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all_subsets Compute all subsets of a set

Description

Given a set of variables, compute the inclusion indicators for all possible subsets.

Usage

all_subsets(set)



bb 3

Arguments

set the set from which to compute all subsets (e.g., 1:p)

Value

a data frame where the rows indicate the 2^p different subsets and the columns indicate inclusion
(logical) for each element in that subset

References

Code adapted from <https://www.r-bloggers.com/2012/04/generating-all-subsets-of-a-set/>

bb Bayesian bootstrap posterior sampler for the CDF

Description

Compute one Monte Carlo draw from the Bayesian bootstrap (BB) posterior distribution of the
cumulative distribution function (CDF).

Usage

bb(y)

Arguments

y the data from which to infer the CDF (preferably sorted)

Details

Assuming the data y are iid from an unknown distribution, the Bayesian bootstrap (BB) is a non-
parametric model for this distribution. The BB is a limiting case of a Dirichlet process prior (without
any hyperparameters) that admits direct Monte Carlo (not MCMC) sampling.

This function computes one draw from the BB posterior distribution for the CDF Fy.

Value

a function that can evaluate the sampled CDF at any argument(s)

Note

This code is inspired by ggdist::weighted_ecdf.
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Examples

# Simulate data:
y = rnorm(n = 100)

# One draw from the BB posterior:
Fy = bb(y)

class(Fy) # this is a function
Fy(0) # some example use (for this one draw)
Fy(c(.5, 1.2))

# Plot several draws from the BB posterior distribution:
ys = seq(-3, 3, length.out=1000)
plot(ys, ys, type='n', ylim = c(0,1),

main = 'Draws from BB posterior', xlab = 'y', ylab = 'F(y)')
for(s in 1:50) lines(ys, bb(y)(ys), col='gray')

# Add ECDF for reference:
lines(ys, ecdf(y)(ys), lty=2)

bgp_bc Bayesian Gaussian processes with a Box-Cox transformation

Description

MCMC sampling for Bayesian Gaussian process regression with a (known or unknown) Box-Cox
transformation.

Usage

bgp_bc(
y,
locs,
X = NULL,
covfun_name = "matern_isotropic",
locs_test = locs,
X_test = NULL,
nn = 30,
emp_bayes = TRUE,
lambda = NULL,
sample_lambda = TRUE,
nsave = 1000,
nburn = 1000,
nskip = 0

)
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Arguments

y n x 1 response vector

locs n x d matrix of locations

X n x p design matrix; if unspecified, use intercept only

covfun_name string name of a covariance function; see ?GpGp

locs_test n_test x d matrix of locations at which predictions are needed; default is locs

X_test n_test x p design matrix for test data; default is X

nn number of nearest neighbors to use; default is 30 (larger values improve the
approximation but increase computing cost)

emp_bayes logical; if TRUE, use a (faster!) empirical Bayes approach for estimating the
mean function

lambda Box-Cox transformation; if NULL, estimate this parameter

sample_lambda logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

Details

This function provides Bayesian inference for transformed Gaussian processes. The transformation
is parametric from the Box-Cox family, which has one parameter lambda. That parameter may
be fixed in advanced or learned from the data. For computational efficiency, the Gaussian pro-
cess parameters are fixed at point estimates, and the latent Gaussian process is only sampled when
emp_bayes = FALSE.

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points locs_test

• fit_gp the fitted GpGp_fit object, which includes covariance parameter estimates and other
model information

• post_ypred: nsave x n_test samples from the posterior predictive distribution at locs_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• post_lambda nsave posterior samples of lambda

• model: the model fit (here, bgp_bc)

as well as the arguments passed in.
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Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sbgp.

Examples

# Simulate some data:
n = 200 # sample size
x = seq(0, 1, length = n) # observation points

# Transform a noisy, periodic function:
y = g_inv_bc(

sin(2*pi*x) + sin(4*pi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

# Package we use for fast computing w/ Gaussian processes:
library(GpGp)

# Fit a Bayesian Gaussian process with Box-Cox transformation:
fit = bgp_bc(y = y, locs = x)
names(fit) # what is returned
coef(fit) # estimated regression coefficients (here, just an intercept)
class(fit$fit_gp) # the GpGp object is also returned
round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

# Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),

xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(x, y, type='p')
lines(x, fitted(fit), lwd = 3)

blm_bc Bayesian linear model with a Box-Cox transformation

Description

MCMC sampling for Bayesian linear regression with a (known or unknown) Box-Cox transforma-
tion. A g-prior is assumed for the regression coefficients.

Usage

blm_bc(
y,
X,
X_test = X,
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psi = length(y),
lambda = NULL,
sample_lambda = TRUE,
nsave = 1000,
nburn = 1000,
nskip = 0,
verbose = TRUE

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors (no intercept)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

lambda Box-Cox transformation; if NULL, estimate this parameter

sample_lambda logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed linear model via MCMC sam-
pling. The transformation is parametric from the Box-Cox family, which has one parameter lambda.
That parameter may be fixed in advanced or learned from the data.

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• post_lambda nsave posterior samples of lambda

• post_sigma nsave posterior samples of sigma

• model: the model fit (here, blm_bc)

as well as the arguments passed in.
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Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sblm.

An intercept is automatically added to X and X_test. The coefficients reported do *not* include
this intercept parameter, since it is not identified under more general transformation models (e.g.,
sblm).

Examples

# Simulate some data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'step')
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 25) # marginal distribution

# Fit the Bayesian linear model with a Box-Cox transformation:
fit = blm_bc(y = y, X = X, X_test = X_test)
names(fit) # what is returned
round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

blm_bc_hs Bayesian linear model with a Box-Cox transformation and a horse-
shoe prior

Description

MCMC sampling for Bayesian linear regression with 1) a (known or unknown) Box-Cox transfor-
mation and 2) a horseshoe prior for the (possibly high-dimensional) regression coefficients.

Usage

blm_bc_hs(
y,
X,
X_test = X,
lambda = NULL,
sample_lambda = TRUE,
only_theta = FALSE,
nsave = 1000,
nburn = 1000,
nskip = 0,
verbose = TRUE

)



blm_bc_hs 9

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors (no intercept)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

lambda Box-Cox transformation; if NULL, estimate this parameter

sample_lambda logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

only_theta logical; if TRUE, only return posterior draws of the regression coefficients (for
speed)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed linear model via MCMC sam-
pling. The transformation is parametric from the Box-Cox family, which has one parameter lambda.
That parameter may be fixed in advanced or learned from the data.

The horseshoe prior is especially useful for high-dimensional settings with many (possibly corre-
lated) covariates. This function uses a fast Cholesky-forward/backward sampler when p < n and
the Bhattacharya et al. (<https://doi.org/10.1093/biomet/asw042>) sampler when p > n. Thus, the
sampler can scale linear in n (for fixed/small p) or linear in p (for fixed/small n).

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• post_lambda: nsave posterior samples of lambda

• post_sigma: nsave posterior samples of sigma

• model: the model fit (here, blm_bc_hs)

as well as the arguments passed in.
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Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation in sblm_hs.

An intercept is automatically added to X and X_test. The coefficients reported do *not* include
this intercept parameter, since it is not identified under more general transformation models (e.g.,
sblm_hs).

Examples

# Simulate data from a transformed (sparse) linear model:
dat = simulate_tlm(n = 100, p = 50, g_type = 'step', prop_sig = 0.1)
y = dat$y; X = dat$X # training data

hist(y, breaks = 25) # marginal distribution

# Fit the Bayesian linear model with a Box-Cox transformation & a horseshoe prior:
fit = blm_bc_hs(y = y, X = X, verbose = FALSE)
names(fit) # what is returned

bqr Bayesian quantile regression

Description

MCMC sampling for Bayesian quantile regression. An asymmetric Laplace distribution is assumed
for the errors, so the regression models targets the specified quantile. A g-prior is assumed for the
regression coefficients.

Usage

bqr(
y,
X,
tau = 0.5,
X_test = X,
psi = length(y),
nsave = 1000,
nburn = 1000,
nskip = 0,
verbose = TRUE

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors (no intercept)
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tau the target quantile (between zero and one)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the estimated tauth quantile at test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_qtau: nsave x n_test samples of the tauth conditional quantile at test points X_test

• model: the model fit (here, bqr)

as well as the arguments passed

Note

The asymmetric Laplace distribution is advantageous because it links the regression model (X%*%theta)
to a pre-specified quantile (tau). However, it is often a poor model for observed data, and the semi-
parametric version sbqr is recommended in general.

An intercept is automatically added to X and X_test. The coefficients reported do *not* include
this intercept parameter.

Examples

# Simulate some heteroskedastic data (no transformation):
dat = simulate_tlm(n = 100, p = 5, g_type = 'box-cox', heterosked = TRUE, lambda = 1)
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

# Target this quantile:
tau = 0.05

# Fit the Bayesian quantile regression model:
fit = bqr(y = y, X = X, tau = tau, X_test = X_test)
names(fit) # what is returned

# Posterior predictive checks on testing data: empirical CDF
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y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),

xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)

lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))

lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)

# The posterior predictive checks usually do not pass!
# try ?sbqr instead...

bsm_bc Bayesian spline model with a Box-Cox transformation

Description

MCMC sampling for Bayesian spline regression with a (known or unknown) Box-Cox transforma-
tion.

Usage

bsm_bc(
y,
x = NULL,
x_test = x,
psi = NULL,
lambda = NULL,
sample_lambda = TRUE,
nsave = 1000,
nburn = 1000,
nskip = 0,
verbose = TRUE

)

Arguments

y n x 1 vector of observed counts

x n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]

x_test n_test x 1 vector of testing points; if NULL, assume equal to x

psi prior variance (inverse smoothing parameter); if NULL, sample this parameter

lambda Box-Cox transformation; if NULL, estimate this parameter

sample_lambda logical; if TRUE, sample lambda, otherwise use the fixed value of lambda above
or the MLE (if lambda unspecified)

nsave number of MCMC iterations to save
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nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed spline model via MCMC sam-
pling. The transformation is parametric from the Box-Cox family, which has one parameter lambda.
That parameter may be fixed in advanced or learned from the data.

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points x_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at x_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• post_lambda nsave posterior samples of lambda

• model: the model fit (here, sbsm_bc)

as well as the arguments passed in.

Note

Box-Cox transformations may be useful in some cases, but in general we recommend the nonpara-
metric transformation (with Monte Carlo, not MCMC sampling) in sbsm.

Examples

# Simulate some data:
n = 100 # sample size
x = sort(runif(n)) # observation points

# Transform a noisy, periodic function:
y = g_inv_bc(

sin(2*pi*x) + sin(4*pi*x) + rnorm(n, sd = .5),
lambda = .5) # Signed square-root transformation

# Fit the Bayesian spline model with a Box-Cox transformation:
fit = bsm_bc(y = y, x = x)
names(fit) # what is returned
round(quantile(fit$post_lambda), 3) # summary of unknown Box-Cox parameter

# Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),
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xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(x, y, type='p')
lines(x, fitted(fit), lwd = 3)

computeTimeRemaining Estimate the remaining time in the algorithm

Description

Estimate the remaining time in the algorithm

Usage

computeTimeRemaining(nsi, timer0, nsims, nprints = 2)

Arguments

nsi current iteration
timer0 initial timer value from proc.time()[3]

nsims total number of simulations
nprints total number of printed updates

Value

estimate of remaining time

concen_hbb Posterior sampling algorithm for the HBB concentration hyperparam-
eters

Description

Compute Monte Carlo draws from the (marginal) posterior distribution of the concentration hyper-
parameters of the hierarchical Bayesian bootstrap (hbb). The HBB is a nonparametric model for
group-specific distributions; each group has a concentration parameter, where larger values encour-
age more shrinkage toward a common distribution.

Usage

concen_hbb(
groups,
shape_alphas = NULL,
rate_alphas = NULL,
nsave = 1000,
ngrid = 500

)
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Arguments

groups the group assignments in the observed data

shape_alphas (optional) shape parameter for the Gamma prior

rate_alphas (optional) rate parameter for the Gamma prior

nsave (optional) number of Monte Carlo simulations

ngrid (optional) number of grid points

Details

The concentration hyperparameters are assigned independent Gamma(shape_alphas, rate_alphas)
priors. This function uses a grid approximation to the marginal posterior with the goal of producing
a simple algorithm. Because this is a *marginal* posterior sampler, it can be used with the hbb sam-
pler (which conditions on alphas) to provide a joint Monte Carlo (not MCMC) sampling algorithm
for the concentration hyperparameters, the group-specific CDFs, and the common CDF. Note that
diffuse priors on alphas tend to put posterior mass on large values, which leads to more aggressive
shrinkage toward the common distribution (complete pooling). For moderate shrinkage, we use the
default values shape_alphas = 30*K and rate_alphas = 1, where K is the number of groups.

Value

nsave x K samples of the concentration hyperparameters corresponding to the K groups

References

Oganisian et al. (<https://doi.org/10.1515/ijb-2022-0051>)

Examples

# Dimensions:
n = 500 # number of observations
K = 3 # number of groups

# Assign groups w/ unequal probabilities:
ugroups = paste('g', 1:K, sep='') # groups
groups = sample(ugroups,

size = n,
replace = TRUE,
prob = 1:K) # unequally weighted (unnormalized)

# Summarize:
table(groups)/n

# Marginal posterior sampling for alpha:
post_alpha = concen_hbb(groups)

# Summarize: posterior distributions
for(c in 1:K) {

hist(post_alpha[,c],
main = paste("Concentration parameter: group", ugroups[c]),
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xlim = range(post_alpha))
abline(v = mean(post_alpha[,c]), lwd=3) # posterior mean

}

contract_grid Grid contraction

Description

Contract the grid if the evaluation points exceed some threshold. This removes the corresponding z
values. We can add points back to achieve the same (approximate) length.

Usage

contract_grid(z, Fz, lower, upper, add_back = TRUE, monotone = TRUE)

Arguments

z grid points (ordered)

Fz function evaluated at those grid points

lower lower threshold at which to check Fz

upper upper threshold at which to check Fz

add_back logical; if true, expand the grid to (about) the original size

monotone logical; if true, enforce monotonicity on the expanded grid

Value

a list containing the grid points z and the (interpolated) function Fz at those points

Fz_fun Compute the latent data CDF

Description

Assuming a Gaussian latent data distribution (given x), compute the CDF on a grid of points

Usage

Fz_fun(z, weights = NULL, mean_vec = NULL, sd_vec)
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Arguments

z vector of points at which the CDF of z is evaluated

weights n-dimensional vector of weights; if NULL, assume 1/n

mean_vec n-dimensional vector of means; if NULL, assume mean zero

sd_vec n-dimensional vector of standard deviations

Value

CDF of z evaluated at z

g_bc Box-Cox transformation

Description

Evaluate the Box-Cox transformation, which is a scaled power transformation to preserve continuity
in the index lambda at zero. Negative values are permitted.

Usage

g_bc(t, lambda)

Arguments

t argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the Box-Cox function at the given input(s) t.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda
= 1/2), and the log transformation (lambda = 0).

Examples

# Log-transformation:
g_bc(1:5, lambda = 0); log(1:5)

# Square-root transformation: note the shift and scaling
g_bc(1:5, lambda = 1/2); sqrt(1:5)
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g_fun Compute the transformation

Description

Given the CDFs of z and y, compute a smoothed function to evaluate the transformation

Usage

g_fun(y, Fy_eval, z, Fz_eval)

Arguments

y vector of points at which the CDF of y is evaluated

Fy_eval CDF of y evaluated at y

z vector of points at which the CDF of z is evaluated

Fz_eval CDF of z evaluated at z

Value

A smooth monotone function which can be used for evaluations of the transformation.

g_inv_approx Approximate inverse transformation

Description

Compute the inverse function of a transformation g based on a grid search.

Usage

g_inv_approx(g, t_grid)

Arguments

g the transformation function

t_grid grid of arguments at which to evaluate the transformation function

Value

A function which can be used for evaluations of the (approximate) inverse transformation function.
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g_inv_bc Inverse Box-Cox transformation

Description

Evaluate the inverse Box-Cox transformation. Negative values are permitted.

Usage

g_inv_bc(s, lambda)

Arguments

s argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the inverse Box-Cox function at the given input(s) s.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda
= 1/2), and the log transformation (lambda = 0).

Examples

# (Inverse) log-transformation:
g_inv_bc(1:5, lambda = 0); exp(1:5)

# (Inverse) square-root transformation: note the shift and scaling
g_inv_bc(1:5, lambda = 1/2); (1:5)^2

hbb Hierarchical Bayesian bootstrap posterior sampler

Description

Compute one Monte Carlo draw from the hierarchical Bayesian bootstrap (HBB) posterior dis-
tribution of the cumulative distribution function (CDF) for each group. The common (BB) and
group-specific (HBB) weights are also returned.
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Usage

hbb(
y,
groups,
sample_alphas = FALSE,
shape_alphas = NULL,
rate_alphas = NULL,
alphas = NULL,
M = 30

)

Arguments

y the data from which to infer the group-specific CDFs

groups the group assignment for each element of y

sample_alphas logical; if TRUE, sample the concentration hyperparameters from their marginal
posterior distribution

shape_alphas (optional) shape parameter for the Gamma prior on each alphas (if sampled)

rate_alphas (optional) rate parameter for the Gamma prior on each alphas (if sampled)

alphas (optional) vector of fixed concentration hyperparameters corresponding to the
unique levels in groups (used when sample_alphas = FALSE)

M a positive scaling term to set a default value of alphas when it is unspecified
(alphas = NULL) and not sampled (sample_alphas = FALSE)

Details

Assuming the data y are independent with unknown, group-specific distributions, the hierarchical
Bayesian bootstrap (HBB) from Oganisian et al. (<https://doi.org/10.1515/ijb-2022-0051>) is a
nonparametric model for each distribution. The HBB includes hierarchical shrinkage across these
groups toward a common distribution (the bb). The HBB admits direct Monte Carlo (not MCMC)
sampling.

The shrinkage toward this common distribution is determined by the concentration hyperparameters
alphas. Each component of alphas corresponds to one of the groups. Larger values encourage
more shrinkage toward the common distribution, while smaller values allow more substantial devi-
ations for that group.

When sample_alphas=TRUE, each component of alphas is sampled from its marginal posterior
distribution, assuming independent Gamma(shape_alphas, rate_alphas) priors. This step uses a
simple grid approximation to enable efficient sampling that preserves joint Monte Carlo sampling
with the group-specific and common distributions. See concen_hbb for details. Note that dif-
fuse priors on alphas tends to produce more aggressive shrinkage toward the common distribution
(complete pooling). For moderate shrinkage, we use the default values shape_alphas = 30*K and
rate_alphas = 1 where K is the number of groups.

When sample_alphas=FALSE, these concentration hyperparameters are fixed at user-specified val-
ues. That can be done by specifying alphas directly. Alternatively, if alphas is left unspecified
(alphas = NULL), we adopt the default from Oganisian et al. which sets the cth entry to M*n/nc
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where M is user-specified and nc is the number of observations in group c. For further guidance on
the choice of M:

• M = 0.01/K approximates separate BB’s by group (no pooling);

• M between 10 and 100 gives moderate shrinkage (partial pooling); and

• M = 100*max(nc) approximates a common BB (complete pooling).

Value

a list with the following elements:

• Fyc: a list of functions where each entry corresponds to a group and that group-specific func-
tion can evaluate the sampled CDF at any argument(s)

• weights_y: sampled weights from the common (BB) distribution (n-dimensional)

• weights_yc: sampled weights from each of the K groups (K x n)

• alphas: the (fixed or sampled) concentration hyperparameters

Note

If supplying alphas with distinct entries, make sure that the groups are ordered properly; these
entries should match sort(unique(groups)).

References

Oganisian et al. (<https://doi.org/10.1515/ijb-2022-0051>)

Examples

# Sample size and number of groups:
n = 500
K = 3

# Define the groups, then assign:
ugroups = paste('g', 1:K, sep='') # groups
groups = sample(ugroups, n, replace = TRUE) # assignments

# Simulate the data: iid normal, then add group-specific features
y = rnorm(n = n) # data
for(g in ugroups)

y[groups==g] = y[groups==g] + 3*rnorm(1) # group-specific

# One draw from the HBB posterior of the CDF:
samp_hbb = hbb(y, groups)

names(samp_hbb) # items returned
Fyc = samp_hbb$Fyc # list of CDFs
class(Fyc) # this is a list
class(Fyc[[1]]) # each element is a function

c = 1 # try: vary in 1:K
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Fyc[[c]](0) # some example use (for this one draw)
Fyc[[c]](c(.5, 1.2))

# Plot several draws from the HBB posterior distribution:
ys = seq(min(y), max(y), length.out=1000)
plot(ys, ys, type='n', ylim = c(0,1),

main = 'Draws from HBB posteriors', xlab = 'y', ylab = 'F_c(y)')
for(s in 1:50){ # some draws

# BB CDF:
Fy = bb(y)
lines(ys, Fy(ys), lwd=3) # plot CDF

# HBB:
Fyc = hbb(y, groups)$Fyc

# Plot CDFs by group:
for(c in 1:K) lines(ys, Fyc[[c]](ys), col=c+1, lwd=3)

}

# For reference, add the ECDFs by group:
for(c in 1:K) lines(ys, ecdf(y[groups==ugroups[c]])(ys), lty=2)

legend('bottomright', c('BB', paste('HBB:', ugroups)), col = 1:(K+1), lwd=3)

plot_pptest Plot point and interval predictions on testing data

Description

Given posterior predictive samples at X_test, plot the point and interval estimates and compare to
the actual testing data y_test.

Usage

plot_pptest(post_ypred, y_test, alpha_level = 0.1)

Arguments

post_ypred nsave x n_test samples from the posterior predictive distribution at test points
X_test

y_test n_test testing points

alpha_level alpha-level for prediction intervals

Value

plot of the testing data, point and interval predictions, and a summary of the empirical coverage
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Examples

# Simulate some data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'step')

# Fit a semiparametric Bayesian linear model:
fit = sblm(y = dat$y, X = dat$X, X_test = dat$X_test)

# Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, dat$y_test,

alpha_level = 0.10) # coverage should be about 90%

rank_approx Rank-based estimation of the linear regression coefficients

Description

For a transformed Gaussian linear model, compute point estimates of the regression coefficients.
This approach uses the ranks of the data and does not require the transformation, but must expand
the sample size to n^2 and thus can be slow.

Usage

rank_approx(y, X)

Arguments

y n x 1 response vector

X n x p matrix of predictors (should not include an intercept!)

Value

the estimated linear coefficients

Examples

# Simulate some data:
dat = simulate_tlm(n = 200, p = 10, g_type = 'step')

# Point estimates for the linear coefficients:
theta_hat = suppressWarnings(

rank_approx(y = dat$y,
X = dat$X[,-1]) # remove intercept

) # warnings occur from glm.fit (fitted probabilities 0 or 1)

# Check: correlation with true coefficients
cor(dat$beta_true[-1], # excluding the intercept

theta_hat)
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sampleFastGaussian Sample a Gaussian vector using Bhattacharya et al. (2016)

Description

Sample from N(mu, Sigma) where Sigma = solve(crossprod(Phi) + solve(D)) and mu = Sigma*crossprod(Phi,
alpha):

Usage

sampleFastGaussian(Phi, Ddiag, alpha)

Arguments

Phi n x p matrix (of predictors)

Ddiag p x 1 vector of diagonal components (of prior variance)

alpha n x 1 vector (of data, scaled by variance)

Value

Draw from N(mu, Sigma), which is p x 1, and is computed in O(n^2*p)

Note

Assumes D is diagonal, but extensions are available

References

Bhattacharya, Chakraborty, and Mallick (2016, <https://doi.org/10.1093/biomet/asw042>)

sbgp Semiparametric Bayesian Gaussian processes

Description

Monte Carlo sampling for Bayesian Gaussian process regression with an unknown (nonparametric)
transformation.
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Usage

sbgp(
y,
locs,
X = NULL,
covfun_name = "matern_isotropic",
locs_test = locs,
X_test = NULL,
nn = 30,
emp_bayes = TRUE,
fixedX = (length(y) >= 500),
approx_g = FALSE,
nsave = 1000,
ngrid = 100

)

Arguments

y n x 1 response vector

locs n x d matrix of locations

X n x p design matrix; if unspecified, use intercept only

covfun_name string name of a covariance function; see ?GpGp

locs_test n_test x d matrix of locations at which predictions are needed; default is locs

X_test n_test x p design matrix for test data; default is X

nn number of nearest neighbors to use; default is 30 (larger values improve the
approximation but increase computing cost)

emp_bayes logical; if TRUE, use a (faster!) empirical Bayes approach for estimating the
mean function

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

nsave number of Monte Carlo simulations

ngrid number of grid points for inverse approximations

Details

This function provides Bayesian inference for a transformed Gaussian process model using Monte
Carlo (not MCMC) sampling. The transformation is modeled as unknown and learned jointly with
the regression function (unless approx_g = TRUE, which then uses a point approximation). This
model applies for real-valued data, positive data, and compactly-supported data (the support is
automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE; setting it to TRUE may reduce sensitivity to the prior, while set-
ting it to FALSE may speed up computations for very large datasets. For computational efficiency,
the Gaussian process parameters are fixed at point estimates, and the latent Gaussian process is
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only sampled when emp_bayes = FALSE. However, the uncertainty from this term is often negli-
gible compared to the observation errors, and the transformation serves as an additional layer of
robustness. By default, fixedX is set to FALSE for smaller datasets (n < 500) and TRUE for larger
datasets (n >= 500).

Value

a list with the following elements:

• coefficients the estimated regression coefficients

• fitted.values the posterior predictive mean at the test points locs_test

• fit_gp the fitted GpGp_fit object, which includes covariance parameter estimates and other
model information

• post_ypred: nsave x ntest samples from the posterior predictive distribution at locs_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sbgp)

as well as the arguments passed in.

Examples

# Simulate some data:
n = 200 # sample size
x = seq(0, 1, length = n) # observation points

# Transform a noisy, periodic function:
y = g_inv_bc(

sin(2*pi*x) + sin(4*pi*x) + rnorm(n),
lambda = .5) # Signed square-root transformation

# Package we use for fast computing w/ Gaussian processes:
library(GpGp)

# Fit the semiparametric Bayesian Gaussian process:
fit = sbgp(y = y, locs = x)
names(fit) # what is returned
coef(fit) # estimated regression coefficients (here, just an intercept)
class(fit$fit_gp) # the GpGp object is also returned

# Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),

xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(x, y, type='p') # observed points
lines(x, fitted(fit), lwd = 3) # fitted curve
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sblm Semiparametric Bayesian linear model

Description

Monte Carlo sampling for Bayesian linear regression with an unknown (nonparametric) transfor-
mation. A g-prior is assumed for the regression coefficients.

Usage

sblm(
y,
X,
X_test = X,
psi = length(y),
laplace_approx = TRUE,
fixedX = (length(y) >= 500),
approx_g = FALSE,
nsave = 1000,
ngrid = 100,
verbose = TRUE

)

Arguments

y n x 1 response vector

X n x p matrix of predictors (no intercept)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

laplace_approx logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

nsave number of Monte Carlo simulations

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining
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Details

This function provides fully Bayesian inference for a transformed linear model using Monte Carlo
(not MCMC) sampling. The transformation is modeled as unknown and learned jointly with the
regression coefficients (unless approx_g = TRUE, which then uses a point approximation). This
model applies for real-valued data, positive data, and compactly-supported data (the support is
automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE; setting it to TRUE may reduce sensitivity to the prior, while
setting it to FALSE may speed up computations for very large datasets. By default, fixedX is set to
FALSE for smaller datasets (n < 500) and TRUE for larger datasets (n >= 500).

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sblm)

as well as the arguments passed in.

Note

The location (intercept) and scale (sigma_epsilon) are not identified, so any intercepts in X and
X_test will be removed. The model-fitting *does* include an internal location-scale adjustment,
but the function only outputs inferential summaries for the identifiable parameters.

Examples

# Simulate some data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'step')
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 25) # marginal distribution

# Fit the semiparametric Bayesian linear model:
fit = sblm(y = y, X = X, X_test = X_test)
names(fit) # what is returned

# Note: this is Monte Carlo sampling...no need for MCMC diagnostics!

# Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, y_test,

alpha_level = 0.10) # coverage should be about 90%
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# Check: correlation with true coefficients
cor(dat$beta_true, coef(fit))

# Summarize the transformation:
y0 = sort(unique(y)) # posterior draws of g are evaluated at the unique y observations
plot(y0, fit$post_g[1,], type='n', ylim = range(fit$post_g),

xlab = 'y', ylab = 'g(y)', main = "Posterior draws of the transformation")
temp = sapply(1:nrow(fit$post_g), function(s)

lines(y0, fit$post_g[s,], col='gray')) # posterior draws
lines(y0, colMeans(fit$post_g), lwd = 3) # posterior mean
lines(y, dat$g_true, type='p', pch=2) # true transformation
legend('bottomright', c('Truth'), pch = 2) # annotate the true transformation

# Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),

xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)

lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))

lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)

sblm_hs Semiparametric Bayesian linear model with horseshoe priors for high-
dimensional data

Description

MCMC sampling for semiparametric Bayesian linear regression with 1) an unknown (nonpara-
metric) transformation and 2) a horseshoe prior for the (possibly high-dimensional) regression co-
efficients. Here, unlike sblm, Gibbs sampling is needed for the regression coefficients and the
horseshoe prior variance components. The transformation g is still sampled unconditionally on the
regression coefficients, which provides a more efficient blocking within the Gibbs sampler.

Usage

sblm_hs(
y,
X,
X_test = X,
fixedX = (length(y) >= 500),
approx_g = FALSE,
init_screen = NULL,
pilot_hs = FALSE,
nsave = 1000,
nburn = 1000,
ngrid = 100,
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verbose = TRUE
)

Arguments

y n x 1 response vector

X n x p matrix of predictors (no intercept)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

init_screen for the initial approximation, number of covariates to pre-screen (necessary
when p > n); if NULL, use n/log(n)

pilot_hs logical; if TRUE, use a short pilot run with a horseshoe prior to estimate the
marginal CDF of the latent z (otherwise, use a sparse Laplace approximation)

nsave number of MCMC simulations to save

nburn number of MCMC iterations to discard

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed linear model with horseshoe
priors using efficiently-blocked Gibbs sampling. The transformation is modeled as unknown and
learned jointly with the regression coefficients (unless approx_g = TRUE, which then uses a point
approximation). This model applies for real-valued data, positive data, and compactly-supported
data (the support is automatically deduced from the observed y values).

The horseshoe prior is especially useful for high-dimensional settings with many (possibly corre-
lated) covariates. Compared to sparse or spike-and-slab alternatives (see sblm_ssvs), the horseshoe
prior delivers more scalable computing in p. This function uses a fast Cholesky-forward/backward
sampler when p < n and the Bhattacharya et al. (<https://doi.org/10.1093/biomet/asw042>) sampler
when p > n. Thus, the sampler can scale linear in n (for fixed/small p) or linear in p (for fixed/small
n). Empirically, the horseshoe prior performs best under sparse regimes, i.e., when the number of
true signals (nonzero regression coefficients) is a small fraction of the total number of variables.

To learn the transformation, SeBR infers the marginal CDF of the latent data model Fz by inte-
grating over the covariates X and the coefficients theta. When fixedX = TRUE, the X averaging is
empirical; otherwise it uses the Bayesian bootstrap (bb). By default, fixedX is set to FALSE for
smaller datasets (n < 500) and TRUE for larger datasets. When pilot_hs = TRUE, the algorithm fits
an initial linear regression model with a horseshoe prior (blm_bc_hs) to transformed data (under
a preliminary point estimate of the transformation) and uses that posterior distribution to integrate
over theta. Otherwise, this marginalization is done using a sparse Laplace approximation for speed
and simplicity.
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Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sblm_hs)

as well as the arguments passed in.

Note

The location (intercept) and scale (sigma_epsilon) are not identified, so any intercepts in X and
X_test will be removed. The model-fitting *does* include an internal location-scale adjustment,
but the function only outputs inferential summaries for the identifiable parameters.

Examples

# Simulate data from a transformed (sparse) linear model:
dat = simulate_tlm(n = 100, p = 50, g_type = 'step', prop_sig = 0.1)
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 25) # marginal distribution

# Fit the semiparametric Bayesian linear model with a horseshoe prior:
fit = sblm_hs(y = y, X = X, X_test = X_test)
names(fit) # what is returned

# Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, y_test,

alpha_level = 0.10) # coverage should be about 90%

# Check: correlation with true coefficients
cor(dat$beta_true, coef(fit))

# Compute 95% credible intervals for the coefficients:
ci_theta = t(apply(fit$post_theta, 2, quantile, c(0.05/2, 1 - 0.05/2)))

# True positive/negative rates for "selected" coefficients:
selected = ((ci_theta[,1] >0 | ci_theta[,2] < 0)) # intervals exclude zero
sigs_true = dat$beta_true != 0 # true signals
(TPR = sum(selected & sigs_true)/sum(sigs_true))
(TNR = sum(!selected & !sigs_true)/sum(!sigs_true))

# Summarize the transformation:
y0 = sort(unique(y)) # posterior draws of g are evaluated at the unique y observations
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plot(y0, fit$post_g[1,], type='n', ylim = range(fit$post_g),
xlab = 'y', ylab = 'g(y)', main = "Posterior draws of the transformation")

temp = sapply(1:nrow(fit$post_g), function(s)
lines(y0, fit$post_g[s,], col='gray')) # posterior draws

lines(y0, colMeans(fit$post_g), lwd = 3) # posterior mean
lines(y, dat$g_true, type='p', pch=2) # true transformation
legend('bottomright', c('Truth'), pch = 2) # annotate the true transformation

# Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),

xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)

lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))

lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)

sblm_modelsel Model selection for semiparametric Bayesian linear regression

Description

Compute model probabilities for semiparametric Bayesian linear regression with 1) an unknown
(nonparametric) transformation and 2) a sparsity prior on the regression coefficients. The model
probabilities are computed using direct Monte Carlo (not MCMC) sampling.

Usage

sblm_modelsel(
y,
X,
prob_inclusion = 0.5,
psi = length(y),
fixedX = (length(y) >= 500),
init_screen = NULL,
nsave = 1000,
override = FALSE,
ngrid = 100,
verbose = TRUE

)

Arguments

y n x 1 response vector

X n x p matrix of predictors (no intercept)

prob_inclusion prior inclusion probability for each variable



sblm_modelsel 33

psi prior variance (g-prior)

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

init_screen for the initial approximation, number of covariates to pre-screen (necessary
when p > n); if NULL, use n/log(n)

nsave number of Monte Carlo simulations

override logical; if TRUE, the user may override the default cancellation of the function
call when p > 15

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian model selection for a transformed linear model with sparse
g-priors on the regression coefficients. The transformation is modeled as unknown and learned
jointly with the model probabilities. This model applies for real-valued data, positive data, and
compactly-supported data (the support is automatically deduced from the observed y values). By
default, fixedX is set to FALSE for smaller datasets (n < 500) and TRUE for larger datasets.

Enumeration of all possible subsets is computationally demanding and should be reserved only for
small p. The function will exit for p > 15 unless override = TRUE.

This function exclusively computes model probabilities and does not provide other coefficient infer-
ence or prediction. These additions would be straightforward, but are omitted to save on computing
time. For prediction, inference, and computation with moderate to large p, use sblm_ssvs.

Value

a list with the following elements:

• post_probs the posterior probabilities for each model

• all_models: 2^p x p matrix where each row corresponds to a model from post_probs and
each column indicates inclusion (TRUE) or exclusion (FALSE) for that variable

• model: the model fit (here, sblm_modelsel)

as well as the arguments passed in.

Note

The location (intercept) and scale (sigma_epsilon) are not identified, so any intercept in X will
be removed. The model-fitting *does* include an internal location-scale adjustment, but the model
probabilities only refer to the non-intercept variables in X.
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Examples

# Simulate data from a transformed (sparse) linear model:
dat = simulate_tlm(n = 100, p = 5, g_type = 'beta')
y = dat$y; X = dat$X

hist(y, breaks = 25) # marginal distribution

# Package for conveniently computing all subsets:
library(plyr)

# Fit the semiparametric Bayesian linear model with model selection:
fit = sblm_modelsel(y = y, X = X)
names(fit) # what is returned

# Summarize the probabilities of each model (by size):
plot(rowSums(fit$all_models), fit$post_probs,

xlab = 'Model sizes', ylab = 'p(model | data)',
main = 'Posterior model probabilities', pch = 2, ylim = c(0,1))

# Highest probability model:
hpm = which.max(fit$post_probs)
fit$post_probs[hpm] # probability
which(fit$all_models[hpm,]) # which variables
which(dat$beta_true != 0) # ground truth

sblm_ssvs Semiparametric Bayesian linear model with stochastic search variable
selection

Description

MCMC sampling for semiparametric Bayesian linear regression with 1) an unknown (nonparamet-
ric) transformation and 2) a sparsity prior on the (possibly high-dimensional) regression coefficients.
Here, unlike sblm, Gibbs sampling is used for the variable inclusion indicator variables gamma, re-
ferred to as stochastic search variable selection (SSVS). All remaining terms–including the trans-
formation g, the regression coefficients theta, and any predictive draws–are drawn directly from
the joint posterior (predictive) distribution.

Usage

sblm_ssvs(
y,
X,
X_test = X,
psi = length(y),
fixedX = (length(y) >= 500),
approx_g = FALSE,



sblm_ssvs 35

init_screen = NULL,
a_pi = 1,
b_pi = 1,
nsave = 1000,
nburn = 1000,
ngrid = 100,
verbose = TRUE

)

Arguments

y n x 1 response vector

X n x p matrix of predictors (no intercept)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

init_screen for the initial approximation, number of covariates to pre-screen (necessary
when p > n); if NULL, use n/log(n)

a_pi shape1 parameter of the (Beta) prior inclusion probability

b_pi shape2 parameter of the (Beta) prior inclusion probability

nsave number of MCMC simulations to save

nburn number of MCMC iterations to discard

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed linear model with sparse g-priors
on the regression coefficients. The transformation is modeled as unknown and learned jointly with
the regression coefficients (unless approx_g = TRUE, which then uses a point approximation).
This model applies for real-valued data, positive data, and compactly-supported data (the support is
automatically deduced from the observed y values). By default, fixedX is set to FALSE for smaller
datasets (n < 500) and TRUE for larger datasets.

The sparsity prior is especially useful for variable selection. Compared to the horseshoe prior
version (sblm_hs), the sparse g-prior is advantageous because 1) it truly allows for sparse (i.e.,
exactly zero) coefficients in the prior and posterior, 2) it incorporates covariate dependencies via
the g-prior structure, and 3) it tends to perform well under both sparse and non-sparse regimes,
while the horseshoe version only performs well under sparse regimes. The disadvantage is that
SSVS does not scale nearly as well in p.

Following Scott and Berger (<https://doi.org/10.1214/10-AOS792>), we include a Beta(a_pi,
b_pi) prior on the prior inclusion probability. This term is then sampled with the variable inclusion
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indicators gamma in a Gibbs sampling block. All other terms are sampled using direct Monte Carlo
(not MCMC) sampling.

Alternatively, model probabilities can be computed directly (by Monte Carlo, not MCMC/Gibbs
sampling) using sblm_modelsel.

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the posterior predictive mean at the test points X_test

• selected: the variables (columns of X) selected by the median probability model

• pip: (marginal) posterior inclusion probabilities for each variable

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_gamma: nsave x p samples from the posterior distribution of the variable inclusion indi-
cators

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sblm_ssvs)

as well as the arguments passed in.

Note

The location (intercept) and scale (sigma_epsilon) are not identified, so any intercepts in X and
X_test will be removed. The model-fitting *does* include an internal location-scale adjustment,
but the function only outputs inferential summaries for the identifiable parameters.

Examples

# Simulate data from a transformed (sparse) linear model:
dat = simulate_tlm(n = 100, p = 15, g_type = 'step')
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 25) # marginal distribution

# Fit the semiparametric Bayesian linear model with sparsity priors:
fit = sblm_ssvs(y = y, X = X, X_test = X_test)
names(fit) # what is returned

# Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, y_test,

alpha_level = 0.10) # coverage should be about 90%

# Check: correlation with true coefficients
cor(dat$beta_true, coef(fit))
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# Selected coefficients under median probability model:
fit$selected

# True signals:
which(dat$beta_true != 0)

# Summarize the transformation:
y0 = sort(unique(y)) # posterior draws of g are evaluated at the unique y observations
plot(y0, fit$post_g[1,], type='n', ylim = range(fit$post_g),

xlab = 'y', ylab = 'g(y)', main = "Posterior draws of the transformation")
temp = sapply(1:nrow(fit$post_g), function(s)

lines(y0, fit$post_g[s,], col='gray')) # posterior draws
lines(y0, colMeans(fit$post_g), lwd = 3) # posterior mean
lines(y, dat$g_true, type='p', pch=2) # true transformation

# Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),

xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)

lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))

lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)

sbqr Semiparametric Bayesian quantile regression

Description

MCMC sampling for Bayesian quantile regression with an unknown (nonparametric) transforma-
tion. Like in traditional Bayesian quantile regression, an asymmetric Laplace distribution is as-
sumed for the errors, so the regression models targets the specified quantile. However, these models
are often woefully inadequate for describing observed data. We introduce a nonparametric trans-
formation to improve model adequacy while still providing inference for the regression coefficients
and the specified quantile. A g-prior is assumed for the regression coefficients.

Usage

sbqr(
y,
X,
tau = 0.5,
X_test = X,
psi = length(y),
laplace_approx = TRUE,
fixedX = TRUE,
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approx_g = FALSE,
nsave = 1000,
nburn = 100,
ngrid = 100,
verbose = TRUE

)

Arguments

y n x 1 response vector

X n x p matrix of predictors (no intercept)

tau the target quantile (between zero and one)

X_test n_test x p matrix of predictors for test data; default is the observed covariates
X

psi prior variance (g-prior)

laplace_approx logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed quantile linear model. The
transformation is modeled as unknown and learned jointly with the regression coefficients (un-
less approx_g = TRUE, which then uses a point approximation). This model applies for real-valued
data, positive data, and compactly-supported data (the support is automatically deduced from the ob-
served y values). The results are typically unchanged whether laplace_approx is TRUE/FALSE;
setting it to TRUE may reduce sensitivity to the prior, while setting it to FALSE may speed up
computations for very large datasets. Similarly, treating the covariates as fixed (fixedX = TRUE) can
substantially improve computing efficiency, so we make this the default.

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients

• fitted.values the estimated tauth quantile at test points X_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at test points
X_test



sbsm 39

• post_qtau: nsave x n_test samples of the tauth conditional quantile at test points X_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sbqr)

as well as the arguments passed in.

Note

The location (intercept) is not identified, so any intercepts in X and X_test will be removed. The
model-fitting *does* include an internal location-scale adjustment, but the function only outputs
inferential summaries for the identifiable parameters.

Examples

# Simulate some heteroskedastic data (no transformation):
dat = simulate_tlm(n = 200, p = 10, g_type = 'box-cox', heterosked = TRUE, lambda = 1)
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

# Target this quantile:
tau = 0.05

# Fit the semiparametric Bayesian quantile regression model:
fit = sbqr(y = y, X = X, tau = tau, X_test = X_test)
names(fit) # what is returned

# Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),

xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)

lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))

lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)

sbsm Semiparametric Bayesian spline model

Description

Monte Carlo sampling for Bayesian spline regression with an unknown (nonparametric) transfor-
mation. Cubic B-splines are used with a prior that penalizes roughness.
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Usage

sbsm(
y,
x = NULL,
x_test = x,
psi = NULL,
laplace_approx = TRUE,
fixedX = (length(y) >= 500),
approx_g = FALSE,
nsave = 1000,
ngrid = 100,
verbose = TRUE

)

Arguments

y n x 1 response vector

x n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]

x_test n_test x 1 vector of testing points; if NULL, assume equal to x

psi prior variance (inverse smoothing parameter); if NULL, sample this parameter

laplace_approx logical; if TRUE, use a normal approximation to the posterior in the definition
of the transformation; otherwise the prior is used

fixedX logical; if TRUE, treat the design as fixed (non-random) when sampling the
transformation; otherwise treat covariates as random with an unknown distribu-
tion

approx_g logical; if TRUE, apply large-sample approximation for the transformation

nsave number of Monte Carlo simulations

ngrid number of grid points for inverse approximations

verbose logical; if TRUE, print time remaining

Details

This function provides fully Bayesian inference for a transformed spline regression model using
Monte Carlo (not MCMC) sampling. The transformation is modeled as unknown and learned jointly
with the regression function (unless approx_g = TRUE, which then uses a point approximation).
This model applies for real-valued data, positive data, and compactly-supported data (the support
is automatically deduced from the observed y values). The results are typically unchanged whether
laplace_approx is TRUE/FALSE; setting it to TRUE may reduce sensitivity to the prior, while
setting it to FALSE may speed up computations for very large datasets. By default, fixedX is set to
FALSE for smaller datasets (n < 500) and TRUE for larger datasets (n >= 500).

Value

a list with the following elements:

• coefficients the posterior mean of the regression coefficients
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• fitted.values the posterior predictive mean at the test points x_test

• post_theta: nsave x p samples from the posterior distribution of the regression coefficients

• post_ypred: nsave x n_test samples from the posterior predictive distribution at x_test

• post_g: nsave posterior samples of the transformation evaluated at the unique y values

• model: the model fit (here, sbsm)

as well as the arguments passed in.

Examples

# Simulate some data:
n = 200 # sample size
x = sort(runif(n)) # observation points

# Transform a noisy, periodic function:
y = g_inv_bc(

sin(2*pi*x) + sin(4*pi*x) + rnorm(n),
lambda = .5) # Signed square-root transformation

# Fit the semiparametric Bayesian spline model:
fit = sbsm(y = y, x = x)
names(fit) # what is returned

# Note: this is Monte Carlo sampling...no need for MCMC diagnostics!

# Plot the model predictions (point and interval estimates):
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
plot(x, y, type='n', ylim = range(pi_y,y),

xlab = 'x', ylab = 'y', main = paste('Fitted values and prediction intervals'))
polygon(c(x, rev(x)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(x, y, type='p') # observed points
lines(x, fitted(fit), lwd = 3) # fitted curve

simulate_tlm Simulate a transformed linear model

Description

Generate training data (X, y) and testing data (X_test, y_test) for a transformed linear model. The
covariates are correlated Gaussian variables. A user-specified proportion (prop_sig) of the re-
gression coefficients are nonozero (= 1) and the rest are zero. There are multiple options for the
transformation, which define the support of the data (see below).
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Usage

simulate_tlm(
n,
p,
g_type = "beta",
n_test = 1000,
heterosked = FALSE,
lambda = 1,
prop_sig = 0.5

)

Arguments

n number of observations in the training data

p number of covariates

g_type type of transformation; must be one of beta, step, or box-cox

n_test number of observations in the testing data

heterosked logical; if TRUE, simulate the latent data with heteroskedasticity

lambda Box-Cox parameter (only applies for g_type = 'box-cox')

prop_sig proportion of signals (nonzero coefficients)

Details

The transformations vary in complexity and support for the observed data, and include the following
options: beta yields marginally Beta(0.1, 0.5) data supported on [0,1]; step generates a locally-
linear inverse transformation and produces positive data; and box-cox refers to the signed Box-
Cox family indexed by lambda, which generates real-valued data with examples including identity,
square-root, and log transformations.

Value

a list with the following elements:

• y: the response variable in the training data

• X: the covariates in the training data

• y_test: the response variable in the testing data

• X_test: the covariates in the testing data

• beta_true: the true regression coefficients

• g_true: the true transformation, evaluated at y

Note

The design matrices X and X_test do not include an intercept and there is no intercept parameter
in beta_true. The location/scale of the data are not identified in general transformed regression
models, so recovering them is not a goal.
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Examples

# Simulate data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'beta')
names(dat) # what is returned
hist(dat$y, breaks = 25) # marginal distribution

sir_adjust Post-processing with importance sampling

Description

Given Monte Carlo draws from the surrogate posterior, apply sampling importance reweighting
(SIR) to correct for the true model likelihood.

Usage

sir_adjust(
fit,
sir_frac = 0.3,
nsims_prior = 100,
marg_x = FALSE,
verbose = TRUE

)

Arguments

fit a fitted model object that includes
• coefficients the posterior mean of the regression coefficients
• post_theta: nsave x p samples from the posterior distribution of the re-

gression coefficients
• post_ypred: nsave x n_test samples from the posterior predictive distri-

bution at test points X_test
• post_g: nsave posterior samples of the transformation evaluated at the

unique y values
• model: the model fit (sblm or sbsm)

sir_frac fraction of draws to sample for SIR
nsims_prior number of draws from the prior
marg_x logical; if TRUE, compute the weights marginal over the covariates
verbose logical; if TRUE, print time remaining

Details

The Monte Carlo sampling for sblm and sbsm uses a surrogate likelihood for posterior inference,
which enables much faster and easier computing. SIR provides a correction for the actual (specified)
likelihood. However, this correction step typically does not produce any noticeable discrepancies,
even for small sample sizes.
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Value

the fitted model object with the posterior draws subsampled based on the SIR adjustment

Note

SIR sampling is done *without* replacement, so sir_frac is typically between 0.1 and 0.5. The
nsims_priors draws are used to approximate a prior expectation, but larger values can signifi-
cantly slow down this function. The importance weights can be computed conditionally (marg_x =
FALSE) or unconditionally (marg_x = TRUE) on the covariates, corresponding to whether or not the
covariates are marginalized out in the likelihood. The conditional version is much faster.

Examples

# Simulate some data:
dat = simulate_tlm(n = 50, p = 5, g_type = 'step')
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data

hist(y, breaks = 10) # marginal distribution

# Fit the semiparametric Bayesian linear model:
fit = sblm(y = y, X = X, X_test = X_test)
names(fit) # what is returned

# Update with SIR:
fit_sir = sir_adjust(fit)
names(fit_sir) # what is returned

# Prediction: unadjusted vs. adjusted?

# Point estimates:
y_hat = fitted(fit)
y_hat_sir = fitted(fit_sir)
cor(y_hat, y_hat_sir) # similar

# Interval estimates:
pi_y = t(apply(fit$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI
pi_y_sir = t(apply(fit_sir$post_ypred, 2, quantile, c(0.05, .95))) # 90% PI

# PI overlap (%):
overlaps = 100*sapply(1:length(y_test), function(i){

# innermost part
(min(pi_y[i,2], pi_y_sir[i,2]) - max(pi_y[i,1], pi_y_sir[i,1]))/
# outermost part
(max(pi_y[i,2], pi_y_sir[i,2]) - min(pi_y[i,1], pi_y_sir[i,1]))

})
summary(overlaps) # mostly close to 100%

# Coverage of PIs on testing data (should be ~ 90%)
mean((pi_y[,1] <= y_test)*(pi_y[,2] >= y_test)) # unadjusted
mean((pi_y_sir[,1] <= y_test)*(pi_y_sir[,2] >= y_test)) # adjusted
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# Plot together with testing data:
plot(y_test, y_test, type='n', ylim = range(pi_y, pi_y_sir, y_test),

xlab = 'y_test', ylab = 'y_hat', main = paste('Prediction intervals: testing data'))
abline(0,1) # reference line
suppressWarnings(

arrows(y_test, pi_y[,1], y_test, pi_y[,2],
length=0.15, angle=90, code=3, col='gray', lwd=2)

) # plot the PIs (unadjusted)
suppressWarnings(

arrows(y_test, pi_y_sir[,1], y_test, pi_y_sir[,2],
length=0.15, angle=90, code=3, col='darkgray', lwd=2)

) # plot the PIs (adjusted)
lines(y_test, y_hat, type='p', pch=2) # plot the means (unadjusted)
lines(y_test, y_hat_sir, type='p', pch=3) # plot the means (adjusted)

square_stabilize Numerically stabilize the squared elements

Description

Given a vector to be squared, add a numeric buffer for the elements very close to zero.

Usage

square_stabilize(vec)

Arguments

vec vector of inputs to be squared

Value

a vector of the same length as ‘vec‘

SSR_gprior Compute the sum-squared-residuals term under Zellner’s g-prior

Description

These sum-squared-residuals (SSR) arise in the variance (or precision) term under 1) Zellner’s g-
prior on the coefficients and a Gamma prior on the error precision and 2) marginalization over the
coefficients.

Usage

SSR_gprior(y, X = NULL, psi)
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Arguments

y vector of response variables

X matrix of covariates; if NULL, return sum(y^2)

psi prior variance (g-prior)

Value

a positive scalar

uni.slice Univariate Slice Sampler from Neal (2008)

Description

Compute a draw from a univariate distribution using the code provided by Radford M. Neal. The
documentation below is also reproduced from Neal (2008).

Usage

uni.slice(x0, g, w = 1, m = Inf, lower = -Inf, upper = +Inf, gx0 = NULL)

Arguments

x0 Initial point

g Function returning the log of the probability density (plus constant)

w Size of the steps for creating interval (default 1)

m Limit on steps (default infinite)

lower Lower bound on support of the distribution (default -Inf)

upper Upper bound on support of the distribution (default +Inf)

gx0 Value of g(x0), if known (default is not known)

Value

The point sampled, with its log density attached as an attribute.

Note

The log density function may return -Inf for points outside the support of the distribution. If a lower
and/or upper bound is specified for the support, the log density function will not be called outside
such limits.
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