Package ‘SeaVal’

January 20, 2025
Title Validation of Seasonal Weather Forecasts
Version 1.2.0

Description Provides tools for processing and evaluating seasonal weather forecasts,
with an emphasis on tercile forecasts. We follow the World Meteorological Organization's
" *Guidance on Verification of Operational Seasonal Climate Forecasts",
S.J.Mason (2018, ISBN: 978-92-63-11220-
0, URL: <https://library.wmo.int/idurl/4/56227>).
The development was supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 869730 (CONFER).
A comprehensive online tutorial is available at <https:
//seasonalforecastingengine.github.io/SeaValDoc/>.

URL https://seasonalforecastingengine.github.io/SeaValDoc/,
https://github.com/SeasonalForecastingEngine/SeaVal

License GPL (>=3)

Encoding UTF-8

Depends R (>=2.10), data.table, ggplot2

Imports ggnewscale, ggplotify, lifecycle, maps, ncdf4, patchwork,
RColorBrewer, scales, stringr

LazyData true
RoxygenNote 7.2.3

Collate 'auxiliary_functions.R' 'chirps.R' 'data.R' 'diagrams.R'
TCPAC_temp.R' 'ncdf_to_dt.R' 'plotting.R' 'quantiles.R’
'scores.R' 'seasonal.R' 'SeaVal-package.R' 'spatial_grids.R'
'upscaling.R' 'utils.R'

NeedsCompilation no

Author Claudio Heinrich-Mertsching [aut, cre, cph]
(<https://orcid.org/0000-0003-3581-6416>),
Celine Cunen [ctb],
Michael Scheuerer [ctb]

Maintainer Claudio Heinrich-Mertsching <claudio.heinrich@hotmail.de>
Repository CRAN
Date/Publication 2024-06-14 15:20:05 UTC

https://library.wmo.int/idurl/4/56227
https://seasonalforecastingengine.github.io/SeaValDoc/
https://seasonalforecastingengine.github.io/SeaValDoc/
https://seasonalforecastingengine.github.io/SeaValDoc/
https://github.com/SeasonalForecastingEngine/SeaVal
https://orcid.org/0000-0003-3581-6416

2 Contents

Contents
add_climatology e e 4
add_country e e e 4
add_country_names e e e e 5
add_tercile_cat e 6
add_tercile_probs L. e e e 7
are_all_elements_within_eps 7
by_cols_ens_fc_score e e 8
by_cols_terc_fc_score 8
by_cols_terc_fc_score_Sp 9
checks_ens_fc_score e 9
checks_terc_fc_score e 9
chirps_dir e e 10
chirps_monthly e 10
chirps_ver_map_quantiles 11
climatology_ens_forecast 12
climatology_threshold_exceedence 12
combine e 13
complete_regular_grid 14
convert_monthly_to_seasonal L oo 14
CPA . e e e e 16
create_diagram_by_level 17
CRPS . . . e 18
CRPSS . . e 19
CIPS_AUX « « v v v v v e 20
CIPS_AUX_ESC + v v v v v v e et e et e e e e e e e e e e e 20
data_dir L e e 21
delete_redundant_files 21
dimvars e e e e e e e e e 22
disc_score_dt e e e e 22
DISS . . e 23
download_chirps_monthly 24
download_chirps_monthly_high L. 25
download_chirps_monthly_low L o 26
download_chirps_prelim_aux 27
dt_to_netcdf L e e e e e e 28
EA_country_names 29
eecmwf_monthly L 29
EIR . . . e 30
fe_ColS . . . e 31
get_mask ..o oL 32
get_quantiles L. e e e e 32
get_terciles L e e e e 33
geplot_dto e e 34
GHAL_extent e 36
gha plot e 37

grid_info 37

Contents

3
HS . . e e e e e 38
HSS . . e e e 39
IGS . e 40
IGSS . . e e e 41
indicator_times_value_aux e e e e e e e e 42
load_chirps e 42
I6 OIS . . o e 43
MB . e e 44
MBS . e 45
modify_dt_map_plotting 46
MSD_to_YM e e e e e e 46
MSE . . e e e 47
MSES . . e 48
netcdf to_dt e 49
0bS_COIS e 50
obs_dimvars e e 51
PCC . . e e e 51
profit_graph e e e 52
REL . . . e e e e e 53
rel_diag 55
rel_diag vec 56
RES . e e e e e 57
TESIICt_tO_COUNLTY . . .+ v v o vt e e e e e e e e e e e e e e e e 58
restrict_to_ GHA 59
ROCS . . e e e e e 59
ROC_curve e e e e e 60
TOC_CUIVE_VEC . + v v v v e e e e e e e e e e e e e e s e e e s s 61
TOC_SCOTE_VEC . o v v v v e 62
round_probso L e e e 63
RPS . e 63
RPSS . . e e 64
run_dimension_check_ens_fc_score 65
run_dimension_check_terc_forecast 65
S€ason_Strings_to_int e 66
set_spatial_grid 66
space_dimvarS e e e e e e e e e e e 68
SRC . . s 69
(C_COIS .« o 70
tendency_diag e e e e e e 70
tercile_plot e 71
tfc_from_efc e 72
tfic_gha plot 73
tie_plot e e e 74
time_dimVars e 76
upscale_chirps. L 76
upscale_regular_lon_lat 77
L5 9 0 - 1 o P 79

ver_map_chirps e 80

4 add_country

Index 81

add_climatology Add climatology to a data table

Description

The climatology is the average over years (and members for ensemble forecases), taken separately
for each month, season, and coordinate. By default, the average is taken over all years in the
data table, but you can change this using the years-argument. By default, climatologies (averages)
are calculated for each column that is not recognized as dimension variable and does not contain
characters.

Usage

add_climatology(dt, data_cols = NULL, years = NULL, by = dimvars(dt))

Arguments
dt the data table.
data_cols For which columns do you want to derive the climatology? The default i
years The average over which years should be considered as climatology. The default
is all years in dt.
by column names to group by.
Value

The provided data table with an extra climatology column

Examples

dt = add_climatology(chirps_monthly)

add_country Same as add_country_names

Description
This is a synonyme for add_country_names. Following a more intuitive naming convention, that
is more in-line with add_climatology and add_tercile_cat.

Usage

add_country(dt, regions = EA_country_names())

add_country_names 5

Arguments

dt the data table.

regions Character vector of country names for which shapefiles are loaded.
Value

The provided data table with an extra column with country names

Examples

dt = add_country(chirps_monthly)

add_country_names Add country names to a data table with lon/lat coordinates

Description

Takes a data table with lon/lat coordinates and adds a column ’country’ to it, containing the name
of the country, the coordinate belongs to.

Usage

add_country_names(dt, regions = EA_country_names())

Arguments
dt the data table.
regions Character vector of country names for which shapefiles are loaded. By default,
countries in East Africa are loaded, see EA_country_names. If you set regions
=", the entire world is loaded, but this makes the function slower.
Value

The provided data table with an extra column with country names

Examples

dt = add_country_names(chirps_monthly)

6 add_tercile cat

add_tercile_cat Add a tercile-category column to a data table

Description

Given a data table with multiple years of data, this function derives the tercile category per year. It
first derives terciles for the data and then returns, for each row, a -1 if the data falls into the lowest
tercile, O if it falls between 1st and second tercile, and +1 if it falls above the third tercile. Allows
grouping by levels (e.g. months and location-coordinates): Tercile categories are derived separately
for each level.

Usage
add_tercile_cat(
dt,
datacol = NULL,
years = NULL,
by = setdiff(dimvars(dt), c("year"”, "member"))
)
Arguments
dt the data table.
datacol Name of the column where the data is stored. If NULL, the function guesses.
years Optional, if provided only these years are used for establishing climatology ter-
ciles.
by names of columns to group by.
Value

The provided data table with an extra column tercile_cat

Examples

dt = add_tercile_cat(chirps_monthly)

add_tercile_probs 7

add_tercile_probs Add tercile probabilities to ensemble forecasts

Description

Adds columns "below’, 'normal’ and ’above’, containing predicted tercile probabilities, to a data
table with ensemble forecasts. The predicted probability is always the fraction of members ending
up in the respective tercile. The data table should either already have a column ’tercile_cat’ (added
by add_tercile_cat), or add_tercile_cat will be run first.

Usage

add_tercile_probs(dt, f = NULL, by = setdiff(dimvars(dt), "member"”), ...)
Arguments

dt the data table.

f name of the column containing the forecast.

by names of columns to group by

passed on to add_tercile_cat.

Value

The provided data table, with added columns ’above’, normal’, and "below’

Examples

dt = add_tercile_probs(ecmwf_monthly)

are_all_elements_within_eps
Check if all elements of x are within tolerance eps of any element in y

Description

Auxiliary function, used for checking whether spatial grids are regular, with allowing for rounding
errors.

Usage

are_all_elements_within_eps(x, y, eps)

8 by_cols_terc_fc_score

Arguments

X A numeric vector, sorted in increasing order.

y A numeric vector, sorted in increasing order.

eps The tolerance within which we consider two values to be equal.
Value

A boolean value, TRUE if all x are in y within tolerance eps, FALSE otherwise.

by_cols_ens_fc_score Auxiliary function

Description

returns the default column names to group by when calculating scores of ensemble forecasts.

Usage

by_cols_ens_fc_score(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
grouping variables in this data table.
Value

A vector of characters with the column names.

by_cols_terc_fc_score Auxiliary function

Description

returns the default column names to group by when calculating scores for tercile forecasts.

Usage
by_cols_terc_fc_score(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
grouping variables in this data table.
Value

A vector of characters with the column names.

by_cols_terc_fc_score_sp 9

by_cols_terc_fc_score_sp
Auxiliary function

Description

Gets column names to group by when calculating scores for tercile forecasts. Some tercile forecasts,
such as ROC score or SRC (slope of reliability curve) require many data points and should therefore
be pooled in space. This auxiliary function returns the default column names to group by for these
scores. The suffix _sp stands for spatial pooling.

Usage
by_cols_terc_fc_score_sp(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
grouping variables in this data table.
Value

A vector of characters with the column names.

checks_ens_fc_score Auxiliary function for scores of ensemble forecasts.

Description
Checks whether the data table contains columns with names that are not allowed, or whether it is
missing columns that are required.

Usage

checks_ens_fc_score()

checks_terc_fc_score Auxiliary function for scores for tercile forecasts.

Description
Checks whether the data table contains columns with names that are not allowed, or whether it is
missing columns that are required.

Usage

checks_terc_fc_score()

10 chirps_monthly

chirps_dir CHIRPS directory

Description

Auxiliary function to access/set the directory for loading and saving CHIRPS data.

Usage
chirps_dir(dir = file.path(data_dir(), "CHIRPS"))

Arguments

dir The directory

Value

The directory path.

Examples

if(interactive()){chirps_dir()}

chirps_monthly Monthly mean precipitation

Description

This dataset contains observed monthly mean precipitation for the greater horn of Africa, for
November - December 1991-2020. The unit of precipitation is mm/day. It also contains the ter-
cile category, where -1 means below normal rainfall (lowest tercile for this location and month),
0 is normal and 1 is above normal.The data source is CHIRPS-blended, upscaled to a half-degree
grid.

Usage

data(chirps_monthly)

Format

An object of class data. table (inherits from data. frame) with 209040 rows and 6 columns.

Source

http://iridl.1ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p@/.monthly/.global/.precipitation/

http://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p0/.monthly/.global/.precipitation/

chirps_ver_map_quantiles 11

chirps_ver_map_quantiles
Calculates and saves the quantiles of CHIRPS data required for veri-
fication maps.

Description

Calculates and saves the quantiles of CHIRPS data required for verification maps.

Usage

chirps_ver_map_quantiles(
clim_period = 1991:2020,
version = "UCSB",
resolution = "low”,
CHIRPS_dir = chirps_dir(),
seasons = TRUE

)
Arguments
clim_period which years should be considered for the quantiles.
version which version of CHIRPS, *UCSB’ or ’ICPAC’? Can be a vector with both.
resolution If this is set to high’, the quantiles are also calculated for high-resolution CHIRPS
data. This is not nicely implemented right now and will take a lot of memory
and time.
CHIRPS_dir directory the CHIRPS data is stored in.
seasons Are we plotting for seasonal or monthly forecasts?
Value

data table with quantiles.

Examples

Not run: chirps_ver_map_quantiles()

12 climatology_threshold_exceedence

climatology_ens_forecast
Returns a leave-one-year-out climatology-based ensemble forecast

Description
for a given year, the ensemble forecast simply consists of the observations in all other years. This
is essentially an auxiliary function for computing skill scores relative to climatology.

Usage

climatology_ens_forecast(obs_dt, by = setdiff(dimvars(obs_dt), "year"))

Arguments
obs_dt Data table containing observations, must contain a column ’year’.
by character vector containing the column names of the grouping variables, e.g.
c('month','lon', 'lat').
Value

Long data table with the typical ensemble-forecast looks, i.e. containing a column member’.

Examples

dt = climatology_ens_forecast(chirps_monthly)

climatology_threshold_exceedence
Get climatological prediction for exceedence probabilities.

Description

The climatological prediction for exceedence probabilities is the fraction of observed years where
the observation exceeded the threshold. It’s calculated from leave-one-year-out climatology.

Usage

climatology_threshold_exceedence(
obs_dt,
o = "prec”,
by = setdiff(dimvars(obs_dt), "year"),
thresholds = c(200, 300, 350, 400)

combine 13

Arguments

obs_dt Data table containing observations.

o column name of the observation. Mostly observed precipitation in mm.

by By which columns should be grouped?

thresholds vector of thresholds for which the exceedence probabilities should be derived.
Value

Data table with the climatological probabilities of exceedence for the provided thresholds.

Examples

dt = climatology_threshold_exceedence(chirps_monthly)

combine Combine two data tables

Description

Function for combining two data tables, e.g. with predictions and observations. This is a user-
friendly wrapper for merge. It guesses the columns to merge by (the dimension variables contained
in both data tables) and adds some warnings when merges are attempted that are likely not correctly
specified by the user.

Usage

combine(dt1, dt2, ...)
Arguments

dti first data table

dt2 second data table

passed on to data.table::merge

Value

The merged data table
Examples

merge ECMWF-forecasts and CHIRPS observations:

dt = ecmwf_monthly[month == 11]

setnames(dt, 'prec', 'forecast') # forecasts and observations both have a column 'prec'
dt_new = combine(dt,chirps_monthly)

14 convert_monthly_to_seasonal

complete_regular_grid Expand Regular Spatial Grid

Description

First checks whether the spatial coordinates in a data table are part of a regular grid. If they are, the
function returns the smallest regular complete grid including all coordinates. See set_spatial_grid
for more information.

Usage

complete_regular_grid(dt)

Arguments

dt A data table object containing the spatial grid with coordinates.

Value

A data table with the completed spatial grid. Has the grid-attribute.

Examples

dt = data.table(lon = c(1, 2, 3), lat = c(1, 2, 3))
completed_grid = complete_regular_grid(dt)
print(completed_grid)

convert_monthly_to_seasonal
Convert a data table from monthly to seasonal format

Description

Converts monthly to seasonal data. The function default values are set for precipitation. In particu-
lar, default behavior is to sum values over all months contained in a season. If you want to average
instead (for temperature, for example), you can change the aggregation function FUN.

convert_monthly_to_seasonal 15

Usage
convert_monthly_to_seasonal(
dt,
vars = NULL,
by = NULL,
FUN = sum,

seasons = c("MAM", "JJAS", "OND"),
only_complete_seasons = TRUE

)
Arguments

dt A data table containing the values for conversion.

vars Character vector of names of the columns containing the values for conversion.
Default is to try converting everything that is not contained in by and that is
not recognized as tercile category (see tc_cols()) or tercile forecast ('below',
'normal’, 'above').

by Character vector of column names to group by. Separate values are derived for
each unique combination of values in by. Defaults to all dimvars() that are not
'month', which is usually what you want.

FUN function for aggregation.
arguments passed to FUN, for example na. rm.

seasons Vector of character strings specifying seasons. See details. Defaults to c('MAM'
"JJAS', 'OND'), which are the seasons considered in the COFs for the Greater
Horn of Africa.

only_complete_seasons
Logical. If TRUE, only values are kept for which we have data for all months. For
example, no OND values would be derived if the data for December is missing.

Details

Note that it is impossible to derive seasonal tercile categories from monthly ones (and similar for
seasonal tercile forecasts). For getting these, you should convert to seasonal before deriving the
tercile categories or forecasts, e.g. by using add_tercile_cat() or tfc_from_efc().

Seasons are provided as sequences of capitalized initial characters of the months they contain, e.g.
'"MAM' for March-April-May. They can have any length from 1 to 12 months and are allowed to over-
lap and wrap over the end of the year (for example, you can provide seasons = c('OND', 'NDJ"')
to derive values for October-December and November-January). If a season includes months from
2 years, it gets assigned the year of its starting month. For example, season = 'NDJ' and year =
2000 refers to values for the season November 2000 to January 2001.

Factor- or Character-valued columns cannot be aggregated to seasonal values. If vars contains
columns that are factor- or character-valued, it checks whether they take a unique value for each
grouping level provided in by. If yes, they are kept, else they are discarded. A typical case where
this is useful is when your data table contains country names (see add_country()). The grouping
levels usually include 'lon', 'lat’, so there is only one country name per grouping level and the
name is kept.

16 CPA

Examples

returns empty data table, because the example data does not contain data for a full season:
dt = convert_monthly_to_seasonal(chirps_monthly)

remove terc_cat first to avoid the warning,

and set season to the months we actually have data for:

dt2 = convert_monthly_to_seasonal (copy(chirps_monthly)[,terc_cat := NULL], seasons = c('ND"))
print(dt2)

season OND, get monthly averages rather than sums, and force the function to derive values
even though we do not have October-data:
dt3 = convert_monthly_to_seasonal(chirps_monthly,
seasons = c('OND"'),
FUN = mean,
only_complete_seasons = FALSE)
print(dt3)

CPA Coefficients of Predictive Ability

Description

Function for calculating coefficients of predictive ability (CPAs) of ensemble mean forecasts stored
in long data tables:#” Can also handle point forecasts. Warning: This metric always needs several
years of data since the ranks on which it is based are calculated across multi-year samples.

Usage
CPA(
dt,
f,
o = "obs",
by = by_cols_ens_fc_score(dt),
pool = "year",
mem = "member”,
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column name of the prediction.
o) column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. A

separate CPA is computed for each value of the grouping variables. Default is
to group by all instances of month, season, lon, lat, system and lead_time that
are columns in dt.

create_diagram_by_level 17

pool column name(s) for the variable(s) along which is averaged. Needs to contain
’year’ per warning above.

mem Number of column containing the number of the ensemble member.

dim.check Logical. If True, a simple test whether the dimensions match up is conducted:

The data table should only have one row for each level of c(by,pool,mem)

Value

A data table with the scores

Examples

dt = data.table(fc = 1:4,0bs = c(4,4,7,7) ,member = c(1,2,1,2),year = c(1999,1999, 2000, 2000))
CPA(dt,f = 'fc')

create_diagram_by_level

Auxiliary function to simplify grouping for diagrams

Description

Only works for functions that return a single plot if by == NULL. This is not the case for some
functions plotting results for all three categories, e.g. reliability diagrams or ROC curves.

Usage
create_diagram_by_level (FUN, by, dt, ...)
Arguments
FUN The name of the function creating the diagram
by Column names in dt to group by
dt data table (cannot be part of ..., because a sub-data-table is passed to FUN)

arguments passed to FUN

18 CRPS
CRPS Continuous Ranked Probability Score
Description
Taking CRPSs of ensemble forecasts stored in long data tables:
Usage
CRPS(
dt,
f,
o = "obs",
by = by_cols_ens_fc_score(),
pool = "year”,
mem = "member”,
dim.check = TRUE,
ens_size_correction = FALSE
)
Arguments
dt Data table containing predictions and observations.
f column name of the forecasts. May not be called ' f"'
o column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) over which is averaged. Typically just ’year’.
mem Name of the column identifying the ensemble member.
dim.check Logical. If True, a simple test whether the dimensions match up is conducted:
The data table should only have one row for each level of c(by,pool,mem)
ens_size_correction
logical. If TRUE, the CRPS is corrected for sample size (see Ferro et al. 2008:
’On the effect of ensemble size on the discrete and continuous ranked probability
scores’). This is slower, but you should do it if you compare ensembles of
different size.
Value

A data table with the scores

CRPSS 19

Examples

dt = data.table(fc = 1:4,0bs = c(4,4,7,7) ,member = c(1,2,1,2),year = c(1999,1999, 2000, 2000))
CRPS(dt,f = 'fc')

CRPSS Continuous Ranked Probability Skill Score

Description

Function for taking CRPS skill scores of ensemble forecasts stored in long data tables. The skill
score needs a climatological forecast as reference. This is so far always based on the leave-one-
year-out climatology.

Usage
CRPSS(dt, f, o = "obs"”, by = by_cols_ens_fc_score(), pool = c("year"”), ...)
Arguments
dt Data table containing predictions and observations.
f column name of the prediction.
o) column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. A
separate CRPS is computed for each value of the grouping variables. Default is
to group by all instances of month, season, lon, lat, system and lead_time that
are columns in dt.
pool column name(s) for the variable(s) along which is averaged. Needs to contain
“year’ since the reference climatology forecast is leave-one-year-out.
passed on to CRPS_ens_fc, in particular mem and dim.check
Value

A data table with the scores

Examples

dt = data.table(fc = 1:4,0bs = c(4,4,7,7) ,member = c(1,2,1,2),year = c(1999,1999, 2000, 2000))
CRPSS(dt,f = 'fc')

20 crps_aux_esc

crps_aux Auxiliary function for calculating crps.

Description

Mostly copy-paste from scoringRules: : :crps_edf. Adjusted to the data table format, where the
observation is a vector of the same length as the ensemble forecast, but is just repeated (which is
why only y[1]) is used.

Usage

crps_aux(y, dat)

Arguments
y vector of length m with m identical entries, the observation
dat vector of length m containing the m ensemble forecasts
Ccrps_aux_esc Auxiliary function for calculating crps with ensemble size correction
by Ferro et al. 2008.
Description

Mostly copy-paste from scoringRules: :crps_edf. Adjusted to the data table format, where the
observation is a vector of the same length as the ensemble forecast, but is just repeated (which is
why only y[1]) is used.

Usage

crps_aux_esc(y, dat)

Arguments

y vector of length m with m identical entries, the observation

dat vector of length m containing the m ensemble forecasts

data_dir 21

data_dir Auxiliary function to access and change the directory used to load and
save data.

Description

The package allows to download and organize CHIRPS data. This function specifies the directory
where the data is stored. The first time this function is called, it asks the user to configure the
directory.

Usage

data_dir(set_dir = FALSE)

Arguments

set_dir logical. Set this to TRUE if you have to redefine your data directory.

Value

The current data directory as string.

Examples

if(interactive()){
data_dir()
3

delete_redundant_files

Auxiliary function cleaning out the directories, called at the end of the
CHIRPS download.

Description

Auxiliary function cleaning out the directories, called at the end of the CHIRPS download.

Usage

delete_redundant_files(dir)

Arguments

dir the directory of the high dimensional CHIRPS data.

22 disc_score_dt

dimvars Get dimension variables

Description

The function returns all names currently considered dimension variables. Following the logic of
netcdfs, data tables usually have columns specifying coordinates (or dimvars) and other columns
containing data for these dimvars. Dimension variables can be spatial or temporal coordinates, or
the lead time of a forecast or the member in an ensemble forecast, etc...

Usage

dimvars(dt = NULL)

Arguments
dt Optional data table. If a data table is provided only the dimvars of the data table
are returned.
Value

A vector of characters with the column names considered dimvars.

Examples

dimvars()

disc_score_dt Generalized Discrimination score

Description

Calculate the Generalized discrimination score from a data.table with data belonging to a single
group (as defined by the by variable in the DISS function), for example a single location and month.
Formula (5a) from Mason&?2018 is used in the calculation. Mostly auxiliary function for the DISS
function.

Usage

disc_score_dt(year, obs, pB, pN, pA)

DISS 23

Arguments
year a vector of pool variables, typically year.
obs a vector of observations the observation column, needs to contain -1 if it falls
into the first category, O for the second and 1 for the third category.
pB a vector of probabilities for the first category.
pN a vector of probabilities for the second category.
pA a vector of probabilities for the third category.
Value

A data table with the scores

Examples

disc_score_dt(year = 1999:2001,
obs = ¢(-1,0,0),

pB = c(0.5,0.3,0),
pN = ¢(0.3,0.3,0.7),
PA = c(0.2,0.4,0.3))
DISS Generalized discrimination score

Description

A generalisation of the ROC score for more than two categories. This score is not proper, but can
be used to assess the discrimination of a tercile forecast.

Usage
DISS(
dt,
f = c("below”, "normal”, "above"),
o0 = tc_cols(dt),

by = by_cols_terc_fc_score_sp(),

pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.

f column names of the prediction.

24 download_chirps_monthly

o column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.

by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.

pool column name(s) for the variable(s) along which is averaged, typically just ’year’.

dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.

Value

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = c(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
year = 1:3)

print(dt)

DISS(dt)

download_chirps_monthly
Download monthly CHIRPS-data

Description

Download CHIRPS monthly data for the GHA-region and save it as netcdfs. The data is downloaded
either from the IRI data library or from ICPAC (depending on version), because these data library
allows to subset before downloading, unlike the original source at UCSB. As of Feb 2022, the
entire CHIRPS-monthly data for the GHA-region is roughly 800MB on disk. The original spatial
resolution of CHIRPS is 0.05 degree lon/lat. However, for many applications a coarser resolution
is perfectly fine. The function therefore offers the option to also create and save a coarser, upscaled
version of the CHIRPS data that allows much faster data processing. Alternatively you can also
ONLY save the upscaled version to save disk space (roughly 8MB on disk).

Usage

download_chirps_monthly(
resolution = "both”,
update = TRUE,
version = "UCSB",
years = NULL,
months = NULL,

download_chirps_monthly_high 25

extent = GHA_extent(),

timeout_limit = 300,

upscale_grid = data. table(expand.grid(lon = seq(extent[1], extent[2], 0.5), lat =
seq(extent[3], extent[4], 0.5)))

)
Arguments
resolution Shall the data be upscaled? Takes one of three arguments:
¢ ’both’ (the default) downloads and saves the data on full resolution and
additionally derives an upscaled version. Both will be available later.
* ’high’ downloads and saves on original resolution, but does not upscale.
* ’low’ (for saving disk space) downloads the original resolution, upscales
immediately and only saves the upscaled version.
update Logical, if TRUE, previously created files are skipped.
version Should be "UCSB’ (for University of California Santa Barbara, the original
source of CHIRPS) or 'ICPAC’ (for downloading the ICPAC version CHIRPS
blended)

years, months Which years and months do you want to load? NULL loads everything there is.
extent vector of length four (xmin,xmax,ymin,ymax), restricting the spatial area.
timeout_limit how many seconds (per file, i.e. per yearmonth) before the download is aborted?

upscale_grid The coarse grid to which the data is upscaled (only used when resolution is either
’both’ or "high’). Only change this if you know what you are doing.

Value

Nothing.

Examples

if(interactive()){
download_chirps_monthly(years = 2020, months = 1)
}

download_chirps_monthly_high
Auxiliary function called by download_chirps_monthly

Description

Auxiliary function called by download_chirps_monthly

26 download_chirps_monthly_low

Usage

download_chirps_monthly_high(
update,
version,
years,
months,
extent,
timeout_limit,
save_dir = file.path(chirps_dir(), version)

Arguments

update, version, years, months, extent, timeout_limit
see download_chirps_monthly.

save_dir directory where the chirps data is stored.

download_chirps_monthly_low
Auxiliary function called by download_chirps_monthly

Description

Auxiliary function called by download_chirps_monthly

Usage

download_chirps_monthly_low(
update,
version,
years,
months,
extent,
timeout_limit,
upscale_grid,
root_dir = file.path(chirps_dir(), version)

Arguments

update, version, years, months, extent, timeout_limit
see download_chirps_monthly.

upscale_grid To which grid shall we upscale? Needs a data table with lon/lat columns

root_dir directory where the high-dimensional chirps data would be stored. The upscaled
data is then stored in root_dir/upscaled/.

download_chirps_prelim_aux 27

download_chirps_prelim_aux

Auxiliary function for downloading the preliminary CHIRPS monthly
data

Description

This data becomes available earlier, but it has to be downloaded from UCSB. The function checks
whether the non-preliminary version exists and only downloads otherwise. Annoyingly, the grid of
UCBS and IRIDL are shifted against each other. Therefore this function also interpolates the UCSB
data to the IRIDL grid, which makes it a bit slower. In particular, everything will crash if you have
never downloaded a non-preliminary file and try to download a preliminary one.

Usage

download_chirps_prelim_aux(
years,
months,
extent,
timeout_limit = 300,
nonprelim_dir = file.path(chirps_dir(), "monthly"),
save_dir = file.path(nonprelim_dir, "prelim")

)

Arguments
years years for which you want to download
months months for which you want to download
extent Spatial window for downloading

timeout_limit How many seconds before download is aborted.

nonprelim_dir Directory where the non-preliminary CHIRPS data is stored.

save_dir Directory where the function stores the preliminary data.
Value

nothing
Examples

if(interactive()){

download_chirps_prelim_aux(years = 2023, months = 10)

}

28 dt_to_netcdf

dt_to_netcdf Write a netcdf from a long data table

Description

This function writes a netcdf from a long data table, the usual data format in SeaVal. If not specified,
it guesses (based on column names) which columns contain dimension variables and which contain
variables. The function currently does not support writing netcdfs with multiple variables that have
different sets of dimension variables!

It allows to store character columns in netcdfs (essentially labelling them as integers and storing a
legend). This legend is automatically interpreted when the netcdf is read with netcdf_to_dt(),
but is also humanly readable.

Usage

dt_to_netcdf(
dt,
nc_out,
vars = NULL,
units = NULL,
dim_vars = dimvars(dt),
dim_var_units = NULL,
check = interactive(),
description = NULL

)
Arguments

dt a data.table

nc_out File name (including path) of the netcdf to write.

vars names of columns in dt containing variables. If this is NULL, the function
guesses and asks for confirmation.

units character vector containing the units for vars (in the same order). If this is NULL
(default), the user is prompted for input.

dim_vars names of columns in dt containing dimension variables. If this is NULL, the

function guesses and asks for confirmation.

dim_var_units character vector containing the units for dim_vars (in the same order). If this is
NULL (default), the user is prompted for input (except for lon/lat).

check If check is TRUE, the function asks the user whether an existing file should be
overwritten, and whether the correct dimvars have been guessed.
description For adding a global attribute *Description’ as a string.
Value

none.

EA_country_names 29

Examples

example_dt = data.table(lon = 1:3, month = 4:6, prec = 7:9)
file_name = tempfile()
dt_to_netcdf(dt = example_dt, nc_out = file_name,

vars = "prec”, units = "mm",

non

dim_vars = c("lon”,"month"”), dim_var_units = c("degree longitude”,"month"))

EA_country_names Get names of countries in east Africa

Description
This is an auxiliary function used in add_country_names, so only these names are recognized by
default.

Usage

EA_country_names()

Value

A character-vector of country names.

Examples

EA_country_names()

ecmwf_monthly Monthly mean precipitation forecast example dataset

Description

This is a small example dataset containing hindcasts of monthly mean precipitation for illustration
purposes. The forecasts are contained for the entire GHA-region, for November and December
2018-2020. The forecasts are issued by the ECMWF SEAS 5 model and initialized in August. The
unit of precipitation is mm/day. Only the first 3 ensemble members are provided. The dataset also
contains tercile probability forecasts, which are derived from the full 51 member ensemble. The
probability for a tercile for a given year, month and location is always computed as the fraction of
ensemble members falling into that tercile, computed from all ensemble predictions for the month
and location under consideration. This dataset was generated using Copernicus Climate Change
Service information (2020).

30

Usage

EIR

data(ecmwf_monthly)

Format

An object of class data. table (inherits from data. frame) with 37224 rows and 9 columns.

Source

https://cds.climate.copernicus.eu

EIR

Effective Interest Rate

Description

This score is suitable for tercile category forecasts. Using log2 for now (?). According to Mason,
the averaging here should be over many years at a single locations and for discrete time-periods (so
Mason prefers to take the average after averaging over different locations, but I keep it like this for

now).
Usage
EIR(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),
pool = "year”,
dim.check = TRUE

Arguments

dt
.F

o

by

pool

dim.check

Data table containing the predictions.
column names of the prediction.

column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.

column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.

column name(s) for the variable(s) along which is averaged, typically just ’year’.

Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.

https://cds.climate.copernicus.eu

fc_cols 31

Value

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)
print(dt)
EIR(dt)
fc_cols Forecast column names
Description

returns the columns names that are recognized as (ensemble-) forecast values

Usage

fc_cols(dt = NULL)

Arguments
dt optional data table. If provided, the function guesses which column contains the
forecast values. Else it returns all recognized forecast column names.
Value

Character vector with column names.

Examples

fc_cols()

32 get_quantiles

get_mask Function to create a mask of dry regions from CHIRPS

Description

A gridpoint is masked for a given season (either 'MAM’, "JJAS’ or ’OND”), if, on average, less
than 10% of the annual total of rainfall occur during the season. This function loads CHIRPS data,
and derives this mask as a data table of lon, lat coordinates, only containing the coordinates that
shouldn’t be masked. You can apply the mask to an existing data table using dt = combine(dt,mask).

Usage
get_mask(
season,
clim_years = 1990:2020,
version = "UCSB",
resolution = "low",
us = (resolution == "low")
)
Arguments
season For which season do you want to calculate the mask? Needs to be either ' MAM’,
"JJAS’ or 'OND’.
clim_years Numeric vector of years. Which years should be used to establish the mask?

version, resolution, us
Passed to load_chirps. Which CHIRPS version do you want to use and on
what resolution?

Examples

if(interactive()) get_mask('MAM'")

get_quantiles Calculate quantiles from a data table

Description
The quantiles are saved in/returned as a list with the following elements:
* dt - A data table with quantiles for each level of by (not the same as the input-dt).

* quantiles - the vector of quantiles that were used.

* group - a data table containing the levels the quantiles are grouped over, e.g. all years the
quantiles are calculated over.

get_terciles 33

 data_col_name - the name of data_col, see below, so that you know what the quantiles actually
were computed from.

* description - the description string, if provided.

Usage

get_quantiles(
dt,
data_col = setdiff(names(dt), dimvars(dt))[1],
qgs = c(1e, 20, 33, 67, 80, 90),
by = setdiff(dimvars(dt), c("year”, "member")),
description = NULL,
save_file = NULL

)
Arguments
dt Data table containing the data.
data_col The name of the column in dt containing the data for which the quantiles are
derived. By default the first column that is not a dimension variable is selected.
qqs Vector of quantiles. If one of them is larger 1 they are interpreted as percent.
Default is the quantiles used in the verification maps.
by Column names in dt. Levels by which the quantiles are calculated
description Optional description string.
save_file Optional name of save file.
Value

Nothing if save_file is provided. Otherwise the list described above

Examples

get_quantiles(chirps_monthly)

get_terciles get terciles from a data table

Description

This function wraps get_quantiles with the fixed quantiles 0.33 and 0.67.

Usage

get_terciles(...)

34

Arguments

Value

passed on to get_quantiles.

See get_quantiles.

Examples

takes a few seconds:
get_terciles(chirps_monthly)

ggplot_dt

ggplot_dt plotting function for spatial data

Description

Plots spatial data from a data.table. The data table needs to contain columns named ’lon’ and ’lat’.
The grid needs to be regular. If spatial data is contained for several levels (e.g. mutliple times or
multiple ensemble members), only the data for the first level is plotted. By default, the first column
that is not recognized as a dimension variable is plotted, see data_col. For the most common

data-columns, reasonable color scales are selected automatically.

Usage
ggplot_dt(
dt,
data_col = NULL,
mn = NULL,
discrete_cs = FALSE,
rr = NULL,
low = NULL,
mid = NULL,
high = NULL,

name = data_col,
midpoint = NULL,
breaks = NULL,
na.value = "gray75",
oob = NULL,

guide = guide_colorbar(barwidth = 0.5, barheight = 10),

binwidth = NULL,
bin_midpoint = midpoint,
add_map = TRUE,

extent = NULL,

ggplot_dt 35

expand.x = c(@, 0),
expand.y = c(0, 0),
dimension_check = TRUE

)
Arguments

dt Data table containing the data for plotting.

data_col The name of the column in dt containing the data for plotting. If nothing is pro-
vided (the default), the first column that is not a dimension variable or ’'member’
is selected.

mn optional plot title

discrete_cs Logical. Should the color scale be discretized?

rr, low, mid, high, name, breaks, na.value, oob, guide, ...
Arguments for the color scale, passed to scale_fill_gradient2 or scale_fill_steps2
(depending on whether discrete_cs == TRUE). 1r replaces limits (specifying
the range of the color scale) for consistency with the older plotting functions
from the PostProcessing package. na.value specifies the color of missing val-
ues. oob specifies the treatment of out-of-boundary values, i.e. values beyond
the limits. The ... argument can in particular be used to customize the leg-
end/colorbar using the function guide_colorbar, see https://ggplot2.tidyverse.org/reference/guide_colot
Moreover, when discrete_cs == TRUE you can pass the arguments n. breaks, breaks
to customize the scale. If you use n.breaks you might also want to set nice.breaks
= FALSE, see ?scale_fill_steps2.

midpoint midpoint of the color scale, passed to scale_fill_gradient2 or scale_fill_steps?2
(depending on whether discrete_cs == TRUE). If you set it to NULL (the de-
fault), the midpoint is set to the center of the data range (or the center of rr, if
provided), such that the entire color scale is used. Note that this default differs
from the default behavior of scale_fill_gradient2 or scale_fill_steps2.
Specifying the midpoint can often be a convenient way to force a color scale
with only two colors (for example, by setting it to the minimum or maximum of
your data).

binwidth, bin_midpoint
only used when discrete_cs == TRUE. Normally, the breaks for the discrete
colorscale are specified by n.breaks (which is not reliable, since they’re adjusted
to be 'nice’), or by specifying the breaks explicitly (which is often tedious). This
gives you a third option, namely specifying how far the breaks should be apart,
and specifying the centerpoint for one of the bins (default is midpoint, or the
center of rr if midpoint is not provided). For example, if your color scale shows
percentages and you’d like 4 categories, ranging from white to red, this is easiest
achieved by binwidth = 25, midpoint =12.5.

add_map logical, defaults to TRUE, mostly for internal use. Set to FALSE to remove borders
(e.g. if you want to add them yourself from a shapefile).

extent An optional four-element vector in the order xmin,xmax,ymin,ymax for speci-
fying the spatial extent of the plot. Default is to fit the extent to the data.

36 GHA_extent

expand. x, expand.y
vectors with two entries to be added to xlims/ylims of the plot. E.g. expand.x =
¢(-0.5,0.5) expands the plot by half a longitude both on the right and left hand
side

dimension_check
Logical. By default the function checks that there are not multiple values per
coordinate (and subsets to the first level if there are several, e.g. to the first
year and month (by appearance in dt) if dt contains data for several years and
months).

Value

a ggplot object.

Author(s)

Claudio Heinrich

Examples

ex_dt = chirps_monthly[lat <@ & month == 12 & year == 2020]
pp = ggplot_dt(ex_dt)
if(interactive()) plot(pp)

GHA_extent GHA-bounding-box

Description

Returns a lon/lat bounding box for the greater horn of Africa region. Format is c(xmin,xmax,ymin,ymax),
as for raster::extent

Usage

GHA_extent ()

Value

A numeric vectorof length 4.

Examples

GHA_extent ()

gha_plot 37

gha_plot Plotting function with different map for Greater Horn of Africa

Description
This essentially wraps ggplot_dt, but uses a different map for borders. The map is part of the
package and is the one currently used during GHACOFs at ICPAC.

Usage

gha_plot(..., expand.x = c(-0.5, 0.5), expand.y = c(-0.5, 2))
ggplot_dt_shf(...)

ggplot_dt_gha_map(...)

Arguments

..., expand.x, expand.y
passed to ggplot_dt

Examples

dt = chirps_monthly[lon %between% c(30,40) & lat < @ & month == 11 & year == 2020]
pp = gha_plot(dt)
if(interactive()) plot(pp)

grid_info Retrieve spatial grid information from a data table

Description
This function prints out spatial grid information from a data table. If the grid-attribute does not exist
set_spatial_grid is called first.

Usage
grid_info(dt)

Arguments

dt A data table

38 HS

Value

This function does not return a value; instead, it prints a message to the console with the grid
information.

Examples

dt = data.table(lon = runif(10), lat = runif(10))
grid_info(dt)

HS Hit score

Description

This score is suitable for tercile category forecasts. This score is the frequency at which the high-
est probability category actually happens. The function also provides the frequency at which the
second-highest probability category, and lowest probability category, actually happens.

Usage

HS(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = by_cols_terc_fc_score(),

pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

HSS

Examples

39

dt = data.table(below = c(0.5,0.3,0),

normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)
print(dt)
HS(dt)
HSS Hit Skill Score
Description

This score is suitable for tercile category forecasts. The skill score is the difference between the hit
scores for the categories with the highest and lowest probabilities.

Usage
HSS(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE

Arguments

dt
.F

o

by

pool

dim.check

Value

Data table containing the predictions.
column names of the prediction.

column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.

column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.

column name(s) for the variable(s) along which is averaged, typically just year’.

Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.

A data table with the scores

40 IGS

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
year = 1999:2001)

print(dt)

HSS(dt)

IGS Ignorance Score

Description

This score is suitable for tercile category forecasts. Using log2 for now (?).

Usage
IGS(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one

row per coordinate-level, as should be the case.

Value

A data table with the scores

IGSS 41

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)
print(dt)
IGS(dt)
IGSS Ignorance Skill score
Description

This score is suitable for tercile category forecasts. Using log2 for now (?). This is the "usual" skill
score (not the effective interest rate).

Usage
IGSS(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

42 load_chirps

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
lon = 1:3)

print(dt)

IGSS(dt)

indicator_times_value_aux
Auxiliary function for multiplying two numbers such that 0 x infty is 0.
Needed for the ignorance score: 0log(0) should be 0.

Description

Auxiliary function for multiplying two numbers such that O x infty is 0. Needed for the ignorance
score: Olog(0) should be 0.

Usage

indicator_times_value_aux(indicator, value)

Arguments
indicator logical input vector
value numeric input vector
Value

indicator x value with O*infty = 0

load_chirps Function for loading CHIRPS (monthly) data.

Description

The data has to be previously downloaded, see download_chirps_monthly. The resulting data
table contains precip in unit mm/day.

It cols

43

Usage
load_chirps(
years = NULL,
months = NULL,
version = "UCSB",
resolution = "low",
us = (resolution == "low"),
load_prelim = TRUE
)
Arguments

years, months

version

resolution

us

load_prelim

Value

Optional subset of years and months you want to load. The default is to load ev-
erything that has been downloaded locally. You can update your local CHIRPS
download by calling download_chirps_monthly

Either "UCSB’ to load the original version from UCSB or 'ICPAC’ to load
CHIRPS blended (both need to be downloaded first).

Either ’low’ for loading the coarser upscaled version, or "high’ for loading the
data on full resolution

logical. If TRUE, the upscaled version is loaded. Takes precedence over resolu-
tion.

logical. Should preliminary data be loaded? Note that the preliminary data is
always from UCSB, not from ICPAC.

the derived data table

Examples

if(interactive()){

load_chirps()
3

1t_cols

Data table column names that are recognized as leadtime

Description

Data table column names that are recognized as leadtime

Usage
1t_cols()

Examples

1t_cols()

44 MB

MB Multicategory Brier score

Description

This score is suitable for tercile category forecasts.

Usage
MB(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),

pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
lon = 1:3)

print(dt)

MB(dt)

MBS 45

MBS Multicategory Brier Skill score

Description

This score is suitable for tercile category forecasts.

Usage
MBS (
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
lon = 1:3)

print(dt)

MBS (dt)

46 MSD_to_YM

modify_dt_map_plotting
Auxiliary function for checking dimensions for map-plotting

Description

Auxiliary function for checking dimensions for map-plotting

Usage

modify_dt_map_plotting(dt, data_col)

Arguments
dt Data table containing the data for plotting
data_col Name of column containing the data for plotting
MSD_to_YM Converts time given as 'months since date’ (MSD) into years and
months (YM)
Description

Converts time given as *'months since date’ (MSD) into years and months (YM)

Usage

MSD_to_YM(dt, timecol = "time", origin = "1981-01-01")

Arguments

dt a data table.

timecol name of the column containing the time.

origin The time column contains time in the format month since which date?
Value

data table with two new columns *'month’ and ’year’, the timecol is deleted.

Examples

dt = MSD_to_YM(data.table(time = 0:12))

MSE 47

MSE Mean Square Error of ensemble forecasts.

Description

Derives the MSE of ensemble forecasts stored in long data tables. Can also handle point forecast.

Usage
MSE (
dt,
f,
o = "obs",
by = by_cols_ens_fc_score(),
pool = "year",
mem = "member"”,
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column name of the prediction.
o column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just year’.
mem Name of the column identifying the ensemble member. Only used if check_dimension
is TRUE. Is NULL for a point forecast.
dim.check Logical. If True, a simple test whether the dimensions match up is conducted:
The data table should only have one row for each level of c(by,pool,mem)
Value

A data table with the scores

Examples

dt = data.table(fc = 1:4,0bs = c(4,4,7,7) ,member = c(1,2,1,2),year = c(1999,1999, 2000, 2000))
MSE(dt,f = 'fc')

48 MSES

MSES Mean Square Error Skill score

Description

Function for taking MSE skill scores of ensemble forecasts stored in long data tables. Can also
handle point forecasts. The skill score needs a climatological forecast as reference. This is so far
always based on the leave-one-year-out climatology.

Usage
MSES(dt, f, o = "obs"”, by = by_cols_ens_fc_score(), pool = c("year"), ...)
Arguments
dt Data table containing the predictions.
f column name of the prediction.
0 column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. A
separate MSE is computed for each value of the grouping variables. Default is
to group by all instances of month, season, lon, lat, system and lead_time that
are columns in dt.
pool column name(s) for the variable(s) along which is averaged. Needs to contain
“year’ since the reference climatology forecast is leave-one-year-out.
passed on to MSE
Value

A data table with the scores

Examples

dt = data.table(fc =1:4,0bs = c(4,4,7,7),member = c(1,2,1,2),year = c(1999,1999, 2000,2000))
MSES(dt,f = 'fc')

netedf_to_dt 49

netcdf_to_dt function for converting netcdfs to long data tables.

Description

The function converts netcdfs into long data.tables. Be aware that the data table can be much larger
in memory, especially if you have many dimension variables.

Usage
netcdf_to_dt(
nc,
vars = NULL,

verbose = 2,
trymerge = TRUE,
subset_list = NULL,
keep_nas = FALSE

Arguments

nc Either a character string with the name of the .nc file (including path), or an
object of type ncdf4.

vars Which variables should be read from the netcdf? Either a character vector of
variable names, or an integer vector of variable indices. If this is NULL, all
variables are read.

verbose Either O, 1 or 2. How much information should be printed? The default (2) is to
print the entire netcdf information (as output by ncdf4: :nc_open), 1 just prints
the units for all variables, O (or any other input) prints nothing.

trymerge logical. If TRUE, a single data table containing all variables is returned, else
a list of data tables, one for each variable. The latter is much more memory
efficient if you have multiple variables depending on different dimensions.

subset_list A named list for reading only subsets of the data. Currently only ’rectangle
subsetting’ is provided, i.e. you can provide two limit values for each dimension
and everything between will be read. The names of the pages of subset_list
must correspond to the names of dimension variables in the netcdf, and each
page should contain a (two-element-)range vector. For example, subsetting a
global dataset to just East Africa could look like this: subset_list = list(latitude
= c(-15,25),longitude = ¢(20,55)). Non-rectangular subsetting during reading a
netcdf seems to be difficult, see ncvar_get. Every dimension variable not named
in subset_list is read entirely.

keep_nas Should missing values be kept? If FALSE (the default), missing values are not
included in the returned data table. If this is set to TRUE, the data table is con-
structed from the full data-cube (meaning its number of rows is the product of
the length of the dimension variables, even if many coordinates have missing

50 obs_cols

data). This makes the returned data table potentially much larger and is almost
never an advantage. It is only allowed, because it can make complex bookkeep-
ing tasks easier (specifically upscaling many CHIRPS-netcdfs with the same
coordinates while saving the upscaling weights in a matrix).

Value

A data table if trymerge == TRUE or else a list of data tables.

Examples

filename of example-netcdf file:
fn = system.file("extdata”, "example.nc”, package="SeaVal")

dt = netcdf_to_dt(fn)
print(dt)

obs_cols Observation column names

Description

Note that this function guesses column names for observed precip, not observed tercile category.

Usage

obs_cols(dt = NULL)

Arguments
dt optional data table. If provided, the function guesses which column contains the
observations. Else it returns all recognized observation column names.
Value

Character vector with column names.

Examples

obs_cols()

obs_dimvars 51

obs_dimvars Auxiliary function returning observation dimvars.

Description

Observation dimvars are column names in a data table that resemble coordinates for which only one
observation may exist.

Usage
obs_dimvars(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
coordinate columns in this data table.
Value

Character vector with column names.

Examples

obs_dimvars

PCC Pearson Correlation Coefficient

Description

Function for calculating Pearson correlation coefficients (PCCs) of ensemble mean forecasts stored
in long data tables. Can also handle point forecasts. This metric always needs several years of data
since the means and standard deviations are calculated across time.

Usage

PCC(
dt,
f,
o = "obs",
by = by_cols_ens_fc_score(dt),
pool = "year”,
mem = "member”,
dim.check = TRUE

52 profit_graph

Arguments
dt Data table containing the predictions.
f column name of the prediction.
0 column name of the observations.
by column names of grouping variables, all of which need to be columns in dt. A
separate PCC is computed for each value of the grouping variables. Default is
to group by all instances of month, season, lon, lat, system and lead_time that
are columns in dt.
pool column name(s) for the variable(s) along which is averaged. Needs to contain
’year’ per warning above.
mem Name of the column identifying the ensemble member. Only used if check_dimension
is TRUE. Is NULL for a point forecast.
dim.check Logical. If True, a simple test whether the dimensions match up is conducted:
The data table should only have one row for each level of c(by,pool,mem)
Value

A data table with the scores

Examples

dt = data.table(fc = 1:4,0bs = c(4,4,7,7) ,member = c(1,2,1,2),year = c(1999,1999, 2000, 2000))
pPCC(dt,f = 'fc')

profit_graph (Accumulative) profit graphs

Description

These graphs really only make sense if you have 50 or less observations. Typical application would
be when you compare seasonal mean forecasts to station data for a single location.

Usage
profit_graph(
dt,
accumulative = TRUE,
f = c("below”, "normal”, "above"),
o0 = tc_cols(dt),
by = NULL,

pool = setdiff(dimvars(dt), by),
dim.check = TRUE

REL

Arguments

dt
accumulative
.F

o

by
pool

dim.check

Value

53

Data table containing tercile forecasts

Logic. Should the accumulative profit be plotted or the profit per forecast?
column names of the prediction columns

column name of the observation column

column names of grouping variables. Default is NULL.

column names of pooling variables (used for the dimension check). Default is
all dimvars.

Logical. If TRUE, the function checks whether the columns in by and pool span
the entire data table.

A list of gg objects which can be plotted by ggpubr::ggarrange (for example)

Examples

dt = data.table(below = c(0.5,0.3,0),

print(dt)

normal = ¢(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)

p1 = profit_graph(dt)

p2

profit_graph(dt,accumulative = FALSE)

if(interactive()){

plot(p1)
plot(p2)
3

REL

Reliability score

Description

Computes both the reliability component of the Brier score or reliability component of the Ignorance
score. Mason claims to prefer the ignorance score version, but this has a very high chance of being
NA. Mason writes that the scores are unstable for single locations and that one should pool over
many locations. Requires the specification of probability bins. One score for each category (below,
normal, above) and also the sum of the scores.

Values close to 0 indicate reliable forecasts. Higher values mean less reliable forecasts.

54

Usage

REL(
dt,

REL

bins = c(0.3, 0.35001),

f = c("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),

pool = "year",

dim.check = TRUE

Arguments

dt

bins

by

pool

dim.check

Value

Data table containing the predictions.

probability bins, defaults to ("<30", "30-35",">35") which is given as c(0.30,
0.35001).

column names of the prediction.

column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[11]), O for the second and 1 for the third category.

column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.

column name(s) for the variable(s) along which is averaged, typically just year’.

Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.

A data table with the scores

Examples

dt = data.table(below = ¢c(0.5,0.3,0),

print(dt)
REL (dt)

normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
year = 1:3)

rel_diag 55

rel_diag Reliability Diagrams for tercile forecasts

Description

Creates reliability diagrams from a data table containing tercile forecasts It wraps rel_diag_vec,
see ?rel_diag_vec for more details. about the output diagrams. The output format is very much
inspired by Figure 5 of Mason&2018. By default, 4 diagrams are drawn, one for each the prediction
of above-, normal- and below-values, plus one for all forecasts together. You can provide a by’
argument to obtain separate reliability diagrams for different values of the by-columns. E.g., when
you data table contains a column named ’season’, you can set by = ’season’. Then, the function will
output a list of 16 diagrams, 4 for each season.

Usage
rel_diag(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = NULL,

pool = setdiff(dimvars(dt), by),
binwidth = 0.05,
dim.check = TRUE

)
Arguments
dt Data table containing tercile forecasts
f column names of the prediction columns
o column name of the observation column
by column names of grouping variables. Default is to not group.
pool column names of pooling variables (used for the dimension check). Default is
all dimvars.
binwidth bin width for discretizing probabilities.
dim.check Logical. If TRUE, the function checks whether the columns in by and pool span
the entire data table.
Value

A list of gg objects which can be plotted by ggpubr::ggarrange (for example)

56 rel_diag_vec

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
lon = 1:3)

print(dt)

pp = rel_diag(dt)

if(interactive()) plot(pp)

rel_diag_vec Reliability diagram from vectors of probabilities and observations

Description

The probabilities have to be rounded beforehand (see round_probs), because the diagram draws a
point for each level of the probabilities. The diagram includes a histogram indicating the forecast
relative frequency for each probability bin. The diagram shows the reliability curve and the diag-
onal for reference. Moreover, it shows a regression line fitted by weighted linear regression where
the forecast relative frequencies are used as weights. A horizontal and vertical line indicate the
frequency of observation = TRUE over the entire dataset.

Usage

rel_diag_vec(discrete_probs, obs, slope_only = FALSE)

Arguments

discrete_probs Vector of (rounded) probabilites.

obs Vector of logical observations.

slope_only logical. If set to TRUE, only the slope of the reliability curve is returned
Value

A gg object.
Examples

discrete_probs = seq(@,1,length.out = 5)
obs = c(FALSE,FALSE,TRUE, TRUE, TRUE)

pp = rel_diag_vec(discrete_probs,obs)
if(interactive()) plot(pp)

RES Resolution score

Description

Computes both the resolution component of the Brier score or resolution component of the Igno-
rance score. Mason claims to prefer the ignorance score version, but this has a very high chance of
being NA (much higher than for the full ignorance score itself, I think we should drop it for that
reason). Mason writes that the scores are unstable for single locations and that one should pool over
many locations. Requires the specification of probability bins. One score for each category (below,
normal, above) and also the sum of the scores. Values close to 0 means low resolution. Higher
values mean higher resolution.

Usage
RES(
dt,
bins = c(0.3, 0.35001),
f = c("below”, "normal”, "above"),

o = tc_cols(dt),
by = by_cols_terc_fc_score(),

pool = "year",
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
bins probability bins, defaults to c("<30", "30-35",">35")
f column names of the prediction.
o) column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[11]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one

row per coordinate-level, as should be the case.

Value

A data table with the scores

58 restrict_to_country

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
year = 1:3)

print(dt)

RES(dt)

restrict_to_country restricts data to a specified country

Description

Restricts a dataset to one or more countries, specified by their names. If you have lon/lat data and
don’t know which countries these coordinates belong to, see add_country_names. Can restrict data
to a rectangle around a given country as well (usually looks nicer for plotting).

Usage

restrict_to_country(dt, ct, rectangle = FALSE, tol = 1)

Arguments
dt the data table.
ct name of the country, or vector containing multiple country names
rectangle logical. If FALSE (default), the data is restricted to the gridcells for which the
centerpoint lies within the selected country (e.g. for computing mean scores
for a country). If TRUE, the data is kept for a rectangle containing the entire
country, therefore also containing gridpoints outside the country. This is the
preferred option for plotting data for a specific country.
tol Only used when rectangle == TRUE. A tolerance value for widening the plot-
ting window, making things look a bit nicer.
Value

the data table, restricted to the selected country

Examples

example data:
ex_dt = chirps_monthly[lat < @ & month == 11 & year == 2020]
dt = restrict_to_country(ex_dt, 'Kenya')

restrict_to_ GHA 59

restrict_to_GHA restricts data to the Greater Horn of Africa

Description

Wraps restrict_to_country, and restricts to the GHA-region usually considered in CONFER,
see EA_country_names.

Usage

restrict_to_GHA(dt, ...)

restrict_to_confer_region(...)

Arguments
dt the data table.
passed on to restrict_to_country
Value

the data table, restricted to the selected country

Examples

ex_dt = chirps_monthly[lat < @ & month == 11 & year == 2020]
dt = restrict_to_GHA(ex_dt)

ROCS ROC-score/Area Under Curve(AUC)

Description

This score is not proper, but can be used to assess the resolution of a tercile forecast. The ROC
score requires more datapoints to be robust than e.g. the ignorance or Brier score. Therefore the
default is to pool the data in space and only calculate one score per season.

Usage
ROCS(
dt,
f = c("below”, "normal”, "above"),
o0 = tc_cols(dt),

by = by_cols_terc_fc_score_sp(dt),
pool = c("year"”, space_dimvars(dt)),
dim.check = TRUE

60 ROC curve

Arguments
dt Data table containing the predictions.
f column names of the prediction.
o column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt.
Default is to group by all instances of month, season, system and lead_time that
are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just ’year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = ¢(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)
print(dt)
ROCS(dt)
ROC_curve ROC curve for tercile forecasts
Description

Creates ROC curves from a data table containing tercile forecasts. It wraps roc_curve_vec. By
default, 4 ROC-curves are drawn, one for each the prediction of above-, normal- and below-values,
plus one for all forecasts together. You can provide a *by’ argument to obtain separate ROC-curves
for different values of the by-columns. E.g., when your data table contains a column named ’sea-
son’, you can set by = ’season’. Then, the function will output a list of 16 ROC-curvess, 4 for each
season.

Usage

ROC_curve(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),

roc_curve_vec

by = NULL,

61

pool = setdiff(dimvars(dt), by),
interpolate = TRUE,
dim.check = TRUE

Arguments

dt
.F

o)
by
pool

interpolate

dim.check

Value

Data table containing tercile forecasts

column names of the prediction columns

column name of the observation column

column names of grouping variables. Default is to not group.

column names of pooling variables (used for the dimension check). Default is
all dimvars.

Logical. If TRUE, the curve connects the dots making up the ROC curve (which
looks nicer), if not a step function is drawn (which is closer to the mathematical
definition of the ROC curve).

Logical. If TRUE, the function checks whether the columns in by and pool span
the entire data table.

A list of gg objects which can be plotted by ggpubr: : ggarrange (for example)

Examples

dt = data.table(below = c(0.5,0.3,0),

print(dt)

normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),

lon = 1:3)

pp = ROC_curve(dt)
if(interactive()) plot(pp)

roc_curve_vec

ROC curves

Description

Plot the ROC-curve for a vector of probabilities and corresponding observations.

Usage

roc_curve_vec(probs, obs, interpolate = TRUE)

62

roc_score_vec

Arguments
probs vector with probabilities (between 0 and 1)
obs vector with categorical observations
interpolate logical. If TRUE the ROC-curve is interpolated and drawn as a continuous func-
tion. Otherwise it is drawn as a step function.
Value
a gg object
Examples

probs = seq(@,1,length.out = 5)

obs = c(FALSE,FALSE, TRUE,FALSE, TRUE)
pp = roc_curve_vec(probs,obs)
if(interactive()) plot(pp)

roc_score_vec ROC score (AUC)

Description

Calculates the area under curve (AUC) or ROC-score from a vector of probabilities and corre-
sponding observations. Formula (1a) from Mason&2018 is used in the calculation, corresponding
to trapezoidal interpolation. This is mostly an auxiliary function for the ROCS function, but also
used in the ROC-diagram function, where the AUC is added to the diagrams.

Usage

roc_score_vec(probs, obs)

Arguments

probs vector with probabilities (between 0 and 1)

obs vector with categorical observations (as TRUE/FALSE)
Value

numeric. The ROC score.

Examples

roc_score_vec(probs = ¢(0.1,0.6,0.3,0.4),
obs = c(FALSE,TRUE, TRUE,FALSE))

round_probs 63

round_probs auxiliary function for rounding probabilities

Description

takes a vector of probabilities (between 0 and 1) and rounds them to the scale specified by binwidth.
This is used for reliability diagrams, where one point is drawn for each bin. 0 is always at the center
of the first interval for rounding: E.g. if binwidth = 0.05 (the default), then probabilities up to 0.025
are rounded to 0, probs between 0.025 and 0.075 are rounded to 0.05, etc.

Usage

round_probs(probs, binwidth = 0.05)

Arguments
probs vector of probabilities (between 0 and 1, not percent)
binwidth width of the bins for rounding.

Value

vector with rounded probabilities

Examples

round_probs(c(0.001,0.7423))

RPS Ranked Probability score

Description

This score is suitable for tercile category forecasts.

Usage
RPS(
dt,
f = c¢("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE

64

Arguments

dt
.f_‘

(0]

by

pool

dim.check

Value

RPSS

Data table containing the predictions.
column names of the prediction.

column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[11]), O for the second and 1 for the third category.

column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.

column name(s) for the variable(s) along which is averaged, typically just ’year’.

Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.

A data table with the scores

Examples

dt = data.table(below = c(0.5,0.3,0),

normal = c(0.3,0.3,0.7),
above = c(0.2,0.4,0.3),
tc_cat = c(-1,0,0),

year = 1:3)
print(dt)
RPS(dt)
RPSS Ranked Probability skill score
Description

This score is suitable for tercile category forecasts.

Usage
RPSS(
dt,
f = c¢("below”, "normal”, "above"),
o = tc_cols(dt),

by = by_cols_terc_fc_score(),
pool = "year",
dim.check = TRUE

run_dimension_check_ens_fc_score 65

Arguments
dt Data table containing the predictions.
f column names of the prediction.
o column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[1]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

@examples dt = data.table(below = ¢(0.5,0.3,0), normal = ¢(0.3,0.3,0.7), above = ¢(0.2,0.4,0.3),
tc_cat = c¢(-1,0,0), year = 1:3) print(dt) RPSS(dt)

run_dimension_check_ens_fc_score
Auxiliary Function

Description
called inside functions that calculate scores for ensemble forecasts. Checks whether the provided
data table has the right format.

Usage

run_dimension_check_ens_fc_score()

run_dimension_check_terc_forecast
Auxiliary Function

Description
called inside functions that calculate scores for ensemble forecasts. Checks whether the provided
data table has the right format.

Usage

run_dimension_check_terc_forecast()

66

set_spatial_grid

season_strings_to_int Auxiliary function for decoding season-strings

Description

Auxiliary function for decoding season-strings

Usage
season_strings_to_int(seasons = c("MAM", "JJAS", "OND"))
Arguments
seasons A character vector of season strings, see convert_monthly_to_seasonal()
for details
set_spatial_grid Set Spatial Grid Attributes to a Data Table
Description

This function creates the spatial grid attribute for a data table. If the data table already has such

an

attribute, missing information is filled in. In particular, the function checks whether a grid is

regular, allowing for rounding errors in the grid coordinates, see details below. By default the grid
coordinates are rounded to a regular grid if they are very close to being regular. While this sounds
dangerous, it is almost always desirable to treat coordinates like that when working with data tables.

Usage

se

t_spatial_grid(

dt,

coor_cns = NULL,
check_regular = TRUE,
regular_tolerance = 1,
verbose = FALSE

)
Arguments
dt A data table object.
coor_cns Optional character vector of length two indicating the names of the spatial co-
ordinates within the data table in order x,y. Default (NULL) makes the function
guess based on column names.
check_regular A logical indicating whether to check for regularity of the grid. This should

essentially always be done but can be suppressed for speed. Defaults to TRUE.

set_spatial_grid 67

regular_tolerance

Value >= 0 specifying the amount of rounding error we allow for still recogniz-
ing a grid as regular. Given in percent of the minimum of dx and dy. Default
is 1. Based on this value coordinates are rounded to the smallest after-comma-
digit making them regular, as long as this rounding introduces less error than
min(dx,dy)*regular_tolerance/100. Set this to NULL if you are absolutely
certain that you don’t want to round/change the grid. Doing this or decreasing
this below 1 is not recommended, see details below.

verbose Logical. If TRUE, the grid information is printed out (by a call to grid_info).

Details
The grid attribute is a named list with (some of) the following pages:

» coor_cns: Character vector of length two specifying the names of the data-table-columns
containing the spatial grids (in order x,y).

* x,y: Numeric vectors of all unique x- and y-coordinates in increasing order (NAs not in-
cluded).

* regular: Logical. Is the grid regular? See details below.

* dx,dy: Step sizes of the regular grid (only contained if regular = TRUE). By convention we
set dx to 9999 if only one x-coordinate is present, likewise for dy.

» complete: Logical. Is the regular grid complete? See details below.

We call a grid regular if there is a coordinate (x@,y@) and positive values dx, dy, such that each
coordinate of the grid can be written as (x@ + n*dx,y@ + mxdy) for integers n,m. Importantly,
a regular grid does not need to be "a complete rectangle", we allow for missing coordinates, see
details below. We call it a regular complete grid if the grid contains these numbers for all integers
n, m between some limits n_min and n_max, respectively m_min, m_max.

Checking regularity properly is a difficult problem, because we allow for missing coordinates in
the grid and allow for rounding errors. For the treatment of rounding errors it is not recommended
to set regular_tolerance to NULL or a very small value (e.g. 0.1 or smaller). In this case, grids
that are regular in praxis are frequently not recognized as regular: Take for example the three x-
coordinates 1, 1.5001, 2.4999. They are supposed to be rounded to 1 digit after the comma and
then the grid is regular with dx = @.5. However, if regular_tolerance is NULL, the grid will be
marked as irregular. Similarly, if regular_tolerance is too small, the function is not allowed to
make rounding errors of 0.0001 and the grid will also not be recognized as regular.

When it comes to the issue of missing values in the grid, we are (deliberately) a bit sloppy and only
check whether the coordinates are part of a grid with dx being the minimum x-difference between
two coordinates, and similar dy. This may not detect regularity, when we have data that is sparse on
a regular grid. An example would be the three lon/lat coordinates c(@,0), c(2,0), c(5,0). They
clearly lie on the regular integer-lon/lat- grid. However, the grid would show as not regular, because
dx is not checked for smaller values than 2. This choice is on purpose, since for most applications
grids with many (or mostly) holes should be treated as irregular (e.g. plotting, upscaling, etc.). The
most important case of regular but not complete grids is gridded data that is restricted to a certain
region, e.g. a country or restricted to land. This is what we think of when we think of a regular
incomplete grid, and for such data the check works perfectly.

Note that at the very bottom it is the definition of regularity itself that is a bit tricky: If we allow dx,
dy to go all the way down to the machine-delta, then pretty much any set of coordinates represented

68 space_dimvars

in a computer is part of a regular grid. This hints at testing and detecting regularity actually de-
pending on how small you’re willing to make your dx,dy. An example in 1 dimension: consider the
three 1-dimensional coordinates @, 1, and m/n, with m and n integers without common divisors and
m>n. It is not difficult to see that these coordinates are part of a regular grid and that the largest dx
for detecting this is 1/n. This shows that you can have very small coordinate sets that are in theory
regular, but their regularity can be arbitrarily hard to detect. An example of a grid that is truely not
regular are the three x-coordinates 0,1,a with a irrational.

Value

Nothing, the attributes of dt are set in the parent environment. Moreover, the grid coordinates may
be rounded If regular

Examples

dt = data.table(lon = 1:4, lat = rep(1:2,each = 2), some_data = runif(4))
print(dt)
attr(dt, 'grid')

set_spatial_grid(dt)
attr(dt, 'grid')

space_dimvars Auxiliary function

Description

returns all column names indicating a spatial coordinate.

Usage

space_dimvars(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
spatial coordinate columns in this data table.
Value

Character vector with column names.

Examples

space_dimvars()

SRC 69

SRC Compute the slope of the reliability curve

Description

Values below 1 indicate a lack of resolution or overconfidence, 1 is perfect, above means under-
confident. This score requires more datapoints to be robust than e.g. the ignorance or Brier score.
Therefore the default is to pool the data in space and only calculate one score per season.

Usage
SRC(
dt,
f = c("below”, "normal”, "above"),
o = tc_cols(dt),
by = by_cols_terc_fc_score_sp(dt),
pool = c("year"”, space_dimvars(dt)),
dim.check = TRUE
)
Arguments
dt Data table containing the predictions.
f column names of the prediction.
o column name of the observations (either in obs_dt, or in dt if obs_dt = NULL).
The observation column needs to contain -1 if it falls into the first category
(corresponding to fcs[11]), O for the second and 1 for the third category.
by column names of grouping variables, all of which need to be columns in dt. De-
fault is to group by all instances of month, season, lon, lat, system and lead_time
that are columns in dt.
pool column name(s) for the variable(s) along which is averaged, typically just year’.
dim.check Logical. If TRUE, the function tests whether the data table contains only one
row per coordinate-level, as should be the case.
Value

A data table with the scores

@examples dt = data.table(below = ¢(0.5,0.3,0), normal = ¢(0.3,0.3,0.7), above = ¢(0.2,0.4,0.3),
tc_cat = c(-1,0,0), year = 1:3) print(dt) SRC(dt)

70 tendency_diag

tc_cols Tercile column names

Description

which column names are interpreted as observed tercile categories

Usage

tc_cols(dt = NULL)

Arguments
dt optional data table. If provided, the function guesses which column contains the
observations. Else it returns all recognized column names.
Value

Character vector with column names.

Examples

tc_cols()

tendency_diag Tendency diagram from a data table containing tercile forecasts.

Description

Tendency diagram from a data table containing tercile forecasts.

Usage
tendency_diag(
dt,
f = c("below”, "normal”, "above"),
o0 = tc_cols(dt),
by = NULL,

pool = setdiff(dimvars(dt), by),
dim.check = TRUE

tercile_plot 71

Arguments
dt Data table containing tercile forecasts
f column names of the prediction columns
0 column name of the observation column
by column names of grouping variables. Default is to not group.
pool column names of pooling variables (used for the dimension check). Default is
all dimvars.
dim.check Logical. If TRUE, the function checks whether the columns in by and pool span
the entire data table.
Value

If by == NULL a gg object, otherwise a list of gg objects that can be plotted by ggpubr::ggarrange
(for example)

Examples

dt = data.table(below = c(0.5,0.3,0),
normal = c(0.3,0.3,0.7),
above = ¢(0.2,0.4,0.3),
tc_cat = ¢(-1,0,0),
lon = 1:3)

print(dt)

pp = tendency_diag(dt)

if(interactive()) plot(pp)

tercile_plot Function for plotting terciles

Description

Function for plotting terciles

Usage
tercile_plot(
dt,
data_col = tc_cols(dt),
mn = NULL,
low = "orange”,
mid = "cyan”,
high = "green1”,
name = "",
labels = c("Wetter"”, "Average"”, "Drier"),
na.value = "white",

extent = NULL,

72 tfc_from_efc

expand.x = c(-0.5, 0.5),
expand.y = c(-0.5, 2),
dimension_check = TRUE

)
Arguments
dt data table
data_col Name of the column containing the observed tercile category
mn optional title for the plot.

low, mid, high colors for the three categories

name optional title for the colorscale

labels How to label the three categories

na.value How to color missing values

extent Optional vector of length 4 specifying the plotting borders in order xmin, xmax,
ymin, ymax.

expand. x, expand.y
How far should the plotting borders be extended (beyond the data range)?
dimension_check
Logical. By default the function checks that there are not multiple values per
coordinate (and subsets to the first level if there are several, e.g. to the first
year and month (by appearance in dt) if dt contains data for several years and
months).

Examples

dt = chirps_monthly[month == 12 & lat <@ & year == 2018]
p = tercile_plot(dt = dt)
if(interactive()) plot(p)

tfc_from_efc Get tercile probability forecast from ensemble forecasts

Description

The function takes a data table containing ensemble predictions and reduces it to predicted tercile
probabilities. The data table should either have a column ’tercile_cat’ or it will be generated in the
process (by add_tercile_cat). In particular, if you don’t know the tercile category of the ensemble
predictions, your data table should contain hindcasts as well, such that the tercile categories are
calculated correctly. The probability for "below’, for example, is the fraction of ensemble members
predicting below normal (for this coordinate).

tfc_gha_plot 73

Usage
tfc_from_efc(dt, by = setdiff(dimvars(dt), "member"), keep_cols = NULL, ...)
Arguments
dt The data table.
by Names of columns to group by.
keep_cols A vector of column names that you want to keep. Column names in by are kept
automatically.
passed on to add_tercile_probs.
Value

A new data table with tercile forecasts

Examples

test_dt = ecmwf_monthly[lat < @ & month == 11]
tfc = tfc_from_efc(test_dt)

tfc_gha_plot Plotting function with different map for Greater Horn of Africa

Description

This function wraps tfc_plot(), but uses a different map for borders. The map is part of the
package and is the one currently used during GHACOFs at ICPAC.

Usage

tfc_gha_plot(

L

expand.x = c(-0.5, 0.5),

expand.y = c(-0.5, 2),
showplot = TRUE
)
Arguments

..., expand.x, expand.y, showplot
passed to tfc_plot().

74 tfc_plot

Examples

dt = tfc_from_efc(ecmwf_monthly[month == 11 & lat < 0])
pp = tfc_gha_plot(dt[year == 2018], expand.y = c(0.5,0.5))
if(interactive()) plot(pp)

tfc_plot plotting function for tercile forecasts

Description

s

"above" which sum to 1. For each gridpoint only the highest of the three values is plotted, so there
are three colorscales.

Plots spatial maps of tercile forecasts. Requires a data table with three columns "below”, "normal”,

Usage

tfc_plot(
dt,
discrete_cs = TRUE,
rmax = NULL,
below = "brown”,
normal = "gold”,
above = "forestgreen”,
na.value = "gray75",
cs_names = c("below”, "normal”, "above"),
oob = NULL,
guide_barwidth = grid::unit(0.01, units = "npc"),
guide_barheight = grid::unit(@.15, units = "npc"),
legend_horizontal = FALSE,
binwidth = "auto",
add_map = TRUE,
extent = NULL,
expand.x = c(0, @),

expand.y = c(@, 0),
showplot = TRUE,
dimension_check = TRUE
)
Arguments
dt Data table containing the data for plotting.
discrete_cs Logical. Do you want to use discrete color scales (default) or not.
rmax Optional value to fix the range of the colorscale (lower limit is always 0.33).

below, normal, above
Colors to use for the three categories. Defaultis 'brown', 'gold’, 'forestgreen'.

tfc_plot

na.value

Ccs_hames

oob

75

Color to use for missing value. Default is 'gray75"'.

Character vector of length three giving the legend titles for the below-, normal-,
and above category.

Behavior for data above r_max. Passed to ggplot2: :scale_fill_continuous()
if discrete_cs == FALSE or else to ggplot2::scale_fill_steps().

guide_barwidth, guide_barheight

value to specify the width and height of the color guide. Are flipped if legend_horizontal

is TRUE. Use units(. .., "npc") to make it work across all output devices.

legend_horizontal

binwidth

add_map

extent

Logical. Set to TRUE to show the legend horizontally underneath the plot.
Width of the steps when a discrete colorscale is used.

logical, defaults to TRUE, mostly for internal use. Set to FALSE to remove borders
(e.g. if you want to add them yourself from a shapefile).

An optional four-element vector in the order xmin,xmax,ymin,ymax for speci-
fying the spatial extent of the plot. Default is to fit the extent to the data.

expand. x, expand.y

showplot

dimension_check

Value

a ggplot object.

Author(s)

Claudio Heinrich

Examples

vectors with two entries to be added to xlims/ylims of the plot. E.g. expand.x =
¢(-0.5,0.5) expands the plot by half a longitude both on the right and left hand
side.

Logical. Should the plot be displayed at the end?

Logical. By default the function checks that there are not multiple values per
coordinate (and subsets to the first level if there are several, e.g. to the first
year and month (by appearance in dt) if dt contains data for several years and
months).

#dt = tfc_from_efc(ecmwf_monthly[month == 11 & lat < @])
#pp = tfc_plot(dt[year == 20181])
#if(interactive()) plot(pp)

76 upscale_chirps

time_dimvars Auxiliary function

Description

returns all column names indicating a temporal coordinate.

Usage

time_dimvars(dt = NULL)

Arguments
dt optional. You can provide a data table, then the function returns the names of
temporal coordinate columns in this data table.
Value

Character vector with column names.

Examples

time_dimvars()

upscale_chirps Upscales monthly CHIRPS data to a coarser grid

Description

this is mostly auxiliary and called from download_chirps_monthly. Uses the function upscale_regular_lon_lat,
but derives the weights for upscaling only once for efficiency and avoids simultaneous loading of
all CHIRPS data.

Usage

upscale_chirps(
update = TRUE,
years = NULL,
months = NULL,
upscale_grid = data. table(expand.grid(lon = seq(GHA_extent()[1], GHA_extent()[2], 0.5),
lat = seq(GHA_extent()[3], GHA_extent()[4]1, 0.5))),
root_dir = NULL,
version = "UCSB",
us_dir = file.path(root_dir, "upscaled")

)

upscale_regular_lon_lat 77

Arguments

update

years, months

upscale_grid

Logical, if TRUE, files that have already been upscaled are skipped

Which years and months do you want to upscale? NULL upscales everything
there is (except if update is TRUE).

A regular lon/lat grid for upscaling. Defaults to half degrees.

root_dir directory where the high-resolution file is stored.
version Version specifier, should be "UCSB’ or ’ICPAC’. The latter only works if you
have access to CHIRPS blended.
us_dir Directory where the low-resolution file will be stored.
Value
Nothing.
Examples
if(interactive()){

upscale_chirps()

}

upscale_regular_lon_lat

Function for matching data between different grids

Description

Upscales data from one regular lon-lat grid to another lon-lat grid that is coarser or of the same
resolution. It uses conservative interpolation (rather than bilinear interpolation) which is the better
choice for upscaling, see details below. If the fine grid and coarse grid are of the same resolution but
shifted, results are (almost) identical to bilinear interpolation (almost because bilinear interpolation
does not account for the fact that grid cells get smaller towards the pole, which this function does).

The function addresses the following major challenges:

 The fine grid does not need to be nested in the coarse grid, creating different partial overlap
scenarios. Therefore, the value of each fine grid cell may contribute to multiple (up to four)
coarse grid cells.

* Grid cell area varies with latitude, grid cells at the equator are much larger than at the poles.
This affects the contribution of grid cells (grid cells closer to the pole contribute less to the
coarse grid cell average).

 Frequently, it is required to upscale repeated data between the same grids, for example when
you want to upscale observations for many different years. In this case, the calculation of grid
cell overlaps is only done once, and not repeated every time.

* For coarse grid cells that are only partially covered, a minimal required fraction of coverage
can be specified.

78

upscale_regular_lon_lat

* It is memory efficient: Naive merging of data tables or distance-based matching of grid cells
is avoided, since it results in unnecessary large lookup tables that may not fit into memory
when both your fine and your coarse grid are high-resolution.

Usage

upscale_regular_lon_lat(

dt,

coarse_grid,

uscols,

bycols = setdiff(dimvars(dt), c("lon”, "lat")),
save_weights = NULL,
reg_frac_of_coverage = 0

Arguments

dt
coarse_grid

uscols

bycols

save_weights

data table containing the data you want to upscale.
data table containing lons/lats of the grid you want to upscale to.

column name(s) of the data you want to upscale (can take multiple columns at
once, but assumes that the different columns have missing values at the same
position).

optional column names for grouping if you have repeated data on the same grid,
e.g. use bycols = "date’ if your data table contains observations for many dates
on the same grid (and the column specifying the date is in fact called ’date’).

optional file name for saving the weights for upscaling. Used for the CHIRPS
data.

req_frac_of_coverage

Details

Numeric value between 0 and 1. All coarse grid cells with less coverage than this
value get assigned a missing value. In particular, setting this to 0 (the default)
means a value is assigned to each coarse grid cell that overlaps with at least one
fine grid cell. Setting this to 1 means only coarse grid cells are kept for which
we have full coverage.

Bilinear interpolation is generally not appropriate for mapping data from finer to coarser grids.
The reason is that in BI, the value of a coarse grid cell only depends on the four fine grid cells
surrounding its center coordinate, even though many fine grid cells may overlap the coarse grid
cell). Conservative interpolation calculates the coarse grid cell value by averaging all fine grid cells
overlapping with it, weighted by the fraction of overlap. This is the appropriate way of upscaling
when predictions and observations constitute grid point averages, which is usually the case (Gober

et al. 2008).

The grids are assumed to be regular, but are not required to be complete (see set_spatial_grid).
The function is faster when missing-data grid points are not contained in dt (then fewer grid points
need to be matched).

ver_map 79

Value

A data table with the upscaled values.

References

Gober, M., Ervin Z., and Richardson, D.S. (2008): "Could a perfect model ever satisfy a naive
forecaster? On grid box mean versus point verification.” Meteorological Applications: A journal
of forecasting, practical applications, training techniques and modelling 15, no. 3 (2008): 359-365.

ver_map Plot a verification map of percentiles

Description

For each location, the map shows whether the observed value was normal, below, or above. This
makes it possible to visually compare to the usual tercile forecsst

Usage

ver_map(
dt,
0 = obs_cols(dt),
yy = dt[, max(year)],
climatology_period = unique(dt[, yearl),
out_file = NULL

)
Arguments

dt input data table. This has to contain the observations for the year to plot, as
well as for many other years (which are used to calculate the climatological
reference). The data table should have coumns named lon, lat, year, and an
observation column, the name of which is passed as value of o to the function,
see below. For each level of lon, lat, and year, the table should only contain
one row (this is checked by the function).

o) name of the column containing the observation.

vy The year for which to show the verification map. Defaults to the last year avail-

able in dt
climatology_period

which years should the climatology be calculated on? Defaults to all years (ex-
cept yy) in dt

out_file optional path and file name (including valid filetype, like .pdf or .png) for saving
the file. If not provided, the function just shows the plot in the running R session.

Value

a gg object

80 ver_map_chirps

Examples

takes some time:
pp = ver_map(chirps_monthly[month == 11],yy = 2018)
if(interactive()) plot(pp)

ver_map_chirps Plot a verification map of percentiles based on precomputed CHIRPS
quantiles.

Description

The quantiles should be computed and saved by the function chirps_ver_map_quantiles.

Usage

ver_map_chirps(
mm = month(Sys.Date() - 60),
yy = year(Sys.Date() - 60),

version = "UCSB",
resolution = "low",
)
Arguments
vy, mm The year and month for which to show the verification map. Defaults to the
month 60 days ago (in order to avoid using preliminary data).
version which CHIRPS version to use.
resolution Spatial resolution, "high’ or "low’
passed on to ver_map.
Value
A gg object
Examples

takes a while:
if(interactive()) ver_map_chirps(mm = 12,yy = 2022)

Index

* datasets DISS, 23
chirps_monthly, 10 download_chirps_monthly, 24
ecmwf_monthly, 29 download_chirps_monthly_high, 25
download_chirps_monthly_low, 26
add_climatology, 4 download_chirps_prelim_aux, 27
add_country, 4 dt_to_netcdf, 28
add_country(), 15
add_country_names, 4, 5, 29, 58 EA_country_names, 5, 29, 59
add_tercile_cat, 6, 72 ecmwf_monthly, 29
add_tercile_cat(), I5 EIR, 30
add_tercile_probs, 7,73
are_all_elements_within_eps, 7 fc_cols, 31
get_mask, 32

by_cols_ens_fc_score, 8
by_cols_terc_fc_score, 8
by_cols_terc_fc_score_sp, 9

get_quantiles, 32, 33, 34
get_terciles, 33
ggplot2::scale_fill_continuous(), 75
ggplot2::scale_fill_steps(), 75
ggplot_dt, 34, 37

ggplot_dt_gha_map (gha_plot), 37
ggplot_dt_shf (gha_plot), 37
GHA_extent, 36

gha_plot, 37

grid_info, 37, 67

checks_ens_fc_score, 9
checks_terc_fc_score, 9
chirps_dir, 10

chirps_monthly, 10
chirps_ver_map_quantiles, 11
climatology_ens_forecast, 12
climatology_threshold_exceedence, 12
combine, 13

complete_regular_grid, 14 HS, 38

HSS, 39
convert_monthly_to_seasonal, 14
convert_monthly_to_seasonal(), 66 1GS, 40
CPA, 16 1GSS, 41
create_diagram_by_level, 17 indicator_times_value_aux, 42
CRPS, 18
crps_aux, 20 load_chirps, 32,42
crps_aux_esc, 20 1t_cols, 43
CRPSS, 19

MB, 44
data_dir, 21 MBS, 45
delete_redundant_files, 21 merge, 13
dimvars, 22 modify_dt_map_plotting, 46
dimvars(), 15 MSD_to_YM, 46
disc_score_dt, 22 MSE, 47

81

82

MSES, 48

netcdf_to_dt, 49
netcdf_to_dt(), 28

obs_cols, 50
obs_dimvars, 51

PCC, 51
profit_graph, 52

REL, 53

rel_diag, 55

rel_diag_vec, 56

RES, 57

restrict_to_confer_region
(restrict_to_GHA), 59

restrict_to_country, 58, 59

restrict_to_GHA, 59

ROC_curve, 60

roc_curve_vec, 61

roc_score_vec, 62

ROCS, 59

round_probs, 63

RPS, 63

RPSS, 64

run_dimension_check_ens_fc_score, 65
run_dimension_check_terc_forecast, 65

season_strings_to_int, 66
set_spatial_grid, /4, 37, 66, 78
space_dimvars, 68

SRC, 69

tc_cols, 70
tc_cols(), 15
tendency_diag, 70
tercile_plot, 71
tfc_from_efc, 72
tfc_from_efc(), 15
tfc_gha_plot, 73
tfc_plot, 74
tfc_plot(), 73
time_dimvars, 76

upscale_chirps, 76
upscale_regular_lon_lat, 77

ver_map, 79
ver_map_chirps, 80

INDEX

	add_climatology
	add_country
	add_country_names
	add_tercile_cat
	add_tercile_probs
	are_all_elements_within_eps
	by_cols_ens_fc_score
	by_cols_terc_fc_score
	by_cols_terc_fc_score_sp
	checks_ens_fc_score
	checks_terc_fc_score
	chirps_dir
	chirps_monthly
	chirps_ver_map_quantiles
	climatology_ens_forecast
	climatology_threshold_exceedence
	combine
	complete_regular_grid
	convert_monthly_to_seasonal
	CPA
	create_diagram_by_level
	CRPS
	CRPSS
	crps_aux
	crps_aux_esc
	data_dir
	delete_redundant_files
	dimvars
	disc_score_dt
	DISS
	download_chirps_monthly
	download_chirps_monthly_high
	download_chirps_monthly_low
	download_chirps_prelim_aux
	dt_to_netcdf
	EA_country_names
	ecmwf_monthly
	EIR
	fc_cols
	get_mask
	get_quantiles
	get_terciles
	ggplot_dt
	GHA_extent
	gha_plot
	grid_info
	HS
	HSS
	IGS
	IGSS
	indicator_times_value_aux
	load_chirps
	lt_cols
	MB
	MBS
	modify_dt_map_plotting
	MSD_to_YM
	MSE
	MSES
	netcdf_to_dt
	obs_cols
	obs_dimvars
	PCC
	profit_graph
	REL
	rel_diag
	rel_diag_vec
	RES
	restrict_to_country
	restrict_to_GHA
	ROCS
	ROC_curve
	roc_curve_vec
	roc_score_vec
	round_probs
	RPS
	RPSS
	run_dimension_check_ens_fc_score
	run_dimension_check_terc_forecast
	season_strings_to_int
	set_spatial_grid
	space_dimvars
	SRC
	tc_cols
	tendency_diag
	tercile_plot
	tfc_from_efc
	tfc_gha_plot
	tfc_plot
	time_dimvars
	upscale_chirps
	upscale_regular_lon_lat
	ver_map
	ver_map_chirps
	Index

