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Abstract

The SharpeR package provides basic functionality for testing signif-
icance of the Sharpe ratio of a series of returns, and of the Markowitz
portfolio on a number of possibly correlated assets.[16] The goal of the
package is to make it simple to estimate profitability (in terms of risk-
adjusted returns) of strategies or asset streams.

1 The Sharpe ratio and Optimal Sharpe ratio

Sharpe defined the ‘reward to variability ratio’, now known as the ‘Sharpe ratio’,
as the sample statistic

ζ̂ =
µ̂

σ̂
,

where µ̂ is the sample mean, and σ̂ is the sample standard deviation. [16] The
Sharpe ratio was later redefined to include a ‘risk-free’ or ‘disastrous rate of
return’: ζ̂ = (µ̂− r0) /σ̂.

It is little appreciated in quantitative finance that the Sharpe ratio is iden-
tical to the sample statistic proposed by Gosset in 1908 to test for zero mean
when the variance is unknown. [5] The ‘t-test’ we know today, which includes
an adjustment for sample size, was formulated later by Fisher. [4] Knowing that
the Sharpe ratio is related to the t-statistic provides a ‘natural arbitrage,’ since
the latter has been extensively studied. Many of the interesting properties of
the t-statistic can be translated to properties about the Sharpe ratio.

Also little appreciated is that the multivariate analogue of the t-statistic,
Hotelling’s T 2, is related to the Markowitz portfolio. Consider the following
portfolio optimization problem:

max
ν̂:ν̂⊤Σ̂ν̂≤R2

ν̂⊤µ̂− r0√
ν̂⊤Σ̂ν̂

, (1)

where µ̂, Σ̂ are the sample mean vector and covariance matrix, r0 is the risk-
free rate, and R is a cap on portfolio ‘risk’ as estimated by Σ̂. (Note this differs
from the traditional definition of the problem which imposes a ‘self-financing
constraint’ which does not actually bound portfolio weights.) The solution to
this problem is

ν̂∗ =df
R√

µ̂⊤Σ̂−1µ̂

Σ̂−1µ̂.

∗shabbychef@gmail.com

1

mailto:shabbychef@gmail.com


The Sharpe ratio of this portfolio is

ζ̂∗ =df
ν̂∗

⊤µ̂− r0√
ν̂∗

⊤Σ̂ν̂∗
=

√
µ̂⊤Σ̂−1µ̂− r0

R
=

√
T 2/n− r0

R
, (2)

where T 2 is Hotelling’s statistic, and n is the number of independent observa-
tions (e.g., ‘days’) used to construct µ̂. The term r0/R is a deterministic ‘drag’

term that merely shifts the location of ζ̂∗, and so we can (mostly) ignore it when

testing significance of ζ̂∗.
Under the (typically indefensible) assumptions that the returns are generated

i.i.d. from a normal distribution (multivariate normal in the case of the portfolio

problem), the distributions of ζ̂ and ζ̂2∗ are known, and depend on the sample
size and the population analogues, ζ and ζ2∗ . In particular, they are distributed
as rescaled non-central t and F distributions. Under these assumptions on the
generating processes, we can perform inference on the population analogues
using the sample statistics.

The importance of each of these assumptions (viz. homoskedasticity, inde-
pendence, normality, etc.) can and should be checked. [12, 14] The reader must
be warned that this package is distributed without any warranty of any kind,
and in no way should any analysis performed with this package be interpreted
as implicit investment advice by the author(s).

The units of µ̂ are ‘returns per time,’ while those of σ̂ are ‘returns per square
root time.’ Consequently, the units of ζ̂ are ‘per square root time.’ Typically
the Sharpe ratio is quoted in ‘annualized’ terms, i.e., yr−1/2, but the units are
omitted. I believe that units should be included as it avoids ambiguity, and
simplifies conversions.

There is no clear standard whether arithmetic or geometric returns should
be used in the computation of the Sharpe ratio. Since arithmetic returns are
always greater than the equivalent geometric returns, one would suspect that
arithmetic returns are always used when advertising products. However, I sus-
pect that geometric returns are more frequently used in the analysis of strategies.
Geometric returns have the attractive property of being ‘additive’, meaning that
the geometric return of a period is the sum of those of subperiods, and thus the
sign of the arithmetic mean of some geometric returns indicates whether the
final value of a strategy is greater than the initial value. Oddly, the arithmetic
mean of arithmetic returns does not share this property.

On the other hand, arithmetic returns are indeed additive contemporane-
ously : if x is the vector of arithmetic returns of several stocks, and ν̂ is the
dollar proportional allocation into those stocks at the start of the period, then
x⊤ν̂ is the arithmetic return of the portfolio over that period. This holds even
when the portfolio holds some stocks ‘short.’ Often this portfolio accounting is
misapplied to geometric returns without even an appeal to Taylor’s theorem.

For more details on the Sharpe ratio and portfolio optimization, see the
vignette, “Notes on the Sharpe ratio” distributed with this package.

2 Using the sr Class

An sr object encapsulates one or more Sharpe ratio statistics, along with the
degrees of freedom, the rescaling to a t statistic, and the annualization and units
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information. One can simply stuff this information into an sr object, but it is
more straightforward to allow as.sr to compute the Sharpe ratio for you.

library(SharpeR)

# suppose you computed the Sharpe of your

# strategy to be 1.3 / sqrt(yr), based on 1200

# daily observations. store them as follows:

my.sr <- sr(sr = 1.3, df = 1200 - 1, ope = 252, epoch = "yr")

print(my.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## Sharpe 1.30 0.46 2.8 0.0023 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# multiple strategies can be tracked as well.

# one can attach names to them.

srstats <- c(0.5, 1.2, 0.6)

dim(srstats) <- c(3, 1)

rownames(srstats) <- c("strat. A", "strat. B", "benchmark")

my.sr <- sr(srstats, df = 1200 - 1, ope = 252, epoch = "yr")

print(my.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## strat. A 0.50 0.46 1.1 0.1377

## strat. B 1.20 0.46 2.6 0.0045 **

## benchmark 0.60 0.46 1.3 0.0953 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Throughout, ope stands for ‘Observations Per Epoch’, and is the (average)
number of returns observed per the annualization period, called the epoch. At
the moment there is not much hand holding regarding these parameters: no
checking is performed for sane values.

The as.sr method will compute the Sharpe ratio for you, from numeric,
data.frame, xts or lm objects. In the latter case, it is assumed one is performing
an attribution model, and the statistic of interest is the fit of the (Intercept)
term divided by the residual standard deviation. Here are some examples:

set.seed(as.integer(charToRaw("set the seed")))

# Sharpe's 'model': just given a bunch of

# returns.

returns <- rnorm(253 * 8, mean = 3e-04, sd = 0.01)

asr <- as.sr(returns, ope = 253, epoch = "yr")

print(asr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## x 0.56 0.35 1.6 0.056 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# a data.frame with a single strategy

asr <- as.sr(data.frame(my.strategy = returns), ope = 253,

epoch = "yr")

print(asr)
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## SR/sqrt(yr) Std. Error t value Pr(>t)

## my.strategy 0.56 0.35 1.6 0.056 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When a data.frame with multiple columns is given, the Sharpe ratio of each
is computed, and they are all stored:

# a data.frame with multiple strategies

asr <- as.sr(data.frame(strat1 = rnorm(253 * 8), strat2 = rnorm(253 *

8, mean = 4e-04, sd = 0.01)), ope = 253, epoch = "yr")

print(asr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## strat1 -0.043 0.354 -0.12 0.549

## strat2 0.573 0.354 1.62 0.053 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here is an example using xts objects. In this case, if the ope is not given,
it is inferred from the time marks of the input object.

require(quantmod)

# get price data, compute log returns on adjusted

# closes

get.ret <- function(sym, warnings = FALSE, ...) {
# getSymbols.yahoo will barf sometimes; do a

# trycatch

trynum <- 0

while (!exists("OHCLV") && (trynum < 7)) {
trynum <- trynum + 1

try(OHLCV <- getSymbols(sym, auto.assign = FALSE,

warnings = warnings, ...), silent = TRUE)

}
adj.names <- paste(c(sym, "Adjusted"), collapse = ".",

sep = "")

if (adj.names %in% colnames(OHLCV)) {
adj.close <- OHLCV[, adj.names]

} else {
# for DJIA from FRED, say.

adj.close <- OHLCV[, sym]

}
rm(OHLCV)

# rename it

colnames(adj.close) <- c(sym)

adj.close <- adj.close[!is.na(adj.close)]

lrets <- diff(log(adj.close))

# chop first

lrets[-1, ]

}
get.rets <- function(syms, ...) {

some.rets <- do.call("cbind", lapply(syms, get.ret,

...))

}
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require(quantmod)

# quantmod::periodReturn does not deal properly

# with multiple columns, and the straightforward

# apply(mtms,2,periodReturn) barfs

my.periodReturn <- function(mtms, ...) {
per.rets <- do.call(cbind, lapply(mtms, function(x) {

retv <- periodReturn(x, ...)

colnames(retv) <- colnames(x)

return(retv)

}))
}
# convert log return to mtm, ignoring NA

lr2mtm <- function(x, ...) {
x[is.na(x)] = 0

exp(cumsum(x))

}

some.rets <- get.rets(c("IBM", "AAPL", "XOM"), from = "2007-01-01",

to = "2013-01-01")

print(as.sr(some.rets))

## SR/sqrt(yr) Std. Error t value Pr(>t)

## IBM 0.54 0.41 1.31 0.095 .

## XOM 0.15 0.41 0.36 0.360

## AAPL 0.83 0.41 2.02 0.022 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The annualization of an sr object can be changed with the reannualize

method. The name of the epoch and the observation rate can both be changed.
Changing the annualization will not change statistical significance, it merely
changes the units.

yearly <- as.sr(some.rets[, "XOM"])

monthly <- reannualize(yearly, new.ope = 21, new.epoch = "mo.")

print(yearly)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## XOM 0.15 0.41 0.36 0.36

# significance should be the same, but units

# changed.

print(monthly)

## SR/sqrt(mo.) Std. Error t value Pr(>t)

## XOM 0.042 0.118 0.36 0.36

2.1 Attribution Models

When an object of class lm is given to as.sr, the fit (Intercept) term is
divided by the residual volatility to compute something like the Sharpe ratio. In
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terms of Null Hypothesis Significance Testing, nothing is gained by summarizing
the sr object instead of the lm object. However, confidence intervals on the
Sharpe ratio are quoted in the more natural units of reward to variability, and
in annualized terms (or whatever the epoch is.)

As an example, here I perform a CAPM attribution to the monthly returns of
AAPL. Note that the statistical significance here is certainly tainted by selection
bias, a topic beyond the scope of this note.

# get the returns (see above for the function)

aapl.rets <- get.rets(c("AAPL", "SPY"), from = "2003-01-01",

to = "2013-01-01")

# make them monthly:

mo.rets <- my.periodReturn(lr2mtm(aapl.rets), period = "monthly",

type = "arithmetic")

rm(aapl.rets) # cleanup

# look at both of them together:

both.sr <- as.sr(mo.rets)

print(both.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## SPY 0.51 0.32 1.6 0.055 .

## AAPL 1.36 0.33 4.3 1.7e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# confindence intervals on the Sharpe:

print(confint(both.sr))

## 2.5 % 97.5 %

## SPY -0.12 1.1

## AAPL 0.71 2.0

# perform a CAPM attribution, using SPY as 'the

# market'

linmod <- lm(AAPL ~ SPY, data = mo.rets)

# convert attribution model to Sharpe

CAPM.sr <- as.sr(linmod, ope = both.sr$ope, epoch = "yr")

# statistical significance does not change

# (though note the sr summary prints a 1-sided

# p-value)

print(summary(linmod))

##

## Call:

## lm(formula = AAPL ~ SPY, data = mo.rets)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.27094 -0.06403 0.00429 0.05051 0.30164

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.03370 0.00841 4.01 0.00011 ***

## SPY 1.31329 0.19469 6.75 6e-10 ***
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.091 on 118 degrees of freedom

## Multiple R-squared: 0.278,Adjusted R-squared: 0.272

## F-statistic: 45.5 on 1 and 118 DF, p-value: 5.98e-10

print(CAPM.sr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## linmod 1.28 0.33 4 5.4e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# the confidence intervals tell the same story,

# but in different units:

print(confint(linmod, "(Intercept)"))

## 2.5 % 97.5 %

## (Intercept) 0.017 0.05

print(confint(CAPM.sr))

## 2.5 % 97.5 %

## linmod 0.63 1.9

2.2 Testing Sharpe and Power

The function sr test performs one- and two-sample tests for significance of
Sharpe ratio. Paired tests for equality of Sharpe ratio can be performed via the
sr equality test, which applies the tests of Leung et al. or of Wright et al.
[10, 19]

# get the sector 'spiders'

secto.rets <- get.rets(c("XLY", "XLE", "XLP", "XLF",

"XLV", "XLI", "XLB", "XLK", "XLU"), from = "2003-01-01",

to = "2013-01-01")

# make them monthly:

mo.rets <- my.periodReturn(lr2mtm(secto.rets), period = "monthly",

type = "arithmetic")

# one-sample test on utilities:

XLU.monthly <- mo.rets[, "XLU"]

print(sr_test(XLU.monthly), alternative = "two.sided")

##

## One Sample sr test, exact method

##

## data: XLU.monthly

## t = 2, df = 119, p-value = 0.02

## alternative hypothesis: true signal-noise ratio is not equal to 0

## sample estimates:

## [,1]

## XLU 0.22
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## attr(,"names")

## [1] "Sharpe ratio of XLU.monthly"

# test for equality of Sharpe among the different

# spiders

print(sr_equality_test(as.matrix(secto.rets)))

##

## test for equality of Sharpe ratio, via chisq test

##

## data: as.matrix(secto.rets)

## T2 = 7, contrasts = 8, p-value = 0.6

## alternative hypothesis: true sum squared contrasts of SNR is not equal to 0

# perform a paired two-sample test via sr_test:

XLF.monthly <- mo.rets[, "XLF"]

print(sr_test(x = XLU.monthly, y = XLF.monthly, ope = 12,

paired = TRUE))

##

## Paired sr-test

##

## data: XLU.monthly and XLF.monthly

## t = 2, df = 119, p-value = 0.07

## alternative hypothesis: true difference in signal-noise ratios is not equal to 0

## sample estimates:

## difference in Sharpe ratios

## 0.68

3 Using the sropt Class

The class sropt stores the ‘optimal’ Sharpe ratio, which is that of the optimal
(‘Markowitz’) portfolio, as defined in Equation 1, as well as the relevant degrees
of freedom, and the annualization parameters. Again, the constructor can be
used directly, but the helper function is preferred:

set.seed(as.integer(charToRaw("7bf4b86a-1834-4b58-9eff-6c7dec724fec")))

# from a matrix object:

ope <- 253

n.stok <- 7

n.yr <- 8

# somewhat unrealistic: independent returns.

rand.rets <- matrix(rnorm(n.yr * ope * n.stok), ncol = n.stok)

asro <- as.sropt(rand.rets, ope = ope)

rm(rand.rets)

print(asro)

## SR/sqrt(yr) SRIC/sqrt(yr) 2.5 % 97.5 % T^2 value

## Sharpe 1.05 0.33 0.00 1.43 8.8

## Pr(>T^2)

## Sharpe 0.27
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# under the alternative, when the mean is nonzero

rand.rets <- matrix(rnorm(n.yr * ope * n.stok, mean = 6e-04,

sd = 0.01), ncol = n.stok)

asro <- as.sropt(rand.rets, ope = ope)

rm(rand.rets)

print(asro)

## SR/sqrt(yr) SRIC/sqrt(yr) 2.5 % 97.5 % T^2 value

## Sharpe 2.5 2.1 1.6 3.0 48

## Pr(>T^2)

## Sharpe 4.6e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# from an xts object

some.rets <- get.rets(c("IBM", "AAPL", "XOM"), from = "2007-01-01",

to = "2013-01-01")

asro <- as.sropt(some.rets)

print(asro)

## SR/sqrt(yr) SRIC/sqrt(yr) 2.5 % 97.5 % T^2 value

## Sharpe 0.90 0.53 0.00 1.56 4.8

## Pr(>T^2)

## Sharpe 0.19

One can compute confidence intervals for the population parameter ζ∗ =df√
µ⊤Σ−1µ, called the ‘optimal signal-noise ratio’, based on inverting the non-

central F -distribution. Estimates of ζ∗ can also be computed, via Maximum
Likelihood Estimation, or a ‘shrinkage’ estimate. [7, 17]

# confidence intervals:

print(confint(asro, level.lo = 0.05, level.hi = 1))

## 5 % 100 %

## [1,] 0 Inf

# estimation

print(inference(asro, type = "KRS"))

## [,1]

## [1,] 0.57

print(inference(asro, type = "MLE"))

## [1] 0.64

A nice rule of thumb is that, to a first order approximation, the MLE of ζ∗ is
zero exactly when ζ̂2∗ ≤ p/n, where p is the number of assets. [7, 17] Inspection

of this inequality confirms that ζ̂∗ and n can be expressed ‘in the same units’,
meaning that if ζ̂∗ is in yr−1/2, then n should be the number of years. For
example, if the Markowitz portfolio on 8 assets over 7 years has a Sharpe ratio
of 1yr−1/2, the MLE will be zero. This can be confirmed empirically as below.
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ope <- 253

zeta.s <- 0.8

n.check <- 1000

df1 <- 10

df2 <- 6 * ope

rvs <- rsropt(n.check, df1, df2, zeta.s, ope, drag = 0)

roll.own <- sropt(z.s = rvs, df1, df2, drag = 0, ope = ope,

epoch = "yr")

MLEs <- inference(roll.own, type = "MLE")

zerMLE <- MLEs <= 0

crit.value <- 0.5 * (max(rvs[zerMLE])^2 + min(rvs[!zerMLE])^2)

aspect.ratio <- df1/(df2/ope)

cat(sprintf("empirical cutoff for zero MLE is %2.2f yr^{-1}\n",
crit.value))

## empirical cutoff for zero MLE is 1.68 yr^{-1}

cat(sprintf("the aspect ratio is %2.2f yr^{-1}\n",
aspect.ratio))

## the aspect ratio is 1.67 yr^{-1}

3.1 Approximating Overfit

A high-level sketch of quant work is as follows: construct a trading system with
some free parameters, θ, backtest the strategy for θ1, θ2, . . . , θm, then pick the θi
that maximizes the Sharpe ratio in backtesting. ‘Overfit bias’ (variously known
as ‘datamining bias,’ ‘garbatrage,’ ‘backtest arb,’ etc.) is the upward bias in
one’s estimate of the true signal-to-noise of the strategy parametrized by θi∗ due
to one using the same data to select the strategy and estimate it’s performance.
[2][Chapter 6]

As an example, consider a basic Moving Average Crossover strategy. Here θ
is a vector of 2 window lengths. One longs the market exactly when one moving
average exceeds the other, and shorts otherwise. One performs a brute force
search of all allowable window sizes. Before deciding to deploy money into the
MAC strategy parametrized by θi∗ , one has to estimate its profitability.

There is a way to roughly estimate overfit bias by viewing the problem as
a portfolio problem, and performing inference on the optimal Sharpe ratio. To
do this, suppose that xi is the n-vector of backtested returns associated with
θi. (I will assume that all the backtests are over the same period of time.)
Then approximately embed the backtested returns vectors in the subset of a p-
dimensional subspace. That is, by a process like PCA, make the approximation:

{x1, . . . ,xm} ≈ K ⊂ L =df {Yν̂ | ν̂ ∈ Rp }

Abusing notation, let ζ̂ (θ) be the sample Sharpe ratio associated with param-

eters θ, and also let ζ̂ (x) be the Sharpe ratio associated with the vector of
returns x. Then make the approximation

ζ̂ (θ∗) =df max
θ1,...,θm

ζ̂ (θi) ≈ max
x∈K

ζ̂ (x) ≤ max
x∈L

ζ̂ (x) = ζ̂∗.
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This is a conservative approximation: the true maximum over L is presumably
much larger than ζ̂ (θ∗). One can then use ζ̂ (θ∗) as ζ̂∗ over a set of p assets,
perform inference on ζ∗, which, by a series of approximations as above, is an
approximate upper bound on ζ (θ∗).

This approximate attack on overfitting will work better when one has a good
estimate of p, when m is relatively large and p relatively small, and when the
linear approximation to the set of backtested returns is good. Moreover, the
definition of L explicitly allows shorting, whereas the backtested returns vectors
xi may lack the symmetry about zero to make this a good approximation. By
way of illustration, consider the case where the trading system is set up such
that different θ produce minor variants on a clearly losing strategy: in this case
we might have ζ̂ (θ∗) < 0, which cannot hold for ζ̂∗.

One can estimate p via Monte Carlo simulations, by actually performing
PCA, or via the ‘SWAG’ method. Surprisingly, often one’s intuitive estimate of
the true ‘degrees of freedom’ in a trading system is reasonably good.

require(TTR)

# brute force search two window MAC

brute.force <- function(lrets, rrets = exp(lrets) -

1, win1, win2 = win1) {
mtms <- c(1, exp(cumsum(lrets))) # prepend a 1.

# do all the SMAs;

SMA1 <- sapply(win1, function(n) {
SMA(mtms, n = n)

})
symmetric <- missing(win2)

if (!symmetric)

SMA2 <- sapply(win2, function(n) {
SMA(mtms, n = n)

})

mwin <- max(c(win1, win2))

zeds <- matrix(NaN, nrow = length(win1), ncol = length(win2))

upb <- if (symmetric)

length(win1) - 1 else length(win1)

# 2FIX: vectorize this!

for (iidx in 1:upb) {
SM1 <- SMA1[, iidx]

lob <- if (symmetric)

iidx + 1 else 1

for (jidx in lob:length(win2)) {
SM2 <- if (symmetric)

SMA1[, jidx] else SMA2[, jidx]

trades <- sign(SM1 - SM2)

dum.bt <- trades[mwin:(length(trades) -

1)] * rrets[mwin:length(rrets)] # braindead backtest.

mysr <- as.sr(dum.bt)

zeds[iidx, jidx] <- mysr$sr

# abuse symmetry of arithmetic

# returns

if (symmetric)

zeds[jidx, iidx] <- -zeds[iidx, jidx]

}
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}
retv <- max(zeds, na.rm = TRUE)

return(retv)

}
# simulate one.

sim.one <- function(nbt, win1, ...) {
lrets <- rnorm(nbt + max(win1), sd = 0.01)

retv <- brute.force(lrets, win1 = win1, ...)

return(retv)

}
# set everything up

set.seed(as.integer(charToRaw("e23769f4-94f8-4c36-bca1-28c48c49b4fb")))

ope <- 253

n.yr <- 4

n.obs <- ceiling(ope * n.yr)

LONG.FORM <- FALSE

n.sim <- if (LONG.FORM) 2048 else 1024

win1 <- if (LONG.FORM) c(2, 4, 8, 16, 32, 64, 128,

256) else c(4, 16, 64, 256)

# run them

system.time(max.zeds <- replicate(n.sim, sim.one(n.obs,

win1)))

## user system elapsed

## 1.383 0.022 1.408

# qqplot;

qqplot(qsropt(ppoints(length(max.zeds)), df1 = 2, df2 = n.obs),

max.zeds, xlab = "Theoretical Approximate Quantiles",

ylab = "Sample Quantiles")

qqline(max.zeds, datax = FALSE, distribution = function(p) {
qsropt(p, df1 = 2, df2 = n.obs)

}, col = 2)

Here I illustrate the quality of the approximation for the two-window simple
MAC strategy. I generate log returns which are homoskedastic, driftless, and
have zero autocorrelation. In this case, every MAC strategy has zero expected
return (ignoring trading costs). In spite of this deficiency in the market, I find
the best combination of window sizes by looking at 4 years of daily data. By
selecting the combination of windows with the highest Sharpe ratio, then using
that maximal value as an estimate of the selected model’s true signal-noise-
ratio, I have subjected myself to overfit bias. I repeat this experiment 1024
times, then Q-Q plot the maximal Sharpe ratio values over those experiments
versus an optimal Sharpe ratio distribution assuming p = 2 in Figure 1. The fit
is reasonable1 except in the case where the maximal in-sample Sharpe ratio is
very low (recall that it can be negative for this brute-force search, whereas the
optimal Sharpe ratio distribution does not produce negative values). This case
is unlikely to lead to a trading catastrophe, however.

It behooves me to replicate the above experiment ‘under the alternative,’

1And much better when the overfitting is more aggressive, which takes more processing
time to simulate.
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Figure 1: Q-Q plot of 1024 achieved optimal Sharpe ratio values from brute
force search over both windows of a Moving Average Crossover under the null
of driftless log returns with zero autocorrelation versus the approximation by a
2-parameter optimal Sharpe ratio distribution is shown.
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e.g., when the market has autocorrelated returns, to see if the approximation
holds up when ζ∗ > 0. I leave this for future iterations. Instead, I apply the
p = 2 approximation to the brute-force MAC overfit on SPY.

# is MAC on SPY significant?

SPY.lret <- get.rets(c("SPY"), from = "2003-01-01",

to = "2013-01-01")

# oops! there might be NAs in there!

mysr <- as.sr(SPY.lret, na.rm = TRUE) # just to get the ope

print(mysr)

## SR/sqrt(yr) Std. Error t value Pr(>t)

## SPY 0.31 0.32 0.99 0.16

# get rid of NAs

SPY.lret[is.na(SPY.lret)] <- 0

# try a whole lot of windows:

win1 <- seq(4, 204, by = 10)

zeds <- brute.force(SPY.lret, win1 = win1)

SPY.MAC.asro <- sropt(z.s = zeds, df1 = 2, df2 = length(SPY.lret) -

max(win1), ope = mysr$ope)

print(SPY.MAC.asro)

## SR/sqrt(yr) SRIC/sqrt(yr) 2.5 % 97.5 % T^2 value

## Sharpe 0.47 0.24 0.00 1.04 2

## Pr(>T^2)

## Sharpe 0.36

print(inference(SPY.MAC.asro, type = "KRS"))

## [1] 0.33

The Sharpe ratio for SPY over this period is 0.31yr−1/2. The optimal Sharpe
ratio for the tested MAC strategies is 0.47yr−1/2. The KRS estimate (using
the p = 2 approximation) for the upper bound on signal-to-noise of the optimal
MAC strategy is only 0.33yr−1/2. [7] This leaves little room for excitement
about MAC strategies on SPY.

4 Using the del sropt Class

The class del sropt stores the ‘optimal’ Sharpe ratio of the optimal hedge-
constrained portfolio. See the ‘Notes on Sharpe ratio’ vignette for more details.
There is an object constructor, but likely the as.del sropt function will prove
more useful.

set.seed(as.integer(charToRaw("364e72ab-1570-43bf-a1c6-ee7481e1c631")))

# from a matrix object:

ope <- 253

n.stok <- 7

n.yr <- 8

# somewhat unrealistic: independent returns,

# under the null

rand.rets <- matrix(rnorm(n.yr * ope * n.stok), ncol = n.stok)
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# the hedge constraint: hedge out the first

# stock.

G <- diag(n.stok)[1, ]

asro <- as.del_sropt(rand.rets, G, ope = ope)

print(asro)

## SR/sqrt(yr) 2.5 % 97.5 % F value Pr(>F)

## Sharpe 1 0 1.5 1.4 0.19

# hedge out the first two

G <- diag(n.stok)[1:2, ]

asro <- as.del_sropt(rand.rets, G, ope = ope)

print(asro)

## SR/sqrt(yr) 2.5 % 97.5 % F value Pr(>F)

## Sharpe 0.99 0 1.5 1.6 0.16

# under the alternative, when the mean is nonzero

rand.rets <- matrix(rnorm(n.yr * ope * n.stok, mean = 6e-04,

sd = 0.01), ncol = n.stok)

G <- diag(n.stok)[1, ]

asro <- as.del_sropt(rand.rets, G, ope = ope)

print(asro)

## SR/sqrt(yr) 2.5 % 97.5 % F value Pr(>F)

## Sharpe 2.6 1.7 3.2 8.8 1.6e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here I present an example of hedging out SPY from a portfolio holding IBM,
AAPL, and XOM. The 95% confidence interval on the optimal hedged signal-noise
ratio contains zero:

# from an xts object

some.rets <- get.rets(c("SPY", "IBM", "AAPL", "XOM"),

from = "2007-01-01", to = "2013-01-01")

# without the hedge, allowing SPY position

asro <- as.sropt(some.rets)

print(asro)

## SR/sqrt(yr) SRIC/sqrt(yr) 2.5 % 97.5 % T^2 value

## Sharpe 1.18 0.76 0.00 1.81 8.4

## Pr(>T^2)

## Sharpe 0.079 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# hedge out SPY!

G <- diag(dim(some.rets)[2])[1, ]

asro.hej <- as.del_sropt(some.rets, G)

print(asro.hej)

## SR/sqrt(yr) 2.5 % 97.5 % F value Pr(>F)

## Sharpe 1.1 0 1.7 2.2 0.084 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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One can compute confidence intervals for, and perform inference on, the

population parameter,
√
ζ2∗,I − ζ2∗,G. This is the optimal signal-noise ratio of a

hedged portfolio. These are all reported here in the same ‘annualized’ units of
Sharpe ratio, and may be controlled by the ope parameter.

# confidence intervals:

print(confint(asro, level.lo = 0.05, level.hi = 1))

## 5 % 100 %

## [1,] 0 Inf

# estimation

print(inference(asro, type = "KRS"))

## [,1]

## [1,] 0.85

print(inference(asro, type = "MLE"))

## [1] 0.92

5 Hypothesis Tests

The function sr equality test, implements the tests of Leung et al. and of
Wright et al. for testing the equality of Sharpe ratio. [10, 19] I have found
that these tests can reject the null ‘for the wrong reason’ when the problem is
ill-scaled.

Here I confirm that the tests give approximately uniform p-values under
the null in three situations: when stock returns are independent Gaussians,
when they are independent and t-distributed, and when they are Gaussian and
correlated. Visual confirmation is via Figure 2 through Figure 4, showing Q-Q
plots against uniformity of the putative p-values in Monte Carlo simulations
with data drawn from the null.

# function for Q-Q plot against uniformity

qqunif <- function(x, xlab = "Theoretical Quantiles under Uniformity",

ylab = NULL, ...) {
if (is.null(ylab))

ylab = paste("Sample Quantiles (", deparse(substitute(x)),

")", sep = "")

qqplot(qunif(ppoints(length(x))), x, xlab = xlab,

ylab = ylab, ...)

abline(0, 1, col = "red")

}

# under normality.

LONG.FORM <- FALSE

n.ro <- if (LONG.FORM) 253 * 4 else 253 * 2

n.co <- if (LONG.FORM) 20 else 4

n.sim <- if (LONG.FORM) 1024 else 512

set.seed(as.integer(charToRaw("e3709e11-37e0-449b-bcdf-9271fb1666e5")))
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Figure 2: P-values from sr equality test on 512 multiple realizations of inde-
pendent, normally distributed returns series are Q-Q plotted against uniformity.

afoo <- replicate(n.sim, sr_equality_test(matrix(rnorm(n.ro *

n.co), ncol = n.co), type = "F"))

sr_eq.pvals <- unlist(afoo["p.value", ])

qqunif(sr_eq.pvals)

# try heteroskedasticity?

set.seed(as.integer(charToRaw("81c97c5e-7b21-4672-8140-bd01d98d1d2e")))

afoo <- replicate(n.sim, sr_equality_test(matrix(rt(n.ro *

n.co, df = 4), ncol = n.co), type = "F"))

sr_eq.pvals <- unlist(afoo["p.value", ])

qqunif(sr_eq.pvals)

# try correlated returns

n.fact <- max(2, n.co - 5)

gen.ret <- function(n1, n2, f = max(2, n2 - 2), fuzz = 0.1) {
A <- matrix(rnorm(n1 * f), nrow = n1)

B <- matrix(rnorm(f * n2), nrow = f)

C <- sqrt(1 - fuzz^2) * A %*% B + fuzz * matrix(rnorm(n1 *

n2), nrow = n1)

}
set.seed(as.integer(charToRaw("e4d61c2c-efb3-4cba-9a6e-5f5276ce2ded")))

afoo <- replicate(n.sim, sr_equality_test(gen.ret(n.ro,
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Figure 3: P-values from sr equality test on 512 multiple realizations of in-
dependent, t-distributed returns series are Q-Q plotted against uniformity.
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Figure 4: P-values from sr equality test on 512 multiple realizations of cor-
related, normally-distributed returns series are Q-Q plotted against uniformity.

n.co, n.fact), type = "F"))

sr_eq.pvals <- unlist(afoo["p.value", ])

qqunif(sr_eq.pvals)

As a followup, I consider the case where the returns are those of several
randomly generated market-timing strategies which are always fully invested
long or short in the market, with equal probability. I look at 128 simulations
of 50 random market timing strategies rebalancing weekly on a 10 year history
of SPY. The ’p-values’ from sr equality test applied to the returns are Q-Q
plotted against uniformity in Figure 5. The type I rate of this test is far larger
than the nominal rate: it is rejecting for ‘uninteresting reasons’. I suspect this
test breaks down because of small sample size or small ’aspect ratio’ (ratio of
weeks to strategies in this example). In summary, one should exercise caution
when interpreting the results of the Sharpe equality test: it would be worthwhile
to compare the results against a ‘Monte Carlo null’ as illustrated here.

n.co <- if (LONG.FORM) 100 else 50

n.sim <- if (LONG.FORM) 1024 else 128

SPY.lret <- get.rets(c("SPY"), from = "2003-01-01",

to = "2013-01-01")

SPY.wk.rret <- my.periodReturn(lr2mtm(SPY.lret), period = "weekly",

type = "arithmetic")

gen.tim <- function(n2) {
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Figure 5: P-values from sr equality test on 128 multiple realizations of 50
market timing strategies’ returns series are Q-Q plotted against uniformity.
Nominal coverage is not maintained: the test is far too liberal in this case.

mkt.timing.signal <- sign(rnorm(n2 * length(SPY.wk.rret)))

mkt.ret <- matrix(rep(SPY.wk.rret, n2) * mkt.timing.signal,

ncol = n2)

}
set.seed(as.integer(charToRaw("447cfe85-b612-4b14-bd01-404e6e99aca4")))

system.time(afoo <- replicate(n.sim, sr_equality_test(gen.tim(n.co),

type = "F")))

## user system elapsed

## 1.175 0.012 1.187

sr_eq.pvals <- unlist(afoo["p.value", ])

qqunif(sr_eq.pvals)

5.1 Equality Test with Fancy Covariance

The sr equality test function now accepts an optional function to perform
the inner variance-covariance estimation. I do not think this will correct the
problems noted previously for the ill-scaled case. It does, however, allow one to
take into account e.g., heteroskedasticity and autocorrelation, as follows. Note
that the use of a ‘fancy’ covariance estimator does not change the conclusions
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of the Sharpe equality test in this case.

# get returns

some.rets <- as.matrix(get.rets(c("IBM", "AAPL", "XOM"),

from = "2007-01-01", to = "2013-01-01"))

# using the default vcov

test.vanilla <- sr_equality_test(some.rets, type = "F")

print(test.vanilla)

##

## test for equality of Sharpe ratio, via F test

##

## data: some.rets

## T2 = 3, contrasts = 2, p-value = 0.3

## alternative hypothesis: true sum squared contrasts of SNR is not equal to 0

if (require(sandwich)) {
# and a fancy one:

test.HAC <- sr_equality_test(some.rets, type = "F",

vcov.func = vcovHAC)

print(test.HAC)

}

##

## test for equality of Sharpe ratio, via F test

##

## data: some.rets

## T2 = 3, contrasts = 2, p-value = 0.3

## alternative hypothesis: true sum squared contrasts of SNR is not equal to 0

6 Asymptotics

6.1 Variance Covariance of the Sharpe ratio

Given n observations of the returns of p assets, the covariance of the sample
Sharpe ratio can be estimated via the Delta method. This operates by stacking
the p vector of returns on top of the p vector of the returns squared element-
wise. One then estimates the covariance of this 2p vector, using one’s favorite
covariance estimator. This estimate is then translated back to an estimate of the
covariance of the p vector of Sharpe ratio values. This process was described by
Lo, and Ledoit and Wolf for the p = 1 case, and is used in the Sharpe equality
tests of Leung et al. and of Wright et al.. [11, 9, 10, 19]

This basic function is available via the sr vcov function, which allows one
to pass in a function to perform the covariance estimate of the 2p vector. The
passed in function should operate on an lm object. The default is the vcov func-
tion; other sensible choices include sandwich:vcovHC and sandwich:vcovHAC

to deal with heteroskedasticity and autocorrelation.

# get returns

some.rets <- as.matrix(get.rets(c("IBM", "AAPL", "XOM"),

from = "2007-01-01", to = "2013-01-01"))

21



ope <- 252

vanilla.Sig <- sr_vcov(some.rets, ope = ope)

print(vanilla.Sig)

## $SR

## [,1]

## IBM 0.54

## XOM 0.15

## AAPL 0.83

##

## $Ohat

## IBM XOM AAPL

## IBM 0.167 0.098 0.092

## XOM 0.098 0.167 0.076

## AAPL 0.092 0.076 0.171

##

## $p

## [1] 3

if (require(sandwich)) {
HC.Sig <- sr_vcov(some.rets, vcov = vcovHC, ope = ope)

print(HC.Sig$Ohat)

}

## IBM XOM AAPL

## IBM 0.167 0.099 0.092

## XOM 0.099 0.167 0.076

## AAPL 0.092 0.076 0.171

if (require(sandwich)) {
HAC.Sig <- sr_vcov(some.rets, vcov = vcovHAC, ope = ope)

print(HAC.Sig$Ohat)

}

## IBM XOM AAPL

## IBM 0.161 0.069 0.090

## XOM 0.069 0.111 0.049

## AAPL 0.090 0.049 0.166

6.2 Variance Covariance of the Markowitz Portfolio

Given a vector of returns, x, prepending a one and taking the uncentered mo-
ment gives a ‘unified’ parameter:

Θ =df E
[
x̃x̃⊤

]
=

[
1 µ⊤

µ Σ+ µµ⊤

]
,

where x̃ =
[
1,x⊤]⊤. The inverse of Θ contains the (negative) Markowitz port-

folio:

Θ−1 =

[
1 + µ⊤Σ−1µ −µ⊤Σ−1

−Σ−1µ Σ−1

]
=

[
1 + ζ2∗ −ν∗

⊤

−ν∗ Σ−1

]
.

These computations hold for the sample estimator Θ̂ =df
1
n X̃

⊤X̃, where X̃ is the

matrix whose rows are the n vectors x̃i
⊤.
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By the multivariate Central Limit Theorem, [18]

√
n
(
vech

(
Θ̂
)
− vech (Θ)

)
⇝ N (0,Ω) ,

for some Ω which can be estimated from the data. Via the delta method the
asymptotic distribution of vech

(
Θ̂−1

)
, which contains −Σ̂−1µ̂, can be found.

See the other vignette for more details.
This functionality is available via the ism vcov function. This function

returns the sample estimate and estimated asymptotic variance of vech
(
Θ̂−1

)
(with the leading one removed). This function also allows one to pass in a
callback to perform the covariance estimation. The default is the vcov function;
other sensible choices include sandwich:vcovHC and sandwich:vcovHAC.

# get returns

some.rets <- get.rets(c("IBM", "AAPL", "XOM"), from = "2007-01-01",

to = "2013-01-01")

ism.wald <- function(X, vcov.func = vcov) {
# negating returns is idiomatic to get +

# Markowitz

ism <- ism_vcov(-as.matrix(X), vcov.func = vcov.func)

ism.mu <- ism$mu[1:ism$p]

ism.Sg <- ism$Ohat[1:ism$p, 1:ism$p]

retval <- ism.mu/sqrt(diag(ism.Sg))

dim(retval) <- c(ism$p, 1)

rownames(retval) <- rownames(ism$mu)[1:ism$p]

return(retval)

}

wald.stats <- ism.wald(some.rets)

print(t(wald.stats))

## IBM XOM AAPL

## [1,] 0.59 -0.83 1.7

if (require(sandwich)) {
wald.stats <- ism.wald(some.rets, vcov.func = sandwich::vcovHAC)

print(t(wald.stats))

}

## IBM XOM AAPL

## [1,] 0.58 -0.91 1.7

7 Miscellanea

7.1 Distribution Functions

There are dpqr functions for the Sharpe ratio distribution, as well as the ‘opti-
mal Sharpe ratio’ distribution. These are merely rescaled non-central t and F
distributions, provided for convenience, and for testing purposes. See the help
for dsr and dsropt for more details.
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