums <- calc_theory(Dist = "Exponential", params = 0.5) # rate = 1/mean

# 2) Simulate the variable:
H_exp <- nonnormvar1("Polynomial", means = 2, vars = 2, skews = stcums[3],

skurts = stcums[4], fifths = stcums[5],
sixths = stcums[6], n = 10000, seed = 1234)

H_exp$constants
# c0 c1 c2 c3 c4 c5
# 1 -0.3077396 0.8005605 0.318764 0.03350012 -0.00367481 0.0001587076

# 3) Determine whether the constants produce a valid power method pdf:

H_exp$valid.pdf
# [1] "TRUE"

# 4) Select a critical value:

# Let alpha = 0.05.
y_star <- qexp(1 - 0.05, rate = 0.5) # note that rate = 1/mean
y_star
# [1] 5.991465

# 5) Solve m_{2}^{1/2} * p(z') + m_{1} - y* = 0 for z', where m_{1} and
# m_{2} are the 1st and 2nd moments of Y*:

# The exponential(2) distribution has a mean and standard deviation equal
# to 2.
# Solve 2 * p(z') + 2 - y_star = 0 for z'
# p(z') = c0 + c1 * z' + c2 * z'^2 + c3 * z'^3 + c4 * z'^4 + c5 * z'^5

f_exp <- function(z, c, y) {
return(2 * (c[1] + c[2] * z + c[3] * z^2 + c[4] * z^3 + c[5] * z^4 +

c[6] * z^5) + 2 - y)
}

z_prime <- uniroot(f_exp, interval = c(-1e06, 1e06),
c = as.numeric(H_exp$constants), y = y_star)$root

z_prime
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# [1] 1.644926

# 6) Calculate 1 - Phi(z'), the corresponding probability for the
# approximation Y to Y* (i.e. 1 - Phi(z') = 0.05), and compare to target
# value alpha:

1 - pnorm(z_prime)
# [1] 0.04999249

# 7) Plot a parametric graph of Y* and Y:

plot_sim_pdf_theory(sim_y = as.numeric(H_exp$continuous_variable[, 1]),
Dist = "Exponential", params = 0.5)

# Note we can also plot the empirical cdf and show the cumulative
# probability up to y_star:

plot_sim_cdf(sim_y = as.numeric(H_exp$continuous_variable[, 1]),
calc_cprob = TRUE, delta = y_star)

## End(Not run)

ordnorm Calculate Intermediate MVN Correlation to Generate Variables
Treated as Ordinal

Description

This function calculates the intermediate MVN correlation needed to generate a variable described
by a discrete marginal distribution and associated finite support. This includes ordinal (r >= 2
categories) variables or variables that are treated as ordinal (i.e. count variables in the Barbiero &
Ferrari, 2015 method used in rcorrvar2, doi: 10.1002/asmb.2072). The function is a modification
of Barbiero & Ferrari’s ordcont function in GenOrd-package. It works by setting the intermediate
MVN correlation equal to the target correlation and updating each intermediate pairwise correlation
until the final pairwise correlation is within epsilon of the target correlation or the maximum number
of iterations has been reached. This function uses contord to calculate the ordinal correlation
obtained from discretizing the normal variables generated from the intermediate correlation matrix.
The ordcont has been modified in the following ways:
1) the initial correlation check has been removed because it is assumed the user has done this before
simulation using valid_corr or valid_corr2
2) the final positive-definite check has been removed
3) the intermediate correlation update function was changed to accomodate more situations, and
4) a final "fail-safe" check was added at the end of the iteration loop where if the absolute error
between the final and target pairwise correlation is still > 0.1, the intermediate correlation is set
equal to the target correlation.
This function would not ordinarily be called by the user. Note that this will return a matrix that
is NOT positive-definite because this is corrected for in the simulation functions rcorrvar and
rcorrvar2 using the method of Higham (2002) and the nearPD function.

http://doi.org/10.1002/asmb.2072


66 ordnorm

Usage

ordnorm(marginal, rho, support = list(), epsilon = 0.001, maxit = 1000)

Arguments

marginal a list of length equal to the number of variables; the i-th element is a vector of the
cumulative probabilities defining the marginal distribution of the i-th variable; if
the variable can take r values, the vector will contain r - 1 probabilities (the r-th
is assumed to be 1)

rho the target correlation matrix

support a list of length equal to the number of variables; the i-th element is a vector of
containing the r ordered support values; if not provided (i.e. support = list()),
the default is for the i-th element to be the vector 1, ..., r

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001); smaller epsilons take more time

maxit the maximum number of iterations to use (default = 1000) to find the intermedi-
ate correlation; the correction loop stops when either the iteration number passes
maxit or epsilon is reached

Value

A list with the following components:

SigmaC the intermediate MVN correlation matrix

rho0 the calculated final correlation matrix generated from SigmaC

rho the target final correlation matrix

niter a matrix containing the number of iterations required for each variable pair

maxerr the maximum final error between the final and target correlation matrices

References

Barbiero A, Ferrari PA (2015). Simulation of correlated Poisson variables. Applied Stochastic
Models in Business and Industry, 31: 669-80. doi: 10.1002/asmb.2072.

Barbiero A, Ferrari PA (2015). GenOrd: Simulation of Discrete Random Variables with Given Cor-
relation Matrix and Marginal Distributions. R package version 1.4.0. https://CRAN.R-project.
org/package=GenOrd

Ferrari PA, Barbiero A (2012). Simulating ordinal data, Multivariate Behavioral Research, 47(4):
566-589. doi: 10.1080/00273171.2012.692630.

See Also

ordcont, rcorrvar, rcorrvar2, findintercorr, findintercorr2

http://doi.org/10.1002/asmb.2072
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=GenOrd
http://doi.org/10.1080/00273171.2012.692630
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pdf_check Check Polynomial Transformation Constants for Valid Power Method
PDF

Description

This function determines if a given set of constants, calculated using Fleishman’s Third-Order
(method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s Fifth-Order (method = "Poly-
nomial", doi: 10.1016/S01679473(02)000725) Polynomial Transformation, yields a valid pdf. This
requires 1) the correlation between the resulting continuous variable and the underlying standard
normal variable (see power_norm_corr) is > 0, and 2) the constants satisfy certain constraints (see
Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065).

Usage

pdf_check(c, method)

Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to find the constants. "Fleishman" uses a third-order polyno-
mial transformation and "Polynomial" uses Headrick’s fifth-order transforma-
tion.

Value

A list with components:

rho_pZ the correlation between the continuous variable and the underlying standard normal variable

valid.pdf "TRUE" if the constants produce a valid power method pdf, else "FALSE"

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.
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http://www.sciencedirect.com/science/article/pii/S0167947302000725
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Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

See Also

fleish, poly, power_norm_corr, find_constants

Examples

# Normal distribution
pdf_check(c(0, 1, 0, 0, 0, 0), "Polynomial")

## Not run:
# Chi-squared (df = 1) Distribution (invalid power method pdf)
con <- find_constants(method = "Polynomial", skews = sqrt(8), skurts = 12,

fifths = 48*sqrt(2), sixths = 480)$constants
pdf_check(c = con, method = "Polynomial")

# Beta (a = 4, b = 2) Distribution (valid power method pdf)
con <- find_constants(method = "Polynomial", skews = -0.467707,

skurts = -0.375, fifths = 1.403122,
sixths = -0.426136)$constants

pdf_check(c = con, method = "Polynomial")

## End(Not run)

plot_cdf Plot Theoretical Power Method Cumulative Distribution Function for
Continuous Variables

Description

This plots the theoretical power method cumulative distribution function:

Fp(Z)(p(z)) = Fp(Z)(p(z), FZ(z)),

as given in Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065). It is a parametric
plot with sigma ∗ y + mu, where y = p(z), on the x-axis and FZ(z) on the y-axis, where z is
vector of n random standard normal numbers (generated with a seed set by user). Given a vector
of polynomial transformation constants, the function generates sigma ∗ y + mu and calculates
the theoretical cumulative probabilities using Fp(Z)(p(z), FZ(z)). If calc_cprob = TRUE, the
cumulative probability up to delta = sigma ∗ y +mu is calculated (see cdf_prob) and the region
on the plot is filled with a dashed horizontal line drawn at Fp(Z)(delta). The cumulative probability
is stated on top of the line. It returns a ggplot2-package object so the user can modify as necessary.
The graph parameters (i.e. title, color, fill, hline) are ggplot2-package parameters. It works
for valid or invalid power method pdfs.

http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1080/10629360600605065
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Usage

plot_cdf(c = NULL, method = c("Fleishman", "Polynomial"), mu = 0,
sigma = 1, title = "Cumulative Distribution Function", ylower = NULL,
yupper = NULL, calc_cprob = FALSE, delta = 5, color = "dark blue",
fill = "blue", hline = "dark green", n = 10000, seed = 1234,
text.size = 11, title.text.size = 15, axis.text.size = 10,
axis.title.size = 13, lower = -1000000, upper = 1000000)

Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to generate the continuous variable y = p(z). "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

mu mean for the continuous variable (default = 0)

sigma standard deviation for the continuous variable (default = 1)

title the title for the graph (default = "Cumulative Distribution Function")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

calc_cprob if TRUE (default = FALSE), cdf_prob is used to find the cumulative probability
up to delta = sigma ∗ y+mu and the region on the plot is filled with a dashed
horizontal line drawn at Fp(Z)(delta)

delta the value sigma ∗ y+mu, where y = p(z), at which to evaluate the cumulative
probability

color the line color for the cdf (default = "dark blue")

fill the fill color if calc_cprob = TRUE (default = "blue)

hline the dashed horizontal line color drawn at delta if calc_cprob = TRUE (default
= "dark green")

n the number of random standard normal numbers to use in generating y = p(z)
(default = 10000)

seed the seed value for random number generation (default = 1234)

text.size the size of the text displaying the cumulative probability up to delta if calc_cprob
= TRUE

title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

lower lower bound for cdf_prob

upper upper bound for cdf_prob
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Value

A ggplot2-package object.

References

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43,
521-532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64, 25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

find_constants, cdf_prob, ggplot2-package, geom_path, geom_abline, geom_ribbon

Examples

## Not run:
# Logistic Distribution: mean = 0, sigma = 1

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Find constants without the sixth cumulant correction
# (invalid power method pdf)
con1 <- find_constants(method = "Polynomial", skews = stcum[3],

skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], n = 25, seed = 1234)

# Plot cdf with cumulative probability calculated up to delta = 5
plot_cdf(c = con1$constants, method = "Polynomial",

title = "Invalid Logistic CDF", calc_cprob = TRUE, delta = 5)

# Find constants with the sixth cumulant correction
# (valid power method pdf)
con2 <- find_constants(method = "Polynomial", skews = stcum[3],

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], Six = seq(1.5, 2, 0.05))

# Plot cdf with cumulative probability calculated up to delta = 5
plot_cdf(c = con2$constants, method = "Polynomial",

title = "Valid Logistic CDF", calc_cprob = TRUE, delta = 5)

## End(Not run)

plot_pdf_ext Plot Theoretical Power Method Probability Density Function and Tar-
get PDF of External Data for Continuous Variables

Description

This plots the theoretical power method probability density function:

fp(Z)(p(z)) = fp(Z)(p(z), fZ(z)/p
′(z)),

as given in Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065), and target pdf. It is
a parametric plot with sigma ∗ y + mu, where y = p(z), on the x-axis and fZ(z)/p

′(z) on the
y-axis, where z is vector of n random standard normal numbers (generated with a seed set by user;
length equal to length of external data vector). sigma is the standard deviation and mu is the mean of
the external data set. Given a vector of polynomial transformation constants, the function generates
sigma ∗ y +mu and calculates the theoretical probabilities using fp(Z)(p(z), fZ(z)/p

′(z)). The
target distribution is also plotted given a vector of external data. This external data is required. The
y values are centered and scaled to have the same mean and standard deviation as the external data.
If the user wants to only plot the power method pdf, plot_pdf_theory should be used instead
with overlay = FALSE. It returns a ggplot2-package object so the user can modify as necessary.
The graph parameters (i.e. title, power_color, target_color, nbins) are ggplot2-package
parameters. It works for valid or invalid power method pdfs.

Usage

plot_pdf_ext(c = NULL, method = c("Fleishman", "Polynomial"),
title = "Probability Density Function", ylower = NULL, yupper = NULL,
power_color = "dark blue", ext_y = NULL, target_color = "dark green",
target_lty = 2, seed = 1234, legend.position = c(0.975, 0.9),
legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)

Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to generate the continuous variable y = p(z). "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

http://doi.org/10.1080/10629360600605065
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title the title for the graph (default = "Probability Density Function")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

power_color the line color for the power method pdf (default = "dark blue")

ext_y a vector of external data (required)

target_color the histogram color for the target pdf (default = "dark green")

target_lty the line type for the target pdf (default = 2, dashed line)

seed the seed value for random number generation (default = 1234)
legend.position

the position of the legend
legend.justification

the justification of the legend
legend.text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

find_constants, calc_theory, ggplot2-package, geom_path, geom_density

Examples

## Not run:
# Logistic Distribution

seed = 1234

# Simulate "external" data set
set.seed(seed)
ext_y <- rlogis(10000)

# Find standardized cumulants
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stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Find constants without the sixth cumulant correction
# (invalid power method pdf)
con1 <- find_constants(method = "Polynomial", skews = stcum[3],

skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6])

# Plot invalid power method pdf with external data
plot_pdf_ext(c = con1$constants, method = "Polynomial",

title = "Invalid Logistic PDF", ext_y = ext_y,
seed = seed)

# Find constants with the sixth cumulant correction
# (valid power method pdf)
con2 <- find_constants(method = "Polynomial", skews = stcum[3],

skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], Six = seq(1.5, 2, 0.05))

# Plot invalid power method pdf with external data
plot_pdf_ext(c = con2$constants, method = "Polynomial",

title = "Valid Logistic PDF", ext_y = ext_y,
seed = seed)

## End(Not run)

plot_pdf_theory Plot Theoretical Power Method Probability Density Function and Tar-
get PDF by Distribution Name or Function for Continuous Variables

Description

This plots the theoretical power method probability density function:

fp(Z)(p(z)) = fp(Z)(p(z), fZ(z)/p
′(z)),

as given in Headrick & Kowalchuk (2007, doi: 10.1080/10629360600605065), and target pdf (if
overlay = TRUE). It is a parametric plot with sigma ∗ y + mu, where y = p(z), on the x-axis
and fZ(z)/p

′(z) on the y-axis, where z is vector of n random standard normal numbers (generated
with a seed set by user). Given a vector of polynomial transformation constants, the function gen-
erates sigma ∗ y+mu and calculates the theoretical probabilities using fp(Z)(p(z), fZ(z)/p

′(z)).
If overlay = TRUE, the target distribution is also plotted given either a distribution name (plus
up to 4 parameters) or a pdf function fx. If a target distribution is specified, y is scaled and
then transformed so that it has the same mean and variance as the target distribution. It returns a
ggplot2-package object so the user can modify as necessary. The graph parameters (i.e. title,
power_color, target_color, target_lty) are ggplot2-package parameters. It works for valid
or invalid power method pdfs.

http://doi.org/10.1080/10629360600605065
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Usage

plot_pdf_theory(c = NULL, method = c("Fleishman", "Polynomial"), mu = 0,
sigma = 1, title = "Probability Density Function", ylower = NULL,
yupper = NULL, power_color = "dark blue", overlay = TRUE,
target_color = "dark green", target_lty = 2, Dist = c("Benini", "Beta",
"Beta-Normal", "Birnbaum-Saunders", "Chisq", "Dagum", "Exponential",
"Exp-Geometric", "Exp-Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet",
"Gamma", "Gaussian", "Gompertz", "Gumbel", "Kumaraswamy", "Laplace",
"Lindley", "Logistic", "Loggamma", "Lognormal", "Lomax", "Makeham", "Maxwell",
"Nakagami", "Paralogistic", "Pareto", "Perks", "Rayleigh", "Rice",
"Singh-Maddala", "Skewnormal", "t", "Topp-Leone", "Triangular", "Uniform",
"Weibull"), params = NULL, fx = NULL, lower = NULL, upper = NULL,
n = 100, seed = 1234, legend.position = c(0.975, 0.9),
legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)

Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to generate the continuous variable y = p(z). "Fleishman"
uses Fleishman’s third-order polynomial transformation and "Polynomial" uses
Headrick’s fifth-order transformation.

mu the desired mean for the continuous variable (used if overlay = FALSE, other-
wise variable centered to have the same mean as the target distribution)

sigma the desired standard deviation for the continuous variable (used if overlay =
FALSE, otherwise variable scaled to have the same standard deviation as the tar-
get distribution)

title the title for the graph (default = "Probability Density Function")
ylower the lower y value to use in the plot (default = NULL, uses minimum simulated

y value)
yupper the upper y value (default = NULL, uses maximum simulated y value)
power_color the line color for the power method pdf (default = "dark blue)
overlay if TRUE (default), the target distribution is also plotted given either a distribution

name (and parameters) or pdf function fx (with bounds = ylower, yupper)
target_color the line color for the target pdf (default = "dark green")
target_lty the line type for the target pdf (default = 2, dashed line)
Dist name of the distribution. The possible values are: "Benini", "Beta", "Beta-

Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma",
"Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic",
"Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t",
"Topp-Leone", "Triangular", "Uniform", "Weibull". Please refer to the docu-
mentation for each package (either stats-package, VGAM-package, or triangle)
for information on appropriate parameter inputs.
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params a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead)

fx a pdf input as a function of x only, i.e. fx <- function(x) 0.5*(x-1)^2; must return
a scalar (keep NULL if Dist supplied instead)

lower the lower support bound for fx

upper the upper support bound for fx

n the number of random standard normal numbers to use in generating y = p(z)
(default = 100)

seed the seed value for random number generation (default = 1234)
legend.position

the position of the legend
legend.justification

the justification of the legend
legend.text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

find_constants, calc_theory, ggplot2-package, geom_path

Examples

## Not run:
# Logistic Distribution

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Find constants without the sixth cumulant correction
# (invalid power method pdf)
con1 <- find_constants(method = "Polynomial", skews = stcum[3],

skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6])
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# Plot invalid power method pdf with theoretical pdf overlayed
plot_pdf_theory(c = con1$constants, method = "Polynomial",

title = "Invalid Logistic PDF", overlay = TRUE,
Dist = "Logistic", params = c(0, 1))

# Find constants with the sixth cumulant correction
# (valid power method pdf)
con2 <- find_constants(method = "Polynomial", skews = stcum[3],

skurts = stcum[4], fifths = stcum[5],
sixths = stcum[6], Six = seq(1.5, 2, 0.05))

# Plot valid power method pdf with theoretical pdf overlayed
plot_pdf_theory(c = con2$constants, method = "Polynomial",

title = "Valid Logistic PDF", overlay = TRUE,
Dist = "Logistic", params = c(0, 1))

## End(Not run)

plot_sim_cdf Plot Simulated (Empirical) Cumulative Distribution Function for
Continuous, Ordinal, or Count Variables

Description

This plots the cumulative distribution function of simulated continuous, ordinal, or count data us-
ing the empirical cdf Fn (see stat_ecdf). Fn is a step function with jumps i/n at observa-
tion values, where i is the number of tied observations at that value. Missing values are ignored.
For observations y = (y1, y2, ..., yn), Fn is the fraction of observations less or equal to t, i.e.,
Fn(t) = sum[yi <= t]/n. If calc_cprob = TRUE and the variable is continuous, the cumu-
lative probability up to y = delta is calculated (see sim_cdf_prob) and the region on the plot is
filled with a dashed horizontal line drawn at Fn(delta). The cumulative probability is stated on top
of the line. This fill option does not work for ordinal or count variables. The function returns a
ggplot2-package object so the user can modify as necessary. The graph parameters (i.e. title,
color, fill, hline) are ggplot2-package parameters. It works for valid or invalid power method
pdfs.

Usage

plot_sim_cdf(sim_y, title = "Empirical Cumulative Distribution Function",
ylower = NULL, yupper = NULL, calc_cprob = FALSE, delta = 5,
color = "dark blue", fill = "blue", hline = "dark green",
text.size = 11, title.text.size = 15, axis.text.size = 10,
axis.title.size = 13)
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Arguments

sim_y a vector of simulated data

title the title for the graph (default = "Empirical Cumulative Distribution Function")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

calc_cprob if TRUE (default = FALSE) and sim_y is continuous, sim_cdf_prob is used to
find the empirical cumulative probability up to y = delta and the region on the
plot is filled with a dashed horizontal line drawn at Fn(delta)

delta the value y at which to evaluate the cumulative probability (default = 5)

color the line color for the cdf (default = "dark blue")

fill the fill color if calc_cprob = TRUE (default = "blue)

hline the dashed horizontal line color drawn at delta if calc_cprob = TRUE (default
= "dark green")

text.size the size of the text displaying the cumulative probability up to delta if calc_cprob
= TRUE

title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

ecdf, sim_cdf_prob, ggplot2-package, stat_ecdf, geom_abline, geom_ribbon

Examples

## Not run:
# Logistic Distribution: mean = 0, variance = 1
seed = 1234

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Simulate without the sixth cumulant correction
# (invalid power method pdf)
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Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,
skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6], seed = seed)

# Plot cdf with cumulative probability calculated up to delta = 5
plot_sim_cdf(sim_y = Logvar1$continuous_variable,

title = "Invalid Logistic Empirical CDF",
calc_cprob = TRUE, delta = 5)

# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), seed = seed)

# Plot cdf with cumulative probability calculated up to delta = 5
plot_sim_cdf(sim_y = Logvar2$continuous_variable,

title = "Valid Logistic Empirical CDF",
calc_cprob = TRUE, delta = 5)

# Simulate one binary and one ordinal variable (4 categories) with
# correlation 0.3
Ordvars = rcorrvar(k_cat = 2, marginal = list(0.4, c(0.2, 0.5, 0.7)),

rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)

# Plot cdf of 2nd variable
plot_sim_cdf(Ordvars$ordinal_variables[, 2])

## End(Not run)

plot_sim_ext Plot Simulated Data and Target External Data for Continuous or
Count Variables

Description

This plots simulated continuous or count data and overlays external data, both as histograms.
The external data is a required input. The simulated data is centered and scaled to have the
same mean and variance as the external data set. If the user wants to only plot simulated data,
plot_sim_theory should be used instead with overlay = FALSE. It returns a ggplot2-package
object so the user can modify as necessary. The graph parameters (i.e. title, power_color,
target_color, nbins) are ggplot2-package parameters. It works for valid or invalid power
method pdfs.

Usage

plot_sim_ext(sim_y, title = "Simulated Data Values", ylower = NULL,
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yupper = NULL, power_color = "dark blue", ext_y = NULL,
target_color = "dark green", nbins = 100, legend.position = c(0.975,
0.9), legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)

Arguments

sim_y a vector of simulated data

title the title for the graph (default = "Simulated Data Values")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

power_color the histogram fill color for the simulated variable (default = "dark blue")

ext_y a vector of external data (required)

target_color the histogram fill color for the target data (default = "dark green")

nbins the number of bins to use in generating the histograms (default = 100)

legend.position

the position of the legend

legend.justification

the justification of the legend

legend.text.size

the size of the legend labels

title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)

axis.title.size

the size of the axes titles

Value

A ggplot2-package object.

References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

ggplot2-package, geom_histogram
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Examples

## Not run:
# Logistic Distribution: mean = 0, variance = 1

seed = 1234

# Simulate "external" data set
set.seed(seed)
ext_y <- rlogis(10000)

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)

# Plot simulated variable and external data
plot_sim_ext(sim_y = Logvar1$continuous_variable,

title = "Invalid Logistic Simulated Data Values",
ext_y = ext_y)

# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = seed)

# Plot simulated variable and external data
plot_sim_ext(sim_y = Logvar2$continuous_variable,

title = "Valid Logistic Simulated Data Values",
ext_y = ext_y)

# Simulate 2 Poisson distributions (means = 10, 15) and correlation 0.3
# using Method 1
Pvars <- rcorrvar(k_pois = 2, lam = c(10, 15),

rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)

# Simulate "external" data set
set.seed(seed)
ext_y <- rpois(10000, 10)

# Plot 1st simulated variable and external data
plot_sim_ext(sim_y = Pvars$Poisson_variable[, 1], ext_y = ext_y)

## End(Not run)
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plot_sim_pdf_ext Plot Simulated Probability Density Function and Target PDF of Ex-
ternal Data for Continuous or Count Variables

Description

This plots the pdf of simulated continuous or count data and overlays the target pdf computed from
the given external data vector. The external data is a required input. The simulated data is centered
and scaled to have the same mean and variance as the external data set. If the user wants to only
plot simulated data, plot_sim_theory should be used instead (with overlay = FALSE). It returns a
ggplot2-package object so the user can modify as necessary. The graph parameters (i.e. title,
power_color, target_color, target_lty) are ggplot2-package parameters. It works for valid
or invalid power method pdfs.

Usage

plot_sim_pdf_ext(sim_y, title = "Simulated Probability Density Function",
ylower = NULL, yupper = NULL, power_color = "dark blue", ext_y = NULL,
target_color = "dark green", target_lty = 2, legend.position = c(0.975,
0.9), legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)

Arguments

sim_y a vector of simulated data

title the title for the graph (default = "Simulated Probability Density Function")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

power_color the histogram color for the simulated variable (default = "dark blue")

ext_y a vector of external data (required)

target_color the histogram color for the target pdf (default = "dark green")

target_lty the line type for the target pdf (default = 2, dashed line)
legend.position

the position of the legend
legend.justification

the justification of the legend
legend.text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles
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Value

A ggplot2-package object.

References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

ggplot2-package, geom_density

Examples

## Not run:
# Logistic Distribution: mean = 0, variance = 1

seed = 1234

# Simulate "external" data set
set.seed(seed)
ext_y <- rlogis(10000)

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)

# Plot pdfs of simulated variable (invalid) and external data
plot_sim_pdf_ext(sim_y = Logvar1$continuous_variable,

title = "Invalid Logistic Simulated PDF", ext_y = ext_y)

# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = 1234)

# Plot pdfs of simulated variable (valid) and external data
plot_sim_pdf_ext(sim_y = Logvar2$continuous_variable,

title = "Valid Logistic Simulated PDF", ext_y = ext_y)

# Simulate 2 Poisson distributions (means = 10, 15) and correlation 0.3
# using Method 1
Pvars <- rcorrvar(k_pois = 2, lam = c(10, 15),
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rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)

# Simulate "external" data set
set.seed(seed)
ext_y <- rpois(10000, 10)

# Plot pdfs of 1st simulated variable and external data
plot_sim_pdf_ext(sim_y = Pvars$Poisson_variable[, 1], ext_y = ext_y)

## End(Not run)

plot_sim_pdf_theory Plot Simulated Probability Density Function and Target PDF by Dis-
tribution Name or Function for Continuous or Count Variables

Description

This plots the pdf of simulated continuous or count data and overlays the target pdf (if overlay =
TRUE), which is specified by distribution name (plus up to 4 parameters) or pdf function fx (plus
support bounds). If a continuous target distribution is provided (cont_var = TRUE), the simulated
data y is scaled and then transformed (i.e. y = sigma∗scale(y)+mu) so that it has the same mean
(mu) and variance (sigma2) as the target distribution. If the variable is Negative Binomial, the
parameters must be size and success probability (not mu). The function returns a ggplot2-package
object so the user can modify as necessary. The graph parameters (i.e. title, power_color,
target_color, target_lty) are ggplot2-package parameters. It works for valid or invalid power
method pdfs.

Usage

plot_sim_pdf_theory(sim_y, title = "Simulated Probability Density Function",
ylower = NULL, yupper = NULL, power_color = "dark blue",
overlay = TRUE, cont_var = TRUE, target_color = "dark green",
target_lty = 2, Dist = c("Benini", "Beta", "Beta-Normal",
"Birnbaum-Saunders", "Chisq", "Dagum", "Exponential", "Exp-Geometric",
"Exp-Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic",
"Loggamma", "Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami",
"Paralogistic", "Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala",
"Skewnormal", "t", "Topp-Leone", "Triangular", "Uniform", "Weibull",
"Poisson", "Negative_Binomial"), params = NULL, fx = NULL, lower = NULL,
upper = NULL, legend.position = c(0.975, 0.9),
legend.justification = c(1, 1), legend.text.size = 10,
title.text.size = 15, axis.text.size = 10, axis.title.size = 13)
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Arguments

sim_y a vector of simulated data

title the title for the graph (default = "Simulated Probability Density Function")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

power_color the line color for the simulated variable

overlay if TRUE (default), the target distribution is also plotted given either a distribution
name (and parameters) or pdf function fx (with bounds = ylower, yupper)

cont_var TRUE (default) for continuous variables, FALSE for count variables

target_color the line color for the target pdf

target_lty the line type for the target pdf (default = 2, dashed line)

Dist name of the distribution. The possible values are: "Benini", "Beta", "Beta-
Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma",
"Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic",
"Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t",
"Topp-Leone", "Triangular", "Uniform", "Weibull", "Poisson", and "Negative_Binomial".
Please refer to the documentation for each package (either stats-package,
VGAM-package, or triangle) for information on appropriate parameter inputs.

params a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead)

fx a pdf input as a function of x only, i.e. fx <- function(x) 0.5*(x-1)^2; must return
a scalar (keep NULL if Dist supplied instead)

lower the lower support bound for fx

upper the upper support bound for fx
legend.position

the position of the legend
legend.justification

the justification of the legend
legend.text.size

the size of the legend labels
title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

Value

A ggplot2-package object.
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References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

calc_theory, ggplot2-package, geom_path, geom_density

Examples

## Not run:
# Logistic Distribution: mean = 0, variance = 1
seed = 1234

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)

# Plot pdfs of simulated variable (invalid) and theoretical distribution
plot_sim_pdf_theory(sim_y = Logvar1$continuous_variable,

title = "Invalid Logistic Simulated PDF",
overlay = TRUE, Dist = "Logistic", params = c(0, 1))

# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = seed)

# Plot pdfs of simulated variable (invalid) and theoretical distribution
plot_sim_pdf_theory(sim_y = Logvar2$continuous_variable,

title = "Valid Logistic Simulated PDF",
overlay = TRUE, Dist = "Logistic", params = c(0, 1))

# Simulate 2 Negative Binomial distributions and correlation 0.3
# using Method 1
NBvars <- rcorrvar(k_nb = 2, size = c(10, 15), prob = c(0.4, 0.3),

rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)

# Plot pdfs of 1st simulated variable and theoretical distribution
plot_sim_pdf_theory(sim_y = NBvars$Neg_Bin_variable[, 1], overlay = TRUE,

cont_var = FALSE, Dist = "Negative_Binomial",
params = c(10, 0.4))
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## End(Not run)

plot_sim_theory Plot Simulated Data and Target Distribution Data by Name or Func-
tion for Continuous or Count Variables

Description

This plots simulated continuous or count data and overlays data (if overlay = TRUE) generated
from the target distribution, which is specified by name (plus up to 4 parameters) or pdf function
fx (plus support bounds). Due to the integration involved in evaluating the cdf using fx, only
continuous fx may be supplied. Both are plotted as histograms. If a continuous target distribution is
specified (cont_var = TRUE), the simulated data y is scaled and then transformed (i.e. y = sigma∗
scale(y)+mu) so that it has the same mean (mu) and variance (sigma2) as the target distribution.
If the variable is Negative Binomial, the parameters must be size and success probability (not mu). It
returns a ggplot2-package object so the user can modify as necessary. The graph parameters (i.e.
title, power_color, target_color, target_lty) are ggplot2-package parameters. It works
for valid or invalid power method pdfs.

Usage

plot_sim_theory(sim_y, title = "Simulated Data Values", ylower = NULL,
yupper = NULL, power_color = "dark blue", overlay = TRUE,
cont_var = TRUE, target_color = "dark green", nbins = 100,
Dist = c("Benini", "Beta", "Beta-Normal", "Birnbaum-Saunders", "Chisq",
"Dagum", "Exponential", "Exp-Geometric", "Exp-Logarithmic", "Exp-Poisson",
"F", "Fisk", "Frechet", "Gamma", "Gaussian", "Gompertz", "Gumbel",
"Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma", "Lognormal",
"Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic", "Pareto", "Perks",
"Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t", "Topp-Leone",
"Triangular", "Uniform", "Weibull", "Poisson", "Negative_Binomial"),
params = NULL, fx = NULL, lower = NULL, upper = NULL, seed = 1234,
sub = 1000, legend.position = c(0.975, 0.9), legend.justification = c(1,
1), legend.text.size = 10, title.text.size = 15, axis.text.size = 10,
axis.title.size = 13)

Arguments

sim_y a vector of simulated data

title the title for the graph (default = "Simulated Data Values")

ylower the lower y value to use in the plot (default = NULL, uses minimum simulated
y value)

yupper the upper y value (default = NULL, uses maximum simulated y value)

power_color the histogram fill color for the simulated variable (default = "dark blue")
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overlay if TRUE (default), the target distribution is also plotted given either a distribution
name (and parameters) or pdf function fx (with support bounds = lower, upper)

cont_var TRUE (default) for continuous variables, FALSE for count variables

target_color the histogram fill color for the target distribution (default = "dark green")

nbins the number of bins to use when creating the histograms (default = 100)

Dist name of the distribution. The possible values are: "Benini", "Beta", "Beta-
Normal", "Birnbaum-Saunders", "Chisq", "Exponential", "Exp-Geometric", "Exp-
Logarithmic", "Exp-Poisson", "F", "Fisk", "Frechet", "Gamma", "Gaussian",
"Gompertz", "Gumbel", "Kumaraswamy", "Laplace", "Lindley", "Logistic", "Loggamma",
"Lognormal", "Lomax", "Makeham", "Maxwell", "Nakagami", "Paralogistic",
"Pareto", "Perks", "Rayleigh", "Rice", "Singh-Maddala", "Skewnormal", "t",
"Topp-Leone", "Triangular", "Uniform", "Weibull", "Poisson", and "Negative_Binomial".
Please refer to the documentation for each package (either stats-package,
VGAM-package, or triangle) for information on appropriate parameter inputs.

params a vector of parameters (up to 4) for the desired distribution (keep NULL if fx
supplied instead)

fx a pdf input as a function of x only, i.e. fx <- function(x) 0.5*(x-1)^2; must return
a scalar (keep NULL if Dist supplied instead)

lower the lower support bound for a supplied fx, else keep NULL (note: if an error is
thrown from uniroot, try a slightly higher lower bound; i.e., 0.0001 instead of
0)

upper the upper support bound for a supplied fx, else keep NULL (note: if an error is
thrown from uniroot, try a lower upper bound; i.e., 100000 instead of Inf)

seed the seed value for random number generation (default = 1234)

sub the number of subdivisions to use in the integration to calculate the cdf from
fx; if no result, try increasing sub (requires longer computation time; default =
1000)

legend.position

the position of the legend

legend.justification

the justification of the legend

legend.text.size

the size of the legend labels

title.text.size

the size of the plot title

axis.text.size the size of the axes text (tick labels)
axis.title.size

the size of the axes titles

Value

A ggplot2-package object.
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References

Please see the references for plot_cdf.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

See Also

calc_theory, ggplot2-package, geom_histogram

Examples

## Not run:
# Logistic Distribution: mean = 0, variance = 1
seed = 1234

# Find standardized cumulants
stcum <- calc_theory(Dist = "Logistic", params = c(0, 1))

# Simulate without the sixth cumulant correction
# (invalid power method pdf)
Logvar1 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
n = 10000, seed = seed)

# Plot simulated variable (invalid) and data from theoretical distribution
plot_sim_theory(sim_y = Logvar1$continuous_variable,

title = "Invalid Logistic Simulated Data Values",
overlay = TRUE, Dist = "Logistic", params = c(0, 1),
seed = seed)

# Simulate with the sixth cumulant correction
# (valid power method pdf)
Logvar2 <- nonnormvar1(method = "Polynomial", means = 0, vars = 1,

skews = stcum[3], skurts = stcum[4],
fifths = stcum[5], sixths = stcum[6],
Six = seq(1.5, 2, 0.05), n = 10000, seed = seed)

# Plot simulated variable (valid) and data from theoretical distribution
plot_sim_theory(sim_y = Logvar2$continuous_variable,

title = "Valid Logistic Simulated Data Values",
overlay = TRUE, Dist = "Logistic", params = c(0, 1),
seed = seed)

# Simulate 2 Negative Binomial distributions and correlation 0.3
# using Method 1
NBvars <- rcorrvar(k_nb = 2, size = c(10, 15), prob = c(0.4, 0.3),

rho = matrix(c(1, 0.3, 0.3, 1), 2, 2), seed = seed)

# Plot pdfs of 1st simulated variable and theoretical distribution
plot_sim_theory(sim_y = NBvars$Neg_Bin_variable[, 1], overlay = TRUE,

cont_var = FALSE, Dist = "Negative_Binomial",
params = c(10, 0.4))
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## End(Not run)

poly Headrick’s Fifth-Order Polynomial Transformation Equations

Description

This function contains Headrick’s fifth-order polynomial transformation equations (2002, doi: 10.1016/
S01679473(02)000725). It is used in find_constants to find the constants c1, c2, c3, c4, and c5
(c0 = −c2− 3 ∗ c4) that satisfy the equations given skewness, standardized kurtosis, and standard-
ized fifth and sixth cumulant values. It can be used to verify a set of constants satisfy the equa-
tions. Note that there exist solutions that yield invalid power method pdfs (see power_norm_corr,
pdf_check). This function would not ordinarily be called by the user.

Usage

poly(c, a)

Arguments

c a vector of constants c1, c2, c3, c4, c5; note that find_constants returns c0,
c1, c2, c3, c4, c5

a a vector c(skewness, standardized kurtosis, standardized fifth cumulant, stan-
dardized sixth cumulant)

Value

a list of length 5; if the constants satisfy the equations, returns 0 for all list elements

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
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See Also

fleish, power_norm_corr, pdf_check, find_constants

Examples

# Laplace Distribution
poly(c = c(0.727709, 0, 0.096303, 0, -0.002232), a = c(0, 3, 0, 30))

poly_skurt_check Headrick’s Fifth-Order Transformation Lagrangean Constraints for
Lower Boundary of Standardized Kurtosis

Description

This function gives the first-order conditions of the multi-constraint Lagrangean expression

F (c1, ..., c5, λ1, ..., λ4) = f(c1, ..., c5) + λ1 ∗ [1− g(c1, ..., c5)]

+λ2 ∗ [γ1 − h(c1, ..., c5)] + λ3 ∗ [γ3 − i(c1, ..., c5)]

+λ4 ∗ [γ4 − j(c1, ..., c5)]

used to find the lower kurtosis boundary for a given skewness and standardized fifth and sixth cumu-
lants in calc_lower_skurt. The partial derivatives are described in Headrick (2002, doi: 10.1016/
S01679473(02)000725), but he does not provide the actual equations. The equations used here were
found with D (see deriv). Here, λ1, ..., λ4 are the Lagrangean multipliers, γ1, γ3, γ4 are the user-
specified values of skewness, fifth cumulant, and sixth cumulant, and f, g, h, i, j are the equations
for standardized kurtosis, variance, fifth cumulant, and sixth cumulant expressed in terms of the
constants. This function would not ordinarily be called by the user.

Usage

poly_skurt_check(c, a)

Arguments

c a vector of constants c1, ..., c5, lambda1, ..., lambda4

a a vector of skew, fifth standardized cumulant, sixth standardized cumulant

Value

A list with components:

dF/dλ1 = 1− g(c1, ..., c5)

dF/dλ2 = γ1 − h(c1, ..., c5)

dF/dλ3 = γ3 − i(c1, ..., c5)

dF/dλ4 = γ4 − j(c1, ..., c5)

dF/dc1 = df/dc1− λ1 ∗ dg/dc1− λ2 ∗ dh/dc1− λ3 ∗ di/dc1− λ4 ∗ dj/dc1

http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
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dF/dc2 = df/dc2− λ1 ∗ dg/dc2− λ2 ∗ dh/dc2− λ3 ∗ di/dc2− λ4 ∗ dj/dc2

dF/dc3 = df/dc3− λ1 ∗ dg/dc3− λ2 ∗ dh/dc3− λ3 ∗ di/dc3− λ4 ∗ dj/dc3

dF/dc4 = df/dc4− λ1 ∗ dg/dc4− λ2 ∗ dh/dc4− λ3 ∗ di/dc4− λ4 ∗ dj/dc4

dF/dc5 = df/dc5− λ1 ∗ dg/dc5− λ2 ∗ dh/dc5− λ3 ∗ di/dc5− λ4 ∗ dj/dc5

If the suppled values for c and a satisfy the Lagrangean expression, it will return 0 for each compo-
nent.

References

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1), 65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77, 229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3), 1 - 17. doi: 10.18637/
jss.v019.i03.

See Also

calc_lower_skurt

power_norm_corr Calculate Power Method Correlation

Description

This function calculates the correlation between a continuous variable, Y1, generated using a third
or fifth- order polynomial transformation and the generating standard normal variable, Z1. The
power method correlation (described in Headrick & Kowalchuk, 2007, doi: 10.1080/10629360600605065)
is given by: ρy1,z1 = c1 + 3 ∗ c3 + 15 ∗ c5, where c5 = 0 if method = "Fleishman". A value <=
0 indicates an invalid pdf and the signs of c1 and c3 should be reversed, which could still yield an
invalid pdf. All constants should be checked using pdf_check to see if they generate a valid pdf.

Usage

power_norm_corr(c, method)

http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1080/10629360600605065
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1080/10629360600605065
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Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to find the constants. "Fleishman" uses a third-order polyno-
mial transformation and "Polynomial" uses Headrick’s fifth-order transforma-
tion.

Value

A scalar equal to the correlation.

References

Please see references for pdf_check.

See Also

fleish, poly, find_constants, pdf_check

Examples

# Beta(a = 4, b = 2) Distribution
power_norm_corr(c = c(0.108304, 1.104252, -0.123347, -0.045284, 0.005014,

0.001285),
method = "Polynomial")

# Switch signs on c1, c3, and c5 to get negative correlation (invalid pdf):
power_norm_corr(c = c(0.108304, -1.104252, -0.123347, 0.045284, 0.005014,

-0.001285),
method = "Polynomial")

rcorrvar Generation of Correlated Ordinal, Continuous, Poisson, and/or Neg-
ative Binomial Variables: Correlation Method 1

Description

This function simulates k_cat ordinal, k_cont continuous, k_pois Poisson, and/or k_nb Negative
Binomial variables with a specified correlation matrix rho. The variables are generated from multi-
variate normal variables with intermediate correlation matrix Sigma, calculated by findintercorr,
and then transformed. The ordering of the variables in rho must be ordinal (r >= 2 categories), con-
tinuous, Poisson, and Negative Binomial (note that it is possible for k_cat, k_cont, k_pois, and/or
k_nb to be 0). The vignette Overall Workflow for Data Simulation provides a detailed example
discussing the step-by-step simulation process and comparing correlation methods 1 and 2.
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Usage

rcorrvar(n = 10000, k_cont = 0, k_cat = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), means = NULL, vars = NULL,
skews = NULL, skurts = NULL, fifths = NULL, sixths = NULL,
Six = list(), marginal = list(), support = list(), nrand = 100000,
lam = NULL, size = NULL, prob = NULL, mu = NULL, Sigma = NULL,
rho = NULL, cstart = NULL, seed = 1234, errorloop = FALSE,
epsilon = 0.001, maxit = 1000, extra_correct = TRUE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

k_cont the number of continuous variables (default = 0)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation.

means a vector of means for the k_cont continuous variables (i.e. = rep(0, k_cont))

vars a vector of variances (i.e. = rep(1, k_cont))

skews a vector of skewness values (i.e. = rep(0, k_cont))

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0; i.e. = rep(0, k_cont))

fifths a vector of standardized fifth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

sixths a vector of standardized sixth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

Six a list of vectors of correction values to add to the sixth cumulants if no valid pdf
constants are found, ex: Six = list(seq(0.01, 2,by = 0.01), seq(1, 10,by
= 0.5)); if no correction is desired for variable Y_i, set set the i-th list compo-
nent equal to NULL

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1; default = list()); for binary variables, these should be input the same as for
ordinal variables with more than 2 categories (i.e. the user-specified probability
is the probability of the 1st category, which has the smaller support value)

support a list of length equal to k_cat; the i-th element is a vector containing the r
ordered support values; if not provided (i.e. support = list()), the default is
for the i-th element to be the vector 1, ..., r

nrand the number of random numbers to generate in calculating intermediate correla-
tions (default = 10000)
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lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

Sigma an intermediate correlation matrix to use if the user wants to provide one (default
= NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

cstart a list containing initial values for root-solving algorithm used in find_constants
(see multiStart for method = "Fleishman" or nleqslv for method = "Polyno-
mial"). If user specified, each list element must be input as a matrix. If no
starting values are specified for a given continuous variable, that list element
should be NULL. If NULL and all 4 standardized cumulants (rounded to 3
digits) are within 0.01 of those in Headrick’s common distribution table (see
Headrick.dist data), uses his constants as starting values; else, generates n
sets of random starting values from uniform distributions.

seed the seed value for random number generation (default = 1234)

errorloop if TRUE, uses error_loop to attempt to correct the final correlation (default =
FALSE)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ordnorm or in the error loop

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ordnorm or in the error loop

extra_correct if TRUE, within each variable pair, if the maximum correlation error is still
greater than 0.1, the intermediate correlation is set equal to the target correlation
(with the assumption that the calculated final correlation will be less than 0.1
away from the target)

Value

A list whose components vary based on the type of simulated variables. Simulated variables are
returned as data.frames:

If ordinal variables are produced:

ordinal_variables the generated ordinal variables,

summary_ordinal a list, where the i-th element contains a data.frame with column 1 = target cu-
mulative probabilities and column 2 = simulated cumulative probabilities for ordinal variable Y_i

If continuous variables are produced:

constants a data.frame of the constants,

continuous_variables the generated continuous variables,

summary_continuous a data.frame containing a summary of each variable,

summary_targetcont a data.frame containing a summary of the target variables,
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sixth_correction a vector of sixth cumulant correction values,

valid.pdf a vector where the i-th element is "TRUE" if the constants for the i-th continuous vari-
able generate a valid pdf, else "FALSE"

If Poisson variables are produced:

Poisson_variables the generated Poisson variables,

summary_Poisson a data.frame containing a summary of each variable

If Negative Binomial variables are produced:

Neg_Bin_variables the generated Negative Binomial variables,

summary_Neg_Bin a data.frame containing a summary of each variable

Additionally, the following elements:

correlations the final correlation matrix,

Sigma1 the intermediate correlation before the error loop,

Sigma2 the intermediate correlation matrix after the error loop,

Constants_Time the time in minutes required to calculate the constants,

Intercorrelation_Time the time in minutes required to calculate the intermediate correlation
matrix,

Error_Loop_Time the time in minutes required to use the error loop,

Simulation_Time the total simulation time in minutes,

niter a matrix of the number of iterations used for each variable in the error loop,

maxerr the maximum final correlation error (from the target rho).

If a particular element is not required, the result is NULL for that element.

Variable Types and Required Inputs

1) Continuous Variables: Continuous variables are simulated using either Fleishman’s third-order
(method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s fifth-order (method = "Polyno-
mial", doi: 10.1016/S01679473(02)000725) power method transformation. This is a computation-
ally efficient algorithm that simulates continuous distributions through the method of moments. It
works by matching standardized cumulants – the first four (mean, variance, skew, and standardized
kurtosis) for Fleishman’s method, or the first six (mean, variance, skew, standardized kurtosis, and
standardized fifth and sixth cumulants) for Headrick’s method. The transformation is expressed as
follows:

Y = c0 + c1 ∗ Z + c2 ∗ Z2 + c3 ∗ Z3 + c4 ∗ Z4 + c5 ∗ Z5,

where Z N(0, 1), and c4 and c5 both equal 0 for Fleishman’s method. The real constants are
calculated by find_constants. All variables are simulated with mean 0 and variance 1, and then
transformed to the specified mean and variance at the end.

The required parameters for simulating continuous variables include: mean, variance, skewness,
standardized kurtosis (kurtosis - 3), and standardized fifth and sixth cumulants (for method = "Poly-
nomial"). If the goal is to simulate a theoretical distribution (i.e. Gamma, Beta, Logistic, etc.), these
values can be obtained using calc_theory. If the goal is to mimic an empirical data set, these val-
ues can be found using calc_moments (using the method of moments) or calc_fisherk (using
Fisher’s k-statistics). If the standardized cumulants are obtained from calc_theory, the user may

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
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need to use rounded values as inputs (i.e. skews = round(skews, 8)). Due to the nature of the inte-
gration involved in calc_theory, the results are approximations. Greater accuracy can be achieved
by increasing the number of subdivisions (sub) used in the integration process. For example, in
order to ensure that skew is exactly 0 for symmetric distributions.

For some sets of cumulants, it is either not possible to find power method constants or the calcu-
lated constants do not generate valid power method pdfs. In these situations, adding a value to the
sixth cumulant may provide solutions (see find_constants). When using Headrick’s fifth-order
approximation, if simulation results indicate that a continuous variable does not generate a valid
pdf, the user can try find_constants with various sixth cumulant correction vectors to determine
if a valid pdf can be found.

2) Binary and Ordinal Variables: Ordinal variables (r ≥ 2 categories) are generated by discretiz-
ing the standard normal variables at quantiles. These quantiles are determined by evaluating the
inverse standard normal cdf at the cumulative probabilities defined by each variable’s marginal dis-
tribution. The required inputs for ordinal variables are the cumulative marginal probabilities and
support values (if desired). The probabilities should be combined into a list of length equal to the
number of ordinal variables. The ith element is a vector of the cumulative probabilities defining the
marginal distribution of the ith variable. If the variable can take r values, the vector will contain
r − 1 probabilities (the rth is assumed to be 1).

Note for binary variables: the user-suppled probability should be the probability of the 1st (lower)
support value. This would ordinarily be considered the probability of failure (q), while the proba-
bility of the 2nd (upper) support value would be considered the probability of success (p = 1− q).
The support values should be combined into a separate list. The ith element is a vector containing
the r ordered support values.

3) Count Variables: Count variables are generated using the inverse cdf method. The cumulative
distribution function of a standard normal variable has a uniform distribution. The appropriate
quantile function F−1

Y is applied to this uniform variable with the designated parameters to generate
the count variable: Y = F−1

y (Φ(Z)). For Poisson variables, the lambda (mean) value should be
given. For Negative Binomial variables, the size (target number of successes) and either the success
probability or the mean should be given. The Negative Binomial variable represents the number
of failures which occur in a sequence of Bernoulli trials before the target number of successes is
achieved.

More details regarding the variable types can be found in the Variable Types vignette.

Overview of Correlation Method 1

The intermediate correlations used in correlation method 1 are more simulation based than those in
method 2, which means that accuracy increases with sample size and the number of repetitions. In
addition, specifying the seed allows for reproducibility. In addition, method 1 differs from method
2 in the following ways:

1) The intermediate correlation for count variables is based on the method of Yahav & Shmueli
(2012, doi: 10.1002/asmb.901), which uses a simulation based, logarithmic transformation of the
target correlation. This method becomes less accurate as the variable mean gets closer to zero.

2) The ordinal - count variable correlations are based on an extension of the method of Amatya &
Demirtas (2015, doi: 10.1080/00949655.2014.953534), in which the correlation correction factor
is the product of the upper Frechet-Hoeffding bound on the correlation between the count variable
and the normal variable used to generate it and a simulated upper bound on the correlation between

http://doi.org/10.1002/asmb.901
http://doi.org/10.1080/00949655.2014.953534
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an ordinal variable and the normal variable used to generate it (see Demirtas & Hedeker, 2011,
doi: 10.1198/tast.2011.10090).

3) The continuous - count variable correlations are based on an extension of the methods of
Amatya & Demirtas (2015) and Demirtas et al. (2012, doi: 10.1002/sim.5362), in which the cor-
relation correction factor is the product of the upper Frechet-Hoeffding bound on the correlation
between the count variable and the normal variable used to generate it and the power method corre-
lation between the continuous variable and the normal variable used to generate it (see Headrick &
Kowalchuk, 2007, doi: 10.1080/10629360600605065). The intermediate correlations are the ratio
of the target correlations to the correction factor.

Please see the Comparison of Method 1 and Method 2 vignette for more information and an
step-by-step overview of the simulation process.

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of
the generated distribution, improving accuracy. In addition, the range of feasible standardized
kurtosis values, given skew and standardized fifth (γ3) and sixth (γ4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
be used to generate a non-normal distribution with a ratio of γ2

3/γ4 > 9/14 (see Headrick &
Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of γ2

3/γ4 = 2/3. However, if the fifth and sixth cumulants do not exist, the Fleishman approx-
imation should be used.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a vector of sixth cumulant correction
values is needed. The solutions can be used as starting values (see cstart below). If the standard-
ized cumulants are obtained from calc_theory, the user may need to use rounded values as inputs
(i.e. skews = round(skews, 8)).

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

3) As mentioned above, the feasibility of the final correlation matrix rho, given the distribution
parameters, should be checked first using valid_corr. This function either checks if a given rho
is plausible or returns the lower and upper final correlation limits. It should be noted that even if a
target correlation matrix is within the "plausible range," it still may not be possible to achieve the
desired matrix. This happens most frequently when generating ordinal variables (r >= 2 categories).
The error loop frequently fixes these problems.
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See Also

find_constants, findintercorr, multiStart, nleqslv

Examples

Sim1 <- rcorrvar(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial",
means = 0, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), support = list(0:2),
rho = matrix(c(1, 0.4, 0.4, 1), 2, 2))

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234
n <- 10000

Dist <- c("Logistic", "Weibull")
Params <- list(c(0, 1), c(3, 5))
Stcum1 <- calc_theory(Dist[1], Params[[1]])
Stcum2 <- calc_theory(Dist[2], Params[[2]])
Stcum <- rbind(Stcum1, Stcum2)
rownames(Stcum) <- Dist
colnames(Stcum) <- c("mean", "sd", "skew", "skurtosis", "fifth", "sixth")
Stcum
Six <- list(seq(1.7, 1.8, 0.01), seq(0.10, 0.25, 0.01))
marginal <- list(0.3)
lam <- 0.5
size <- 2
prob <- 0.75

Rey <- matrix(0.4, 5, 5)
diag(Rey) <- 1

# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr(k_cat = 1, k_cont = 2, k_pois = 1, k_nb = 1,

method = "Polynomial", means = Stcum[, 1],
vars = Stcum[, 2]^2, skews = Stcum[, 3],
skurts = Stcum[, 4], fifths = Stcum[, 5],
sixths = Stcum[, 6], Six = Six, marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey,
seed = seed)

# Simulate variables without error loop
Sim1 <- rcorrvar(n = n, k_cat = 1, k_cont = 2, k_pois = 1, k_nb = 1,

method = "Polynomial", means = Stcum[, 1],
vars = Stcum[, 2]^2, skews = Stcum[, 3],
skurts = Stcum[, 4], fifths = Stcum[, 5],
sixths = Stcum[, 6], Six = Six, marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey,
seed = seed)
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names(Sim1)

# Look at the maximum correlation error
Sim1$maxerr

Sim1_error = round(Sim1$correlations - Rey, 6)

# interquartile-range of correlation errors
quantile(as.numeric(Sim1_error), 0.25)
quantile(as.numeric(Sim1_error), 0.75)

# Simulate variables with error loop
Sim1_EL <- rcorrvar(n = n, k_cat = 1, k_cont = 2,

k_pois = 1, k_nb = 1, method = "Polynomial",
means = Stcum[, 1], vars = Stcum[, 2]^2,
skews = Stcum[, 3], skurts = Stcum[, 4],
fifths = Stcum[, 5], sixths = Stcum[, 6],
Six = Six, marginal = marginal, lam = lam,
size = size, prob = prob, rho = Rey,
seed = seed, errorloop = TRUE)

# Look at the maximum correlation error
Sim1_EL$maxerr

EL_error = round(Sim1_EL$correlations - Rey, 6)

# interquartile-range of correlation errors
quantile(as.numeric(EL_error), 0.25)
quantile(as.numeric(EL_error), 0.75)

# Look at results
# Ordinal variables
Sim1_EL$summary_ordinal

# Continuous variables
round(Sim1_EL$constants, 6)
round(Sim1_EL$summary_continuous, 6)
round(Sim1_EL$summary_targetcont, 6)
Sim1_EL$valid.pdf

# Count variables
Sim1_EL$summary_Poisson
Sim1_EL$summary_Neg_Bin

# Generate Plots

# Logistic (1st continuous variable)
# 1) Simulated Data CDF (find cumulative probability up to y = 0.5)
plot_sim_cdf(Sim1_EL$continuous_variables[, 1], calc_cprob = TRUE,

delta = 0.5)

# 2) Simulated Data and Target Distribution PDFs
plot_sim_pdf_theory(Sim1_EL$continuous_variables[, 1], Dist = "Logistic",

params = c(0, 1))
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# 3) Simulated Data and Target Distribution
plot_sim_theory(Sim1_EL$continuous_variables[, 1], Dist = "Logistic",

params = c(0, 1))

## End(Not run)

rcorrvar2 Generation of Correlated Ordinal, Continuous, Poisson, and/or Neg-
ative Binomial Variables: Correlation Method 2

Description

This function simulates k_cat ordinal, k_cont continuous, k_pois Poisson, and/or k_nb Negative
Binomial variables with a specified correlation matrix rho. The variables are generated from multi-
variate normal variables with intermediate correlation matrix Sigma, calculated by findintercorr2,
and then transformed. The ordering of the variables in rho must be ordinal (r >= 2 categories), con-
tinuous, Poisson, and Negative Binomial (note that it is possible for k_cat, k_cont, k_pois, and/or
k_nb to be 0). The vignette Overall Workflow for Data Simulation provides a detailed example
discussing the step-by-step simulation process and comparing methods 1 and 2.

Usage

rcorrvar2(n = 10000, k_cont = 0, k_cat = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), means = NULL, vars = NULL,
skews = NULL, skurts = NULL, fifths = NULL, sixths = NULL,
Six = list(), marginal = list(), support = list(), lam = NULL,
pois_eps = rep(0.0001, 2), size = NULL, prob = NULL, mu = NULL,
nb_eps = rep(0.0001, 2), Sigma = NULL, rho = NULL, cstart = NULL,
seed = 1234, errorloop = FALSE, epsilon = 0.001, maxit = 1000,
extra_correct = TRUE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

k_cont the number of continuous variables (default = 0)

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation.

means a vector of means for the k_cont continuous variables (i.e. = rep(0, k_cont))

vars a vector of variances (i.e. = rep(1, k_cont))
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skews a vector of skewness values (i.e. = rep(0, k_cont))

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0; i.e. = rep(0, k_cont))

fifths a vector of standardized fifth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

sixths a vector of standardized sixth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

Six a list of vectors of correction values to add to the sixth cumulants if no valid pdf
constants are found, ex: Six = list(seq(0.01, 2,by = 0.01), seq(1, 10,by
= 0.5)); if no correction is desired for variable Y_i, set set the i-th list compo-
nent equal to NULL

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed to
be 1; default = list()); for binary variables, these should be input the same as for
ordinal variables with more than 2 categories (i.e. the user-specified probability
is the probability of the 1st category, which has the smaller support value)

support a list of length equal to k_cat; the i-th element is a vector containing the r
ordered support values; if not provided (i.e. support = list()), the default is
for the i-th element to be the vector 1, ..., r

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

pois_eps a vector of length k_pois containing the truncation values (default = rep(0.0001,
2))

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nb_eps a vector of length k_nb containing the truncation values (default = rep(0.0001,
2))

Sigma an intermediate correlation matrix to use if the user wants to provide one (default
= NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

cstart a list containing initial values for root-solving algorithm used in find_constants
(see multiStart for method = "Fleishman" or nleqslv for method = "Polyno-
mial"). If user specified, each list element must be input as a matrix. If no
starting values are specified for a given continuous variable, that list element
should be NULL. If NULL and all 4 standardized cumulants (rounded to 3
digits) are within 0.01 of those in Headrick’s common distribution table (see
Headrick.dist data), uses his constants as starting values; else, generates n
sets of random starting values from uniform distributions.

seed the seed value for random number generation (default = 1234)

errorloop if TRUE, uses error_loop to attempt to correct the final correlation (default =
FALSE)
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epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ordnorm or in the error loop

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ordnorm or in the error loop

extra_correct if TRUE, within each variable pair, if the maximum correlation error is still
greater than 0.1, the intermediate correlation is set equal to the target correlation
(with the assumption that the calculated final correlation will be less than 0.1
away from the target)

Value

A list whose components vary based on the type of simulated variables. Simulated variables are
returned as data.frames:

If ordinal variables are produced:

ordinal_variables the generated ordinal variables,

summary_ordinal a list, where the i-th element contains a data.frame with column 1 = target cu-
mulative probabilities and column 2 = simulated cumulative probabilities for ordinal variable Y_i

If continuous variables are produced:

constants a data.frame of the constants,

continuous_variables the generated continuous variables,

summary_continuous a data.frame containing a summary of each variable,

summary_targetcont a data.frame containing a summary of the target variables,

sixth_correction a vector of sixth cumulant correction values,

valid.pdf a vector where the i-th element is "TRUE" if the constants for the i-th continuous vari-
able generate a valid pdf, else "FALSE"

If Poisson variables are produced:

Poisson_variables the generated Poisson variables,

summary_Poisson a data.frame containing a summary of each variable

If Negative Binomial variables are produced:

Neg_Bin_variables the generated Negative Binomial variables,

summary_Neg_Bin a data.frame containing a summary of each variable

Additionally, the following elements:

correlations the final correlation matrix,

Sigma1 the intermediate correlation before the error loop,

Sigma2 the intermediate correlation matrix after the error loop,

Constants_Time the time in minutes required to calculate the constants,

Intercorrelation_Time the time in minutes required to calculate the intermediate correlation
matrix,

Error_Loop_Time the time in minutes required to use the error loop,
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Simulation_Time the total simulation time in minutes,

niter a matrix of the number of iterations used for each variable in the error loop,

maxerr the maximum final correlation error (from the target rho).

If a particular element is not required, the result is NULL for that element.

Variable Types and Required Inputs

1) Continuous Variables: Continuous variables are simulated using either Fleishman’s third-order
(method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s fifth-order (method = "Polyno-
mial", doi: 10.1016/S01679473(02)000725) power method transformation. This is a computation-
ally efficient algorithm that simulates continuous distributions through the method of moments. It
works by matching standardized cumulants – the first four (mean, variance, skew, and standardized
kurtosis) for Fleishman’s method, or the first six (mean, variance, skew, standardized kurtosis, and
standardized fifth and sixth cumulants) for Headrick’s method. The transformation is expressed as
follows:

Y = c0 + c1 ∗ Z + c2 ∗ Z2 + c3 ∗ Z3 + c4 ∗ Z4 + c5 ∗ Z5,

where Z N(0, 1), and c4 and c5 both equal 0 for Fleishman’s method. The real constants are
calculated by find_constants. All variables are simulated with mean 0 and variance 1, and then
transformed to the specified mean and variance at the end.

The required parameters for simulating continuous variables include: mean, variance, skewness,
standardized kurtosis (kurtosis - 3), and standardized fifth and sixth cumulants (for method = "Poly-
nomial"). If the goal is to simulate a theoretical distribution (i.e. Gamma, Beta, Logistic, etc.), these
values can be obtained using calc_theory. If the goal is to mimic an empirical data set, these val-
ues can be found using calc_moments (using the method of moments) or calc_fisherk (using
Fisher’s k-statistics). If the standardized cumulants are obtained from calc_theory, the user may
need to use rounded values as inputs (i.e. skews = round(skews, 8)). Due to the nature of the inte-
gration involved in calc_theory, the results are approximations. Greater accuracy can be achieved
by increasing the number of subdivisions (sub) used in the integration process. For example, in
order to ensure that skew is exactly 0 for symmetric distributions.

For some sets of cumulants, it is either not possible to find power method constants or the calcu-
lated constants do not generate valid power method pdfs. In these situations, adding a value to the
sixth cumulant may provide solutions (see find_constants). When using Headrick’s fifth-order
approximation, if simulation results indicate that a continuous variable does not generate a valid
pdf, the user can try find_constants with various sixth cumulant correction vectors to determine
if a valid pdf can be found.

2) Binary and Ordinal Variables: Ordinal variables (r ≥ 2 categories) are generated by discretiz-
ing the standard normal variables at quantiles. These quantiles are determined by evaluating the
inverse standard normal cdf at the cumulative probabilities defined by each variable’s marginal dis-
tribution. The required inputs for ordinal variables are the cumulative marginal probabilities and
support values (if desired). The probabilities should be combined into a list of length equal to the
number of ordinal variables. The ith element is a vector of the cumulative probabilities defining the
marginal distribution of the ith variable. If the variable can take r values, the vector will contain
r − 1 probabilities (the rth is assumed to be 1).

Note for binary variables: the user-suppled probability should be the probability of the 1st (lower)
support value. This would ordinarily be considered the probability of failure (q), while the proba-
bility of the 2nd (upper) support value would be considered the probability of success (p = 1− q).

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
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The support values should be combined into a separate list. The ith element is a vector containing
the r ordered support values.

3) Count Variables: Count variables are generated using the inverse cdf method. The cumulative
distribution function of a standard normal variable has a uniform distribution. The appropriate
quantile function F−1

Y is applied to this uniform variable with the designated parameters to generate
the count variable: Y = F−1

y (Φ(Z)). For Poisson variables, the lambda (mean) value should be
given. For Negative Binomial variables, the size (target number of successes) and either the success
probability or the mean should be given. The Negative Binomial variable represents the number
of failures which occur in a sequence of Bernoulli trials before the target number of successes is
achieved. In addition, a vector of total cumulative probability truncation values should be provided
(one for Poisson and one for Negative Binomial). These values represent the amount of probability
removed from the range of the cdf’s FY when creating finite supports. The value may vary by
variable, but a good default value is 0.0001 (suggested by Barbiero & Ferrari, 2015, doi: 10.1002/
asmb.2072).

More details regarding the variable types can be found in the Variable Types vignette.

Overview of Correlation Method 2

The intermediate correlations used in correlation method 2 are less simulation based than those
in correlation method 1, and no seed is needed. Their calculations involve greater utilization of
correction loops which make iterative adjustments until a maximum error has been reached (if
possible). In addition, method 2 differs from method 1 in the following ways:

1) The intermediate correlations involving count variables are based on the methods of Barbiero &
Ferrari (2012, doi: 10.1080/00273171.2012.692630, 2015, doi: 10.1002/asmb.2072). The Poisson
or Negative Binomial support is made finite by removing a small user-specified value (i.e. 1e-06)
from the total cumulative probability. This truncation factor may differ for each count variable.
The count variables are subsequently treated as ordinal and intermediate correlations are calculated
using the correction loop of ordnorm.

2) The continuous - count variable correlations are based on an extension of the method of
Demirtas et al. (2012, doi: 10.1002/sim.5362), and the count variables are treated as ordinal.
The correction factor is the product of the power method correlation between the continuous vari-
able and the normal variable used to generate it (see Headrick & Kowalchuk, 2007, doi: 10.1080/
10629360600605065) and the point-polyserial correlation between the ordinalized count variable
and the normal variable used to generate it (see Olsson et al., 1982, doi: 10.1007/BF02294164).
The intermediate correlations are the ratio of the target correlations to the correction factor.

Please see the Comparison of Method 1 and Method 2 vignette for more information and an
step-by-step overview of the simulation process.

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of
the generated distribution, improving accuracy. In addition, the range of feasible standardized
kurtosis values, given skew and standardized fifth (γ3) and sixth (γ4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
be used to generate a non-normal distribution with a ratio of γ2

3/γ4 > 9/14 (see Headrick &
Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of γ2

3/γ4 = 2/3. However, if the fifth and sixth cumulants do not exist, the Fleishman approx-
imation should be used.

http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1080/00273171.2012.692630
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294164
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Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a vector of sixth cumulant correction
values is needed. The solutions can be used as starting values (see cstart below). If the standard-
ized cumulants are obtained from calc_theory, the user may need to use rounded values as inputs
(i.e. skews = round(skews, 8)).

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

3) As mentioned above, the feasibility of the final correlation matrix rho, given the distribution
parameters, should be checked first using valid_corr2. This function either checks if a given rho
is plausible or returns the lower and upper final correlation limits. It should be noted that even if a
target correlation matrix is within the "plausible range," it still may not be possible to achieve the
desired matrix. This happens most frequently when generating ordinal variables (r >= 2 categories).
The error loop frequently fixes these problems.
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See Also

find_constants, findintercorr2, multiStart, nleqslv

Examples

Sim1 <- rcorrvar2(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial",
means = 0, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), support = list(0:2),
rho = matrix(c(1, 0.4, 0.4, 1), 2, 2))

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234
n <- 10000

Dist <- c("Logistic", "Weibull")
Params <- list(c(0, 1), c(3, 5))
Stcum1 <- calc_theory(Dist[1], Params[[1]])
Stcum2 <- calc_theory(Dist[2], Params[[2]])
Stcum <- rbind(Stcum1, Stcum2)
rownames(Stcum) <- Dist
colnames(Stcum) <- c("mean", "sd", "skew", "skurtosis", "fifth", "sixth")
Stcum
Six <- list(seq(1.7, 1.8, 0.01), seq(0.10, 0.25, 0.01))
marginal <- list(0.3)

http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.18637/jss.v019.i03
http://doi.org/10.1007/BF02294164
http://doi.org/10.1007/BF02293687
http://doi.org/10.18637/jss.v032.i04
http://www.jstatsoft.org/v32/i04/
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lam <- 0.5
pois_eps <- 0.0001
size <- 2
prob <- 0.75
nb_eps <- 0.0001

Rey <- matrix(0.4, 5, 5)
diag(Rey) <- 1

# Make sure Rey is within upper and lower correlation limits
valid2 <- valid_corr2(k_cat = 1, k_cont = 2, k_pois = 1, k_nb = 1,

method = "Polynomial", means = Stcum[, 1],
vars = Stcum[, 2]^2, skews = Stcum[, 3],
skurts = Stcum[, 4], fifths = Stcum[, 5],
sixths = Stcum[, 6], Six = Six, marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size,
prob = prob, nb_eps = nb_eps, rho = Rey,
seed = seed)

# Simulate variables without error loop
Sim2 <- rcorrvar2(n = n, k_cat = 1, k_cont = 2, k_pois = 1, k_nb = 1,

method = "Polynomial", means = Stcum[, 1],
vars = Stcum[, 2]^2, skews = Stcum[, 3],
skurts = Stcum[, 4], fifths = Stcum[, 5],
sixths = Stcum[, 6], Six = Six, marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size,
prob = prob, nb_eps = nb_eps, rho = Rey,
seed = seed)

names(Sim2)

# Look at the maximum correlation error
Sim2$maxerr

Sim2_error = round(Sim2$correlations - Rey, 6)

# interquartile-range of correlation errors
quantile(as.numeric(Sim2_error), 0.25)
quantile(as.numeric(Sim2_error), 0.75)

# Simulate variables with error loop
Sim2_EL <- rcorrvar2(n = n, k_cat = 1, k_cont = 2, k_pois = 1, k_nb = 1,

method = "Polynomial", means = Stcum[, 1],
vars = Stcum[, 2]^2, skews = Stcum[, 3],
skurts = Stcum[, 4], fifths = Stcum[, 5],
sixths = Stcum[, 6], Six = Six, marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size,
prob = prob, nb_eps = nb_eps, rho = Rey,
seed = seed, errorloop = TRUE)

# Look at the maximum correlation error
Sim2_EL$maxerr

EL_error = round(Sim2_EL$correlations - Rey, 6)
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# interquartile-range of correlation errors
quantile(as.numeric(EL_error), 0.25)
quantile(as.numeric(EL_error), 0.75)

# Look at results
# Ordinal variables
Sim2_EL$summary_ordinal

# Continuous variables
round(Sim2_EL$constants, 6)
round(Sim2_EL$summary_continuous, 6)
round(Sim2_EL$summary_targetcont, 6)
Sim2_EL$valid.pdf

# Count variables
Sim2_EL$summary_Poisson
Sim2_EL$summary_Neg_Bin

# Generate Plots

# Logistic (1st continuous variable)
# 1) Simulated Data CDF (find cumulative probability up to y = 0.5)
plot_sim_cdf(Sim2_EL$continuous_variables[, 1], calc_cprob = TRUE,

delta = 0.5)

# 2) Simulated Data and Target Distribution PDFs
plot_sim_pdf_theory(Sim2_EL$continuous_variables[, 1], Dist = "Logistic",

params = c(0, 1))

# 3) Simulated Data and Target Distribution
plot_sim_theory(Sim2_EL$continuous_variables[, 1], Dist = "Logistic",

params = c(0, 1))

## End(Not run)

separate_rho Separate Target Correlation Matrix by Variable Type

Description

This function separates the target correlation matrix rho by variable type (ordinal, continuous, Pois-
son, and/or Negative Binomial). The function is used in findintercorr, rcorrvar, findintercorr2,
and rcorrvar2. This would not ordinarily be called directly by the user.

Usage

separate_rho(k_cat, k_cont, k_pois, k_nb, rho)
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Arguments

k_cat the number of ordinal (r >= 2 categories) variables

k_cont the number of continuous variables

k_pois the number of Poisson variables

k_nb the number of Negative Binomial variables

rho the target correlation matrix

Value

a list containing the target correlation matrix components by variable combination

See Also

findintercorr, rcorrvar, findintercorr2, rcorrvar2

SimMultiCorrData Simulation of Correlated Data with Multiple Variable Types

Description

SimMultiCorrData generates continuous (normal or non-normal), binary, ordinal, and count (Pois-
son or Negative Binomial) variables with a specified correlation matrix. It can also produce a single
continuous variable. This package can be used to simulate data sets that mimic real-world situations
(i.e. clinical data sets, plasmodes, as in Vaughan et al., 2009, doi: 10.1016/j.csda.2008.02.032).
All variables are generated from standard normal variables with an imposed intermediate corre-
lation matrix. Continuous variables are simulated by specifying mean, variance, skewness, stan-
dardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman’s Third-Order
(doi: 10.1007/BF02293811) or Headrick’s Fifth-Order (doi: 10.1016/S01679473(02)000725) Poly-
nomial Transformation. Binary and ordinal variables are simulated using a modification of GenOrd-package’s
ordsample function. Count variables are simulated using the inverse cdf method. There are two
simulation pathways which differ primarily according to the calculation of the intermediate corre-
lation matrix. In Correlation Method 1, the intercorrelations involving count variables are deter-
mined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli’s
2012 method, doi: 10.1002/asmb.901). In Correlation Method 2, the count variables are treated
as ordinal (adapting Barbiero and Ferrari’s 2015 modification of GenOrd-package, doi: 10.1002/
asmb.2072). There is an optional error loop that corrects the final correlation matrix to be within
a user-specified precision value. The package also includes functions to calculate standardized cu-
mulants for theoretical distributions or from real data sets, check if a target correlation matrix is
within the possible correlation bounds (given the distributions of the simulated variables), summa-
rize results, numerically or graphically, to verify valid power method pdfs, and to calculate lower
standardized kurtosis bounds.

http://doi.org/10.1016/j.csda.2008.02.032
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.2072
http://doi.org/10.1002/asmb.2072
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Vignettes

There are several vignettes which accompany this package that may help the user understand the
simulation and analysis methods.

1) Benefits of SimMultiCorrData and Comparison to Other Packages describes some of the
ways SimMultiCorrData improves upon other simulation packages.

2) Variable Types describes the different types of variables that can be simulated in SimMultiCor-
rData.

3) Function by Topic describes each function, separated by topic.

4) Comparison of Correlation Method 1 and Correlation Method 2 describes the two simulation
pathways that can be followed.

5) Overview of Error Loop details the algorithm involved in the optional error loop that improves
the accuracy of the simulated variables’ correlation matrix.

6) Overall Workflow for Data Simulation gives a step-by-step guideline to follow with an example
containing continuous (normal and non-normal), binary, ordinal, Poisson, and Negative Binomial
variables. It also demonstrates the use of the standardized cumulant calculation function, correlation
check functions, the lower kurtosis boundary function, and the plotting functions.

7) Comparison of Simulation Distribution to Theoretical Distribution or Empirical Data gives
a step-by-step guideline for comparing a simulated univariate continuous distribution to the target
distribution with an example.

8) Using the Sixth Cumulant Correction to Find Valid Power Method Pdfs demonstrates how
to use the sixth cumulant correction to generate a valid power method pdf and the effects this has
on the resulting distribution.

Functions

This package contains 3 simulation functions:

nonnormvar1, rcorrvar, and rcorrvar2

8 data description (summary) functions:

calc_fisherk, calc_moments, calc_theory, cdf_prob, power_norm_corr,
pdf_check, sim_cdf_prob, stats_pdf

8 graphing functions:

plot_cdf, plot_pdf_ext, plot_pdf_theory, plot_sim_cdf, plot_sim_ext,
plot_sim_pdf_ext, plot_sim_pdf_theory, plot_sim_theory

5 support functions:

calc_lower_skurt, find_constants, pdf_check, valid_corr, valid_corr2

and 30 auxiliary functions (should not normally be called by the user, but are called by other func-
tions):

calc_final_corr, chat_nb, chat_pois, denom_corr_cat, error_loop, error_vars,
findintercorr, findintercorr2, findintercorr_cat_nb, findintercorr_cat_pois,
findintercorr_cont, findintercorr_cont_cat, findintercorr_cont_nb,
findintercorr_cont_nb2, findintercorr_cont_pois, findintercorr_cont_pois2,
findintercorr_nb, findintercorr_pois, findintercorr_pois_nb, fleish,
fleish_Hessian, fleish_skurt_check, intercorr_fleish, intercorr_poly,
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max_count_support, ordnorm, poly, poly_skurt_check, separate_rho,
var_cat
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sim_cdf_prob Calculate Simulated (Empirical) Cumulative Probability

Description
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observations at that value. Missing values are ignored. For observations y = (y1, y2, ..., yn), Fn
is the fraction of observations less or equal to t, i.e., Fn(t) = sum[yi <= t]/n. This works for
continuous, ordinal, or count variables.
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Usage

sim_cdf_prob(sim_y, delta = 0.5)

Arguments

sim_y a vector of simulated data

delta the value y at which to evaluate the cumulative probability

Value

A list with components:

cumulative_prob the empirical cumulative probability up to delta

Fn the empirical distribution function

See Also

ecdf, plot_sim_cdf

Examples

# Beta(a = 4, b = 2) Distribution:
x <- rbeta(10000, 4, 2)
sim_cdf_prob(x, delta = 0.5)

stats_pdf Calculate Theoretical Statistics for a Valid Power Method PDF

Description

This function calculates the 100*alpha percent symmetric trimmed mean (0 < alpha < 0.50), me-
dian, mode, and maximum height of a valid power method pdf, after using pdf_check. It will stop
with an error if the pdf is invalid. The equations are those from Headrick & Kowalchuk (2007,
doi: 10.1080/10629360600605065).

Usage

stats_pdf(c, method = c("Fleishman", "Polynomial"), alpha = 0.025, mu = 0,
sigma = 1, lower = -10, upper = 10, sub = 1000)

http://doi.org/10.1080/10629360600605065
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Arguments

c a vector of constants c0, c1, c2, c3 (if method = "Fleishman") or c0, c1, c2, c3,
c4, c5 (if method = "Polynomial"), like that returned by find_constants

method the method used to find the constants. "Fleishman" uses Fleishman’s third-order
polynomial transformation and "Polynomial" uses Headrick’s fifth-order trans-
formation.

alpha proportion to be trimmed from the lower and upper ends of the power method
pdf (default = 0.025)

mu mean for the continuous variable (default = 0)

sigma standard deviation for the continuous variable (default = 1)

lower lower bound for integration of the standard normal variable Z that generates the
continuous variable (default = -10)

upper upper bound for integration (default = 10)

sub the number of subdivisions to use in the integration; if no result, try increasing
sub (requires longer computation time; default = 1000)

Value

A vector with components:

trimmed_mean the trimmed mean value

median the median value

mode the mode value

max_height the maximum pdf height

References

Please see references for pdf_check.

See Also

find_constants, pdf_check

Examples

stats_pdf(c = c(0, 1, 0, 0, 0, 0), method = "Polynomial", alpha = 0.025)

## Not run:
# Beta(a = 4, b = 2) Distribution:
con <- find_constants(method = "Polynomial", skews = -0.467707,

skurts = -0.375, fifths = 1.403122,
sixths = -0.426136)$constants

stats_pdf(c = con, method = "Polynomial", alpha = 0.025)

## End(Not run)
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valid_corr Determine Correlation Bounds for Ordinal, Continuous, Poisson,
and/or Negative Binomial Variables: Correlation Method 1

Description

This function calculates the lower and upper correlation bounds for the given distributions and
checks if a given target correlation matrix rho is within the bounds. It should be used before
simulation with rcorrvar. However, even if all pairwise correlations fall within the bounds, it
is still possible that the desired correlation matrix is not feasible. This is particularly true when
ordinal variables (r >= 2 categories) are generated or negative correlations are desired. Therefore,
this function should be used as a general check to eliminate pairwise correlations that are obviously
not reproducible. It will help prevent errors when executing the simulation.

Note: Some pieces of the function code have been adapted from Demirtas, Hu, & Allozi’s (2017)
validation_specs. This function (valid_corr) extends the methods to:

1) non-normal continuous variables generated by Fleishman’s third-order or Headrick’s fifth-order
polynomial transformation method, and

2) Negative Binomial variables (including all pairwise correlations involving them).

Please see the Comparison of Method 1 and Method 2 vignette for more information regarding
method 1.

Usage

valid_corr(k_cat = 0, k_cont = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), means = NULL, vars = NULL,
skews = NULL, skurts = NULL, fifths = NULL, sixths = NULL,
Six = list(), marginal = list(), lam = NULL, size = NULL,
prob = NULL, mu = NULL, rho = NULL, n = 100000, seed = 1234)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

means a vector of means for the k_cont continuous variables (i.e. = rep(0, k_cont))

vars a vector of variances (i.e. = rep(1, k_cont))

skews a vector of skewness values (i.e. = rep(0, k_cont))

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0; i.e. = rep(0, k_cont))
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fifths a vector of standardized fifth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

sixths a vector of standardized sixth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

Six a list of vectors of correction values to add to the sixth cumulants if no valid pdf
constants are found, ex: Six = list(seq(0.01, 2,by = 0.01), seq(1, 10,by
= 0.5)); if no correction is desired for variable Y_i, set the i-th list component
equal to NULL

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

n the sample size (i.e. the length of each simulated variable; default = 100000)

seed the seed value for random number generation (default = 1234)

Value

A list with components:

L_rho the lower correlation bound

U_rho the upper correlation bound

If continuous variables are desired, additional components are:

constants the calculated constants

sixth_correction a vector of the sixth cumulant correction values

valid.pdf a vector with i-th component equal to "TRUE" if variable Y_i has a valid power method
pdf, else "FALSE"

If a target correlation matrix rho is provided, each pairwise correlation is checked to see if it is
within the lower and upper bounds. If the correlation is outside the bounds, the indices of the
variable pair are given.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a vector of sixth cumulant correction
values is needed. If the standardized cumulants are obtained from calc_theory, the user may need
to use rounded values as inputs (i.e. skews = round(skews, 8)). Due to the nature of the integration
involved in calc_theory, the results are approximations. Greater accuracy can be achieved by
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increasing the number of subdivisions (sub) used in the integration process. For example, in order
to ensure that skew is exactly 0 for symmetric distributions.

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

The Generate, Sort, and Correlate (GSC, Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090)
Algorithm

The GSC algorithm is a flexible method for determining empirical correlation bounds when the
theoretical bounds are unknown. The steps are as follows:

1) Generate independent random samples from the desired distributions using a large number of
observations (i.e. N = 100,000).

2) Lower Bound: Sort the two variables in opposite directions (i.e., one increasing and one decreas-
ing) and find the sample correlation.

3) Upper Bound: Sort the two variables in the same direction and find the sample correlation.

Demirtas & Hedeker showed that the empirical bounds computed from the GSC method are similar
to the theoretical bounds (when they are known).

The Frechet-Hoeffding Correlation Bounds

Suppose two random variables Yi and Yj have cumulative distribution functions given by Fi and Fj .
Let U be a uniform(0,1) random variable, i.e. representing the distribution of the standard normal
cdf. Then Hoeffing (1940) and Frechet (1951) showed that bounds for the correlation between Yi

and Yj are given by

(corr(F−1
i (U), F−1

j (1− U)), corr(F−1
i (U), F−1

j (U)))

The processes used to find the correlation bounds for each variable type are described below:

Ordinal Variables

Binary pairs: The correlation bounds are determined as in Demirtas et al. (2012, doi: 10.1002/
sim.5362), who used the method of Emrich & Piedmonte (1991, doi: 10.1080/00031305.1991.10475828).
The joint distribution is determined by "borrowing" the moments of a multivariate normal distribu-
tion. For two binary variables Yi and Yj , with success probabilities pi and pj , the lower correlation
bound is given by

max(−
√
(pipj)/(qiqj), −

√
(qiqj)/(pipj))

and the upper bound by

min(
√
(piqj)/(qipj),

√
(qipj)/(piqj))

Here, qi = 1− pi and qj = 1− pj .

Binary-Ordinal or Ordinal-Ordinal pairs: Randomly generated variables with the given marginal
distributions are used in the GSC algorithm to find the correlation bounds.

http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
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Continuous Variables

Continuous variables are randomly generated using constants from find_constants and a vector
of sixth cumulant correction values (if provided.) The GSC algorithm is used to find the lower and
upper bounds.

Poisson Variables

Poisson variables with the given means (lam) are randomly generated using the inverse cdf method.
The Frechet-Hoeffding bounds are used for the correlation bounds.

Negative Binomial Variables

Negative Binomial variables with the given sizes and success probabilities (prob) or means (mu)
are randomly generated using the inverse cdf method. The Frechet-Hoeffding bounds are used for
the correlation bounds.

Continuous - Ordinal Pairs

Randomly generated ordinal variables with the given marginal distributions and the previously gen-
erated continuous variables are used in the GSC algorithm to find the correlation bounds.

Ordinal - Poisson Pairs

Randomly generated ordinal variables with the given marginal distributions and randomly generated
Poisson variables with the given means (lam) are used in the GSC algorithm to find the correlation
bounds.

Ordinal - Negative Binomial Pairs

Randomly generated ordinal variables with the given marginal distributions and randomly generated
Negative Binomial variables with the given sizes and success probabilities (prob) or means (mu) are
used in the GSC algorithm to find the correlation bounds.

Continuous - Poisson Pairs

The previously generated continuous variables and randomly generated Poisson variables with the
given means (lam) are used in the GSC algorithm to find the correlation bounds.

Continuous - Negative Binomial Pairs

The previously generated continuous variables and randomly generated Negative Binomial vari-
ables with the given sizes and success probabilities (prob) or means (mu) are used in the GSC
algorithm to find the correlation bounds.

Poisson - Negative Binomial Pairs

Poisson variables with the given means (lam) and Negative Binomial variables with the given
sizes and success probabilities (prob) or means (mu) are randomly generated using the inverse cdf
method. The Frechet-Hoeffding bounds are used for the correlation bounds.
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See Also

find_constants, rcorrvar

Examples

valid_corr(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial",
means = 0, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2))

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234
n <- 10000

# Continuous Distributions: Normal, t (df = 10), Chisq (df = 4),
# Beta (a = 4, b = 2), Gamma (a = 4, b = 4)
Dist <- c("Gaussian", "t", "Chisq", "Beta", "Gamma")

# calculate standardized cumulants
# those for the normal and t distributions are rounded to ensure the
# correct values (i.e. skew = 0)

M1 <- round(calc_theory(Dist = "Gaussian", params = c(0, 1)), 8)
M2 <- round(calc_theory(Dist = "t", params = 10), 8)
M3 <- calc_theory(Dist = "Chisq", params = 4)
M4 <- calc_theory(Dist = "Beta", params = c(4, 2))
M5 <- calc_theory(Dist = "Gamma", params = c(4, 4))
M <- cbind(M1, M2, M3, M4, M5)
M <- round(M[-c(1:2),], digits = 6)

http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
https://CRAN.R-project.org/package=PoisBinOrdNor
https://CRAN.R-project.org/package=PoisBinOrdNor
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colnames(M) <- Dist
rownames(M) <- c("skew", "skurtosis", "fifth", "sixth")
means <- rep(0, length(Dist))
vars <- rep(1, length(Dist))

# Binary and Ordinal Distributions
marginal <- list(0.3, 0.4, c(0.1, 0.5), c(0.3, 0.6, 0.9),

c(0.2, 0.4, 0.7, 0.8))
support <- list()

# Poisson Distributions
lam <- c(1, 5, 10)

# Negative Binomial Distributions
size <- c(3, 6)
prob <- c(0.2, 0.8)

ncat <- length(marginal)
ncont <- ncol(M)
npois <- length(lam)
nnb <- length(size)

# Create correlation matrix from a uniform distribution (-0.8, 0.8)
set.seed(seed)
Rey <- diag(1, nrow = (ncat + ncont + npois + nnb))
for (i in 1:nrow(Rey)) {

for (j in 1:ncol(Rey)) {
if (i > j) Rey[i, j] <- runif(1, -0.8, 0.8)
Rey[j, i] <- Rey[i, j]

}
}

# Test for positive-definiteness
library(Matrix)
if(min(eigen(Rey, symmetric = TRUE)$values) < 0) {

Rey <- as.matrix(nearPD(Rey, corr = T, keepDiag = T)$mat)
}

# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr(k_cat = ncat, k_cont = ncont, k_pois = npois,

k_nb = nnb, method = "Polynomial", means = means,
vars = vars, skews = M[1, ], skurts = M[2, ],
fifths = M[3, ], sixths = M[4, ], marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey,
seed = seed)

## End(Not run)

valid_corr2 Determine Correlation Bounds for Ordinal, Continuous, Poisson,
and/or Negative Binomial Variables: Correlation Method 2
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Description

This function calculates the lower and upper correlation bounds for the given distributions and
checks if a given target correlation matrix rho is within the bounds. It should be used before sim-
ulation with rcorrvar2. However, even if all pairwise correlations fall within the bounds, it is
still possible that the desired correlation matrix is not feasible. This is particularly true when ordi-
nal variables (r >= 2 categories) are generated or negative correlations are desired. Therefore, this
function should be used as a general check to eliminate pairwise correlations that are obviously not
reproducible. It will help prevent errors when executing the simulation.

Note: Some pieces of the function code have been adapted from Demirtas, Hu, & Allozi’s (2017)
validation_specs. This function (valid_corr2) extends the methods to:

1) non-normal continuous variables generated by Fleishman’s third-order or Headrick’s fifth-order
polynomial transformation method,

2) Negative Binomial variables (including all pairwise correlations involving them), and

3) Count variables are treated as ordinal when calculating the bounds since that is the intermediate
correlation calculation method.

Please see the Comparison of Method 1 and Method 2 vignette for more information regarding
method 2.

Usage

valid_corr2(k_cat = 0, k_cont = 0, k_pois = 0, k_nb = 0,
method = c("Fleishman", "Polynomial"), means = NULL, vars = NULL,
skews = NULL, skurts = NULL, fifths = NULL, sixths = NULL,
Six = list(), marginal = list(), lam = NULL, pois_eps = NULL,
size = NULL, prob = NULL, mu = NULL, nb_eps = NULL, rho = NULL,
n = 100000, seed = 1234)

Arguments

k_cat the number of ordinal (r >= 2 categories) variables (default = 0)

k_cont the number of continuous variables (default = 0)

k_pois the number of Poisson variables (default = 0)

k_nb the number of Negative Binomial variables (default = 0)

method the method used to generate the k_cont continuous variables. "Fleishman" uses
a third-order polynomial transformation and "Polynomial" uses Headrick’s fifth-
order transformation.

means a vector of means for the k_cont continuous variables (i.e. = rep(0, k_cont))

vars a vector of variances (i.e. = rep(1, k_cont))

skews a vector of skewness values (i.e. = rep(0, k_cont))

skurts a vector of standardized kurtoses (kurtosis - 3, so that normal variables have a
value of 0; i.e. = rep(0, k_cont))

fifths a vector of standardized fifth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))
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sixths a vector of standardized sixth cumulants (not necessary for method = "Fleish-
man"; i.e. = rep(0, k_cont))

Six a list of vectors of correction values to add to the sixth cumulants if no valid pdf
constants are found, ex: Six = list(seq(0.01, 2,by = 0.01), seq(1, 10,by
= 0.5)); if no correction is desired for variable Y_i, set the i-th list component
equal to NULL

marginal a list of length equal to k_cat; the i-th element is a vector of the cumulative
probabilities defining the marginal distribution of the i-th variable; if the variable
can take r values, the vector will contain r - 1 probabilities (the r-th is assumed
to be 1; default = list())

lam a vector of lambda (> 0) constants for the Poisson variables (see Poisson)

pois_eps a vector of length k_pois containing the truncation values (i.e. = rep(0.0001,
k_pois); default = NULL)

size a vector of size parameters for the Negative Binomial variables (see NegBinomial)

prob a vector of success probability parameters

mu a vector of mean parameters (*Note: either prob or mu should be supplied for
all Negative Binomial variables, not a mixture; default = NULL)

nb_eps a vector of length k_nb containing the truncation values (i.e. = rep(0.0001,
k_nb); default = NULL)

rho the target correlation matrix (must be ordered ordinal, continuous, Poisson, Neg-
ative Binomial; default = NULL)

n the sample size (i.e. the length of each simulated variable; default = 100000)

seed the seed value for random number generation (default = 1234)

Value

A list with components:

L_rho the lower correlation bound

U_rho the upper correlation bound

If continuous variables are desired, additional components are:

constants the calculated constants

sixth_correction a vector of the sixth cumulant correction values

valid.pdf a vector with i-th component equal to "TRUE" if variable Y_i has a valid power method
pdf, else "FALSE"

If a target correlation matrix rho is provided, each pairwise correlation is checked to see if it is
within the lower and upper bounds. If the correlation is outside the bounds, the indices of the
variable pair are given.

Reasons for Function Errors

1) The most likely cause for function errors is that no solutions to fleish or poly converged
when using find_constants. If this happens, the simulation will stop. It may help to first use
find_constants for each continuous variable to determine if a vector of sixth cumulant correction
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values is needed. If the standardized cumulants are obtained from calc_theory, the user may need
to use rounded values as inputs (i.e. skews = round(skews, 8)). Due to the nature of the integration
involved in calc_theory, the results are approximations. Greater accuracy can be achieved by
increasing the number of subdivisions (sub) used in the integration process. For example, in order
to ensure that skew is exactly 0 for symmetric distributions.

2) In addition, the kurtosis may be outside the region of possible values. There is an associated lower
boundary for kurtosis associated with a given skew (for Fleishman’s method) or skew and fifth and
sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine the boundary for a
given set of cumulants.

The Generate, Sort, and Correlate (GSC, Demirtas & Hedeker, 2011, doi: 10.1198/tast.2011.10090)
Algorithm

The GSC algorithm is a flexible method for determining empirical correlation bounds when the
theoretical bounds are unknown. The steps are as follows:

1) Generate independent random samples from the desired distributions using a large number of
observations (i.e. N = 100,000).

2) Lower Bound: Sort the two variables in opposite directions (i.e., one increasing and one decreas-
ing) and find the sample correlation.

3) Upper Bound: Sort the two variables in the same direction and find the sample correlation.

Demirtas & Hedeker showed that the empirical bounds computed from the GSC method are similar
to the theoretical bounds (when they are known).

The processes used to find the correlation bounds for each variable type are described below:

Ordinal Variables

Binary pairs: The correlation bounds are determined as in Demirtas et al. (2012, doi: 10.1002/
sim.5362), who used the method of Emrich & Piedmonte (1991, doi: 10.1080/00031305.1991.10475828).
The joint distribution is determined by "borrowing" the moments of a multivariate normal distribu-
tion. For two binary variables Yi and Yj , with success probabilities pi and pj , the lower correlation
bound is given by

max(−
√
(pipj)/(qiqj), −

√
(qiqj)/(pipj))

and the upper bound by

min(
√
(piqj)/(qipj),

√
(qipj)/(piqj))

Here, qi = 1− pi and qj = 1− pj .

Binary-Ordinal or Ordinal-Ordinal pairs: Randomly generated variables with the given marginal
distributions are used in the GSC algorithm to find the correlation bounds.

Continuous Variables

Continuous variables are randomly generated using constants from find_constants and a vector
of sixth cumulant correction values (if provided.) The GSC algorithm is used to find the lower and
upper bounds.

http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
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Poisson Variables

The maximum support values, given the vector of cumulative probability truncation values (pois_eps)
and vector of means (lam), are calculated using max_count_support. The finite supports are used
to determine marginal distributions for each Poisson variable. Randomly generated variables with
the given marginal distributions are used in the GSC algorithm to find the correlation bounds.

Negative Binomial Variables

The maximum support values, given the vector of cumulative probability truncation values (nb_eps)
and vectors of sizes and success probabilities (prob) or means (mu), are calculated using max_count_support.
The finite supports are used to determine marginal distributions for each Negative Binomial vari-
able. Randomly generated variables with the given marginal distributions are used in the GSC
algorithm to find the correlation bounds.

Continuous - Ordinal Pairs

Randomly generated ordinal variables with the given marginal distributions and the previously gen-
erated continuous variables are used in the GSC algorithm to find the correlation bounds.

Ordinal - Poisson Pairs

Randomly generated ordinal and Poisson variables with the given marginal distributions are used in
the GSC algorithm to find the correlation bounds.

Ordinal - Negative Binomial Pairs

Randomly generated ordinal and Negative Binomial variables with the given marginal distributions
are used in the GSC algorithm to find the correlation bounds.

Continuous - Poisson Pairs

The previously generated continuous variables and randomly generated Poisson variables with the
given marginal distributions are used in the GSC algorithm to find the correlation bounds.

Continuous - Negative Binomial Pairs

The previously generated continuous variables and randomly generated Negative Binomial vari-
ables with the given marginal distributions are used in the GSC algorithm to find the correlation
bounds.

Poisson - Negative Binomial Pairs

Randomly generated variables with the given marginal distributions are used in the GSC algorithm
to find the correlation bounds.
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See Also

find_constants, rcorrvar2

Examples

valid_corr2(n = 1000, k_cat = 1, k_cont = 1, method = "Polynomial",
means = 0, vars = 1, skews = 0, skurts = 0, fifths = 0, sixths = 0,
marginal = list(c(1/3, 2/3)), rho = matrix(c(1, 0.4, 0.4, 1), 2, 2))

## Not run:

# Binary, Ordinal, Continuous, Poisson, and Negative Binomial Variables

options(scipen = 999)
seed <- 1234
n <- 10000

# Continuous Distributions: Normal, t (df = 10), Chisq (df = 4),
# Beta (a = 4, b = 2), Gamma (a = 4, b = 4)
Dist <- c("Gaussian", "t", "Chisq", "Beta", "Gamma")

# calculate standardized cumulants
# those for the normal and t distributions are rounded to ensure the
# correct values (i.e. skew = 0)

M1 <- round(calc_theory(Dist = "Gaussian", params = c(0, 1)), 8)
M2 <- round(calc_theory(Dist = "t", params = 10), 8)
M3 <- calc_theory(Dist = "Chisq", params = 4)
M4 <- calc_theory(Dist = "Beta", params = c(4, 2))
M5 <- calc_theory(Dist = "Gamma", params = c(4, 4))
M <- cbind(M1, M2, M3, M4, M5)
M <- round(M[-c(1:2),], digits = 6)

http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1002/sim.5362
http://doi.org/10.1080/00031305.1991.10475828
https://CRAN.R-project.org/package=PoisBinOrdNor
https://CRAN.R-project.org/package=PoisBinOrdNor
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colnames(M) <- Dist
rownames(M) <- c("skew", "skurtosis", "fifth", "sixth")
means <- rep(0, length(Dist))
vars <- rep(1, length(Dist))

# Binary and Ordinal Distributions
marginal <- list(0.3, 0.4, c(0.1, 0.5), c(0.3, 0.6, 0.9),

c(0.2, 0.4, 0.7, 0.8))
support <- list()

# Poisson Distributions
lam <- c(1, 5, 10)

# Negative Binomial Distributions
size <- c(3, 6)
prob <- c(0.2, 0.8)

ncat <- length(marginal)
ncont <- ncol(M)
npois <- length(lam)
nnb <- length(size)

# Create correlation matrix from a uniform distribution (-0.8, 0.8)
set.seed(seed)
Rey <- diag(1, nrow = (ncat + ncont + npois + nnb))
for (i in 1:nrow(Rey)) {

for (j in 1:ncol(Rey)) {
if (i > j) Rey[i, j] <- runif(1, -0.8, 0.8)
Rey[j, i] <- Rey[i, j]

}
}

# Test for positive-definiteness
library(Matrix)
if(min(eigen(Rey, symmetric = TRUE)$values) < 0) {

Rey <- as.matrix(nearPD(Rey, corr = T, keepDiag = T)$mat)
}

# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr2(k_cat = ncat, k_cont = ncont, k_pois = npois,

k_nb = nnb, method = "Polynomial", means = means,
vars = vars, skews = M[1, ], skurts = M[2, ],
fifths = M[3, ], sixths = M[4, ], marginal = marginal,
lam = lam, pois_eps = rep(0.0001, npois),
size = size, prob = prob, nb_eps = rep(0.0001, nnb),
rho = Rey, seed = seed)

## End(Not run)

var_cat Calculate Variance of Binary or Ordinal Variable
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Description

This function calculates the variance of a binary or ordinal (r > 2 categories) variable. It uses the
formula given by Olsson et al. (1982, doi: 10.1007/BF02294164) in describing polyserial and point-
polyserial correlations. The function is used to find intercorrelations involving ordinal variables or
variables that are treated as ordinal (i.e. count variables in the method used in rcorrvar2). For an
ordinal variable with r >= 2 categories, the variance is given by:

r∑
j=1

yj
2 ∗ pj − (

r∑
j=1

yj ∗ pj)
2

. Here, yj is the j-th support value and pj is Pr(Y = yj). This function would not ordinarily be
called by the user.

Usage

var_cat(marginal, support)

Arguments

marginal a vector of cumulative probabilities defining the marginal distribution of the
variable; if the variable can take r values, the vector will contain r - 1 probabili-
ties (the r-th is assumed to be 1)

support a vector of containing the ordered support values

Value

A scalar equal to the variance

References

Olsson U, Drasgow F, & Dorans NJ (1982). The Polyserial Correlation Coefficient. Psychometrika,
47(3): 337-47. doi: 10.1007/BF02294164.

See Also

ordnorm, rcorrvar, rcorrvar2, findintercorr_cont_cat, findintercorr_cont_pois2,
findintercorr_cont_nb2

http://doi.org/10.1007/BF02294164
http://doi.org/10.1007/BF02294164
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