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1 Summary

The package ShiftShareSE implements confidence intervals proposed by Adão et al. [2019] for
inference in shift-share least squares and instrumental variables regressions, in which the regressor
of interest (or the instrument) has a shift-share structure, as in Bartik [1991]. A shift-share variable
has the structure Xi = ∑S

s=1 wisXs, where i indexes regions, s indexes sectors, Xs are sectoral shifters
(or shocks), and wis are shares, such as initial share of region i’s employment in sector s.

This vignette illustrates the use of the package using a dataset from Autor et al. [2013] (ADH
hereafter). The dataset is included in the package as the list ADH. The first element of the list,
ADH$reg is a data-frame with regional variables, the second element, ADH$sic is a vector of SIC
codes for the sectors, and ADH$W is a matrix of shares. See ?ADH for a description of the dataset.

2 Examples

We now replicate column (1) of Table V in Adão et al. [2019]. First we load the package, define the
vector of controls, and define a vector of 3-digit SIC codes:

library("ShiftShareSE")

ctrls <- paste("t2 + l_shind_manuf_cbp + l_sh_popedu_c +",

"l_sh_popfborn + l_sh_empl_f + l_sh_routine33 + l_task_outsource",
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"+ division")

sic <- floor(ADH$sic/10)

We cluster the standard errors at the 3-digit SIC code (using the option sector_cvar), and, following
ADH, weight the data using the weights ADH$reg$weights. See ?reg_ss and ?ivreg_ss for full
description of the options.

The first-stage regression:

reg_ss(as.formula(paste("shock ~ ", ctrls)), W = ADH$W,

X = IV, data = ADH$reg, weights = weights, region_cvar = statefip,

sector_cvar = sic, method = "all")

#> Estimate: 0.6310409

#>

#> Inference:

#> Std. Error p-value Lower CI Upper CI

#> Homoscedastic 0.02732516 0.000000e+00 0.5774846 0.6845973

#> EHW 0.08700719 4.083400e-13 0.4605100 0.8015719

#> Reg. cluster 0.09142372 5.113909e-12 0.4518537 0.8102281

#> AKM 0.05296055 0.000000e+00 0.5272402 0.7348417

#> AKM0 0.07671358 1.282891e-03 0.5375710 0.8382827

Note that for "AKM0", "Std. Error" corresponds to the normalized standard error, i.e. the length
of the confidence interval divided by 2z1−α/2.

The reduced-form and IV regressions:

reg_ss(as.formula(paste("d_sh_empl ~", ctrls)), W = ADH$W,

X = IV, data = ADH$reg, region_cvar = statefip, weights = weights,

sector_cvar = sic, method = "all")

#> Estimate: -0.4885687

#>

#> Inference:

#> Std. Error p-value Lower CI Upper CI

#> Homoscedastic 0.06332778 1.221245e-14 -0.6126889 -0.3644485

#> EHW 0.11244360 1.392685e-05 -0.7089541 -0.2681833

#> Reg. cluster 0.07578147 1.140306e-10 -0.6370977 -0.3400398

#> AKM 0.16419445 2.924641e-03 -0.8103839 -0.1667535

#> AKM0 0.25437489 4.218033e-04 -1.2368853 -0.2397541

ivreg_ss(as.formula(paste("d_sh_empl ~", ctrls, "| shock")),

W = ADH$W, X = IV, data = ADH$reg, region_cvar = statefip,

weights = weights, sector_cvar = sic, method = "all")

#> Estimate: -0.7742267

#>

#> Inference:

#> Std. Error p-value Lower CI Upper CI

#> Homoscedastic 0.1069532 4.523049e-13 -0.9838511 -0.5646022

#> EHW 0.1647892 2.623532e-06 -1.0972075 -0.4512459

#> Reg. cluster 0.1758096 1.063809e-05 -1.1188071 -0.4296462

#> AKM 0.2403730 1.277718e-03 -1.2453492 -0.3031041
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#> AKM0 0.3318966 4.218033e-04 -1.6903240 -0.3893132

3 Collinear share matrix

Let W denote the share matrix with the (i, s) element given by wis and sth column ws. Suppose
that columns of W are collinear, so that it has rank S0 < S. Without loss of generality, suppose that
the first S0 columns of the matrix are full rank, so that the collinearity is caused by the last S− S0
sectors. In this case, it is not possible to recover, X̃s, the sectoral shifters with the controls partialled
without further assumptions. The reg_ss and ivreg_ss functions will return a warning message
"Share matrix is collinear". To compute the standard errors, the commands implement a
default solution to this issue based on aggregating the shocks to the collinear sectors, which we
describe in Section 3.1 below. However, there are other ways of dealing with collinearity in the
share matrix, as we describe in 3.2 below. Depending on the the setting, researchers may wish to
instead use one of these alternatives.

3.1 Default way of dealing with collinear sectors

We use a QR factorization of W with column pivoting (see Chapter 5.4.2 in Golub and Van Loan
[2013]) to drop the collinear columns in W. That is, we decompose W = QRP′, where Q is an
N × S orthogonal matrix, the matrix R takes the form R =

( R1 R2
0 0

)
, where R1 is an S0 × S0 upper

triangular matrix, R2 has dimensions S0 × (S− S0), and P is a permutation matrix such that the
diagonal elements of R are decreasing. We then drop S0 − S columns of W that correspond to the
last S− S0 columns of QR, as indicated by the permutation matrix, obtaining a new share matrix
Wnew. Most software implementations of ordinary least squares, including LAPACK used by R, use
this algorithm to drop collinear columns of the regressor matrix.

This solution keeps the regional shocks Xi the same, so that the point estimates do not change,
while implicitly redefining the sectoral shocks Xs. In particular, by definition of collinearity, each
column ws of W that we drop can be written as a linear combination of the new share matrix Wnew.
We can determine the coefficients γs in this linear combination by regressing ws onto Wnew. Observe
that since

X = WX = WnewX0 +
S

∑
s=S0+1

(W0γs)Xs = Wnew

[
X0 +

S

∑
s=S0+1

γsXs

]
= WnewXnew,

dropping the collinear columns of W doesn’t change the regional shocks Xi if we implicitly define
a new sectoral shock vector Xnew as

Xnew = X0 +
S

∑
s=S0+1

γsxs.

Here X0 corresponds to the first S0 entries of the S-vector of shocks X .

Note that re-ordering the columns of W will generally result in different columns being dropped,
so that the standard errors will generally depend on the order of the sectors.

3.2 Other solutions

There are alternative ways of dealing with collinearity, including:
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1. Drop the collinear sectors, defining Xi = ∑S0
s=1 wisXs, and defining the share matrix W to

only have S0 columns, as in the default solution. This effectively puts shocks to the collinear
sectors into the residual (which is analogous to letting say the shock to non-manufacturing
sectors be part of the residual), and changes the point estimate as well as the estimand.

2. Aggregate the sectors. For instance, if originally the sectors correspond to 4-digit SIC in-
dustries, we may wish to work with 3-digit industries. This solution will change the point
estimate, as well as the estimand. Alternatively, we may only aggregate the collinear sectors.

3. If the only controls are those with shift-share structure, and we have data on Zs, we can
estimate X̃s by running a sector-level regression of Xs onto Zs, and taking the residual. This
solution doesn’t affect the point estimate or the definition of the estimand.

4 Extensions to multiple shifters and multiple endogenous variables

We now discuss how the methods in Adão et al. [2019] extend to the case where there are multiple
shifters, or, in the case of an IV regression, multiple endogenous variables. Currently, these
extensions are not implemented in the package.

4.1 OLS

Suppose that we’re interested in the effect of a k-vector of shift-share regressors, Xi = ∑s wisXs,
where Xs is a vector of length k. For inference on the coefficient on the jth element of Xi, we proceed
as if this was the only shift-share regressor, treating the remaining shifters as part of the controls.

4.2 IV with a single endogenous regressor and multiple shift-share instruments

Now suppose that the k-vector Xi defined in section 4.1 is a k-vector of instruments. Let X denote
the N × k matrix with rows given by X′i . Consider the setup in Section IV.C of Adão et al. [2019],
with the first-stage coefficients βis in eq. (31) now a k-vector, and α being the scalar treatment effect
of Y2 on Y1 as in eq. (30). Letting Ẍ = X− Z(Z′Z)−1Z′X denote the N × k matrix of instruments
with the covariates partialled out, the two-stage least squares estimator is given by

α̂ =
Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y1

Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2
=

β̂′Ẍ′Y1

β̂′Ẍ′Ẍβ̂,

where β̂ = (Ẍ′Ẍ)−1Ẍ′Y2 is a k-vector of first-stage coefficients.

Thus,

α̂− α =
Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y1(0)

Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2
.

Now, letting Y1(0) = Z′δ + ε, we have, as in the proof of Proposition 4 in the paper,

r1/2
N Ẍ′Y1(0) = r1/2

N X′(I − Z(Z′Z)−1Z)ε = r1/2
N X̃

′W ′ε + op(1).

Thus, using arguments in Proposition 4 in the paper, we obtain the infeasible standard error formula

se(α̂) =

√
∑s(β̂′X̃s)2R2

s

β̂′Ẍ′Ẍβ̂
, Rs = ∑

i
wisεi,
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where X̃s is a (vector) residual from the population regression of the vector Xs onto the controls.

This suggests the feasible standard error formula

ŝe(α̂) =

√
∑s(β̂′X̂s)2R̂2

s

β̂′Ẍ′Ẍβ̂
, R̂s = ∑

i
wisε̂i,

where X̂ = (W ′W)−1W ′Ẍ are the regression coefficients from the regression of Ẍ onto W (as in
Remark 6, except now a X̂ is an S× k matrix), and ε̂i are estimates of structural residual. For AKM,
ε̂ = Y1 −Y2α̂− Z(Z′Z)−1Z′(Y1 −Y2α̂).

For AKM0, the construction is more complicated. Let γ̂ = (Ẍ′Ẍ)−1Ẍ′Y1 denote the reduced-form
coefficient. Let R̂s,α0 = ∑i wisε̂α0 , where ε̂α0 = (I − Z(Z′Z)−1Z′)(Y1 −Y2α0). Then

Q(α0) = (γ̂− β̂α0)
′(Ẍ′Ẍ)

(
∑

s
X̂sX̂ ′s R̂2

s,α0

)−1

(Ẍ′Ẍ)(γ̂− β̂α0)

will be distributed χ2
k in large samples, because (Ẍ′Ẍ)−1 ∑s X̂sX̂ ′s R̂2

s,α0
(Ẍ′Ẍ)−1 consistently esti-

mates the asymptotic variance of γ̂− β̂α0 under the null. Therefore, we reject the null H0 : α = α0 if
Q(α0) > χ2

k,1−α, where χ2
k,1−α is the 1− α quantile of a χ2

k . A confidence set is collected by all nulls
that are not rejected,

AKM0 confidence set = {α ∈ R : Q(α) ≤ χ2
k,1−α},

Note that (i) unlike the case with a single instrument (Remark 6, step (iv)), there is not a closed form
solution to the confidence set anymore: one needs to do a grid search over the real line, collecting
all values of α for which the test doesn’t reject, and (ii) the confidence set will be valid even if the
instruments are weak; however, if the instruments are strong, the AKM0 test is less powerful than
the AKM test, and consequently the AKM0 confidence set will tend to be bigger than the AKM
confidence interval.

Not that properties (i) and (ii) are inherited from the properties of the heteroskedasticity-robust
version of the Anderson-Rubin test when there is more than one instrument (see, for example,
Section 5.1 in Andrews et al. [2019] for a discussion). The AKM0 method adapts this test to the
current setting with shift-share instruments, inheriting these properties.

If we do not require validity under weak instruments, we can also use a different version of AKM0,
namely computing the confidence set as

Alternative AKM0 confidence set =

α ∈ R :
(α̂− α)2

∑s(β̂′X̂s)2R̂2
s,α

(β̂′Ẍ′Ẍβ̂)2

≤ z2
1−α/2

 .

This form of the confidence can be thought of as the analog to the Lagrange multiplier confidence
set in likelihood models, rather than the analog of the Anderson-Rubin test. In the case with a single
instrument, these concepts coincide, but they are different in general. In this case, the inequality
defining the set is just a quadratic inequality in α, and we can solve it explicitly as in Remark 6 in
the paper to obtain a closed-form solution. If the instruments are strong, it will take the form of an
interval.
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4.3 IV with multiple endogenous variables

Consider a general setup with eqs. (30) and (31) in the paper replaced by

Y1i(y2) = Y1i(0) + y′2α Y2i(x1, . . . , xS) = Y2i(0) + ∑
s

wisB′isxs

with X and Y2 now both vectors, and Bis has dimensions dim(X )× dim(Y2). If X = Y2, the setup
reduces to that in section 4.1. If Y2 is scalar, the setup reduces to that in section 4.2. The two-stage
least squares estimator of α is given by

α̂ = (Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2)
−1Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y1.

With scalar Xi and Y2i, this expression reduces to eq. (33) in the paper. Now,

α̂− α = (Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2)
−1Y′2Ẍ(Ẍ′Ẍ)−1 · Ẍ′(Y1 −Y2α)

Suppose that
E[Xs | F0] = Γ′Zs,

where F0 = (Y1(0), Y2(0), W,Z , U, B). Let δ be the coefficient on Z in the regression of Y1i − Y′2iα
onto Zi, and let εi = Y1i −Y′2iα− Z′i δ = Y1i(0)− Z′i δ. Then, as in proof of Proposition 4 in the paper,

r1/2
N Ẍ′(Y1 −Y2α) = r1/2

N Ẍ′(Zδ + ε) = r1/2
N X̃

′W ′ε + r1/2
N Γ′U′ε− r1/2

N ε′Z(Γ̂− Γ),

= r1/2
N X̃

′W ′ε + op(1),

where the second line follows by arguments in that proof. Now, since Xs is independent across s
conditional on F0, it follows that conditional on F0,

r1/2
N X̃

′W ′ε = r1/2
N ∑

s
X̃sRs = N (0, ∑

s
R2

s E[X̃sX̃ ′s | F0]) + op(1),

where Rs = ∑i wisεi. This leads to variance formula

v̂ar(α̂) = (Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2)
−1Y′2Ẍ(Ẍ′Ẍ)−1 ·∑

s
R̂2

s X̂sX̂ ′s · (Ẍ′Ẍ)−1Ẍ′Y2(Y′2Ẍ(Ẍ′Ẍ)−1Ẍ′Y2)
−1

= (B̂′Ẍ′ẌB̂)−1 ·∑
s

R̂2
s B̂′X̂sX̂ ′s B̂ · (B̂′Ẍ′ẌB̂)−1,

where R̂s = ∑i wisε̂i, X̂ = (W ′W)−1W ′Ẍ as in eq. (36) in the paper, with rows X ′s , and B̂ =
(Ẍ′Ẍ)−1Ẍ′Y2 is a matrix of the first-stage coefficients. Here ε̂i is an estimate of the structural
residual, such as

ε̂ = (I − Z(Z′Z)−1Z′)(Y1 −Y′21α̂) (1)

For standard errors, take square root of the appropriate diagonal element.

The AKM0 version is a little tricky here if dim(α) > 1 and we’re only interested in inference on
one element of α, say the first: this is analogous to issues with using the Anderson-Rubin test in a
setting with multiple endogenous variables.

If we do not require validity under weak instruments, then the analog of the ‘alternative AKM0’
procedure from the preceding subsection uses the estimate (α10, α̂−1(α10)) in place of α̂ in (1), where
α10 is the null hypothesized value, and

α̂−1(α10) = (Y′2,−1Ẍ(Ẍ′Ẍ)−1Ẍ′Y2,−1)
−1Y′2,−1Ẍ(Ẍ′Ẍ)−1Ẍ′(Y1 −Y2,1α10).

is the estimate of the remaining elements of α with the null H0 : α1 = α10 imposed.
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