
Package ‘SSN2’
January 20, 2025

Title Spatial Modeling on Stream Networks

Version 0.2.1

Description Spatial statistical modeling and prediction for data on stream networks, including mod-
els based on in-stream distance (Ver Hoef, J.M. and Peter-
son, E.E., (2010) <DOI:10.1198/jasa.2009.ap08248>.) Models are created using moving aver-
age constructions. Spatial linear models, including explanatory variables, can be fit with (re-
stricted) maximum likelihood. Mapping and other graphical functions are included.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 2.10)

Imports stats, sf, Matrix, generics, tibble, graphics, spmodel,
RSQLite, utils, withr

Suggests rmarkdown, knitr, testthat (>= 3.0.0), ggplot2, sp, statmod

Config/testthat/edition 3

VignetteBuilder knitr

URL https://usepa.github.io/SSN2/

BugReports https://github.com/USEPA/SSN2/issues

NeedsCompilation yes

Author Michael Dumelle [aut, cre] (<https://orcid.org/0000-0002-3393-5529>),
Jay M. Ver Hoef [aut],
Erin Peterson [aut],
Alan Pearse [ctb],
Dan Isaak [ctb]

Maintainer Michael Dumelle <Dumelle.Michael@epa.gov>

Repository CRAN

Date/Publication 2024-08-28 04:30:03 UTC

1

https://doi.org/10.1198/jasa.2009.ap08248
https://usepa.github.io/SSN2/
https://github.com/USEPA/SSN2/issues
https://orcid.org/0000-0002-3393-5529

2 Contents

Contents
AIC.SSN2 . 3
anova.SSN2 . 4
augment.SSN2 . 6
coef.SSN2 . 9
confint.SSN2 . 10
cooks.distance.SSN2 . 11
copy_lsn_to_temp . 12
covmatrix.SSN2 . 13
create_netgeom . 14
deviance.SSN2 . 15
fitted.SSN2 . 16
formula.SSN2 . 18
glance.SSN2 . 19
glances.SSN2 . 20
hatvalues.SSN2 . 21
influence.SSN2 . 22
labels.SSN2 . 23
logLik.SSN2 . 24
loocv.SSN2 . 25
mf04p . 26
MiddleFork04.ssn . 27
model.frame.SSN2 . 30
model.matrix.SSN2 . 31
plot.SSN2 . 32
plot.Torgegram . 33
predict.SSN2 . 34
print.SSN . 36
print.SSN2 . 36
pseudoR2.SSN2 . 37
residuals.SSN2 . 39
ssn_create_distmat . 40
ssn_get_data . 42
ssn_get_netgeom . 44
ssn_get_stream_distmat . 45
ssn_glm . 47
ssn_import . 55
ssn_import_predpts . 57
ssn_initial . 58
ssn_lm . 61
ssn_names . 67
ssn_params . 68
ssn_put_data . 69
ssn_simulate . 70
ssn_split_predpts . 75
ssn_subset . 77
SSN_to_SSN2 . 78

AIC.SSN2 3

ssn_update_path . 79
ssn_write . 80
summary.SSN . 81
summary.SSN2 . 82
tidy.SSN2 . 83
Torgegram . 84
varcomp.SSN2 . 86
vcov.SSN2 . 87

Index 88

AIC.SSN2 Compute AIC and AICc of fitted model objects

Description

Compute AIC and AICc for one or several fitted model objects for which a log-likelihood value can
be obtained.

Usage

S3 method for class 'ssn_lm'
AIC(object, ..., k = 2)

S3 method for class 'ssn_glm'
AIC(object, ..., k = 2)

S3 method for class 'ssn_lm'
AICc(object, ..., k = 2)

S3 method for class 'ssn_glm'
AICc(object, ..., k = 2)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Optionally more fitted model objects.

k The penalty parameter, taken to be 2. Currently not allowed to differ from 2
(needed for generic consistency).

Details

When comparing models fit by maximum or restricted maximum likelihood, the smaller the AIC
or AICc, the better the fit. The AICc contains a correction to AIC for small sample sizes. AIC and
AICc comparisons between "ml" and "reml" models are meaningless – comparisons should only
be made within a set of models estimated using "ml" or a set of models estimated using "reml".
AIC and AICc comparisons for "reml" must use the same fixed effects. To vary the covariance
parameters and fixed effects simultaneously, use "ml".

4 anova.SSN2

The AIC is defined as −2loglik+2(npar) and the AICc is defined as −2loglik+2n(npar)/(n−
npar − 1), where n is the sample size and npar is the number of estimated parameters. For "ml",
npar is the number of estimated covariance parameters plus the number of estimated fixed effects.
For "reml", npar is the number of estimated covariance parameters.

Value

If just one object is provided, a numeric value with the corresponding AIC or AICc.

If multiple objects are provided, a data.frame with rows corresponding to the objects and columns
representing the number of parameters estimated (df) and the AIC or AICc.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
AIC(ssn_mod)
AICc(ssn_mod)

anova.SSN2 Compute analysis of variance and likelihood ratio tests of fitted model
objects

Description

Compute analysis of variance tables for a fitted model object or a likelihood ratio test for two fitted
model objects.

Usage

S3 method for class 'ssn_lm'
anova(object, ..., test = TRUE, Terms, L)

S3 method for class 'ssn_glm'
anova(object, ..., test = TRUE, Terms, L)

S3 method for class 'anova.ssn_lm'
tidy(x, ...)

anova.SSN2 5

S3 method for class 'anova.ssn_glm'
tidy(x, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().
... An additional fitted model object from ssn_lm() or ssn_glm() (for anova()).
test A logical value indicating whether p-values from asymptotic Chi-squared hy-

pothesis tests should be returned. Defaults to TRUE.
Terms An optional character or integer vector that specifies terms in the model used

to jointly compute test statistics and p-values (if test = TRUE) against a null
hypothesis of zero. Terms is only used when a single fitted model object is
passed to the function. If Terms is a character vector, it should contain the names
of the fixed effect terms. If Terms is an integer vector, it should correspond to the
order (starting at one) of the names of the fixed effect terms. The easiest way to
obtain the names of all possible terms is to run tidy(anova(object))$effects
(the integer representation matches the positions of this vector).

L An optional numeric matrix or list specifying linear combinations of the coeffi-
cients in the model used to compute test statistics and p-values (if test = TRUE)
for coefficient constraints corresponding to a null hypothesis of zero. L is only
used when a single fitted model object is passed to the function. If L is a numeric
matrix, its rows indicate coefficient constraints and its columns represent coef-
ficients. Then a single hypothesis test is conducted against a null hypothesis of
zero. If L is a list, each list element is a numeric matrix specified as above. Then
separate hypothesis tests are conducted. The easiest way to obtain all possible
coefficients is to run tidy(object)$term.

x An object from anova(object).

Details

When one fitted model object is present, anova() performs a general linear hypothesis test corre-
sponding to some hypothesis specified by a matrix of constraints. If Terms and L are not specified,
each model term is tested against zero (which correspond to type III or marginal hypothesis tests
from classical ANOVA). If Terms is specified and L is not specified, all terms are tested jointly
against zero. When L is specified, the linear combinations of terms specified by L are jointly tested
against zero.

When two fitted model objects are present, one must be a "reduced" model nested in a "full" model.
Then anova() performs a likelihood ratio test.

Value

When one fitted model object is present, anova() returns a data frame with degrees of freedom
(Df), test statistics (Chi2), and p-values (Pr(>Chi2) if test = TRUE) corresponding to asymptotic
Chi-squared hypothesis tests for each model term.

When two fitted model objects are present, anova() returns a data frame with the difference in
degrees of freedom between the full and reduced model (Df), a test statistic (Chi2), and a p-value
corresponding to the likelihood ratio test (Pr(>Chi2) if test = TRUE).

6 augment.SSN2

Whether one or two fitted model objects are provided, tidy() can be used to obtain tidy tibbles of
the anova(object) output.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
anova(ssn_mod)
tidy(anova(ssn_mod))

augment.SSN2 Augment data with information from fitted model objects

Description

Augment accepts a fitted model object and a data set and adds information about each observation
in the data set. New columns always begin with a . prefix to avoid overwriting columns in the
original data set.

Augment behaves differently depending on whether the original data or new data requires augment-
ing. Typically, when augmenting the original data, only the fitted model object is specified, and
when augmenting new data, the fitted model object and newdata are specified. When augmenting
the original data, diagnostic statistics are augmented to each row in the data set. When augment-
ing new data, predictions and optional intervals (confidence or prediction) or standard errors are
augmented to each row in the new data set.

Usage

S3 method for class 'ssn_lm'
augment(
x,
drop = TRUE,
newdata = NULL,
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
level = 0.95,
...

)

augment.SSN2 7

S3 method for class 'ssn_glm'
augment(
x,
drop = TRUE,
newdata = NULL,
type = c("link", "response"),
se_fit = FALSE,
interval = c("none", "confidence", "prediction"),
newdata_size,
level = 0.95,
var_correct = TRUE,
...

)

Arguments

x A fitted model object from ssn_lm() or ssn_glm().

drop A logical indicating whether to drop extra variables in the fitted model object x
when augmenting. The default for drop is TRUE. drop is ignored if augmenting
newdata.

newdata A vector that contains the names of the prediction sf objects from the original
ssn.object requiring prediction. All of the original explanatory variables used
to create the fitted model object x must be present in each prediction sf object
represented by newdata. Defaults to NULL, which indicates that nothing has
been passed to newdata and augmenting occurs for the original data. The value
"ssn" is shorthand for specifying all prediction sf objects.

se_fit Logical indicating whether or not a .se.fit column should be added to aug-
mented output. Passed to predict() and defaults to FALSE.

interval Character indicating the type of confidence interval columns to add to the aug-
mented newdata output. Passed to predict() and defaults to "none".

level Tolerance/confidence level. The default is 0.95.

... Additional arguments to predict() when augmenting newdata.

type The scale (response or link) of predictions obtained using ssn_glm objects.

newdata_size The size value for each observation in newdata used when predicting for the
binomial family.

var_correct A logical indicating whether to return the corrected prediction variances when
predicting via models fit using ssn_glm. The default is TRUE.

Details

augment() returns a tibble as an sf object.

Missing response values from the original data can be augmented as if they were a newdata object
by providing ".missing" to the newdata argument.

8 augment.SSN2

Value

When augmenting the original data set, a tibble with additional columns

• .fitted: Fitted value

• .resid: Response residual (the difference between observed and fitted values)

• .hat: Leverage (diagonal of the hat matrix)

• .cooksd: Cook’s distance

• .std.resid: Standardized residuals

• .se.fit: Standard error of the fitted value.

When augmenting a new data set, a tibble with additional columns

• .fitted: Predicted (or fitted) value

• .lower: Lower bound on interval

• .upper: Upper bound on interval

• .se.fit: Standard error of the predicted (or fitted) value

When predictions for all prediction objects are desired, the output is a list where each element has
a name that matches the prediction objects and values that are the predictions.

See Also

tidy.SSN2() glance.SSN2()

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, predpts = "CapeHorn", overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
augment(ssn_mod)
augment(ssn_mod, newdata = "CapeHorn")

coef.SSN2 9

coef.SSN2 Extract fitted model coefficients

Description

coef extracts fitted model coefficients from fitted model objects. coefficients is an alias for it.

Usage

S3 method for class 'ssn_lm'
coef(object, type = "fixed", ...)

S3 method for class 'ssn_lm'
coefficients(object, type = "fixed", ...)

S3 method for class 'ssn_glm'
coef(object, type = "fixed", ...)

S3 method for class 'ssn_glm'
coefficients(object, type = "fixed", ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

type "fixed" for fixed effect coefficients, "tailup" for tailup covariance param-
eter coefficients, "taildown" for taildown covariance parameter coefficients,
"euclid" for Euclidean covariance parameter coefficients, "nugget" for nugget
covariance parameter coefficients, "dispersion" for the dispersion parameter
coefficient (ssn_glm() objects), "randcov" for random effect variance coeffi-
cients, or "ssn" for all of the tailup, taildown, Euclidean, nugget, and dispersion
(ssn_glm() objects) parameter coefficients. Defaults to "fixed".

... Other arguments. Not used (needed for generic consistency).

Value

A named vector of coefficients.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(

10 confint.SSN2

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
coef(ssn_mod)
coef(ssn_mod, type = "tailup")
coefficients(ssn_mod)

confint.SSN2 Confidence intervals for fitted model parameters

Description

Computes confidence intervals for one or more parameters in a fitted model object.

Usage

S3 method for class 'ssn_lm'
confint(object, parm, level = 0.95, ...)

S3 method for class 'ssn_glm'
confint(object, parm, level = 0.95, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

parm A specification of which parameters are to be given confidence intervals (a char-
acter vector of names). If missing, all parameters are considered.

level The confidence level required. The default is 0.95.

... Other arguments. Not used (needed for generic consistency).

Value

Gaussian-based confidence intervals (two-sided and equal-tailed) for the fixed effect coefficients
based on the confidence level specified by level. For ssn_glm() objects, confidence intervals are
on the link scale.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(

cooks.distance.SSN2 11

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
confint(ssn_mod)
confint(ssn_mod, level = 0.9)

cooks.distance.SSN2 Compute Cook’s distance

Description

Compute the Cook’s distance for each observation from a fitted model object.

Usage

S3 method for class 'ssn_lm'
cooks.distance(model, ...)

S3 method for class 'ssn_glm'
cooks.distance(model, ...)

Arguments

model A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Details

Cook’s distance measures the influence of an observation on a fitted model object. If an observation
is influential, its omission from the data noticeably impacts parameter estimates. The larger the
Cook’s distance, the larger the influence.

Value

A vector of Cook’s distance values for each observation from the fitted model object.

See Also

augment.SSN2() hatvalues.SSN2() influence.SSN2() residuals.SSN2()

12 copy_lsn_to_temp

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
cooks.distance(ssn_mod)

copy_lsn_to_temp Copy LSN to temporary directory

Description

Copies the LSN directory MiddleFork04.ssn to R’s temporary directory so the examples in SSN2
do not write to the local library or any other places.

Usage

copy_lsn_to_temp()

Details

Copies the LSN directory MiddleFork04.ssn to R’s temporary directory

Value

A copy of MiddleFork04.ssn residing in R’s temporary directory

Examples

copy_lsn_to_temp()
getwd()
setwd(tempdir())
getwd()
if unix-alike, list temporary directory contents using: system('ls')
if windows, list temporary directory contents using: shell('dir')

covmatrix.SSN2 13

covmatrix.SSN2 Create a covariance matrix

Description

Create a covariance matrix from a fitted model object.

Usage

S3 method for class 'ssn_lm'
covmatrix(object, newdata, cov_type, ...)

S3 method for class 'ssn_glm'
covmatrix(object, newdata, cov_type, ...)

Arguments

object A fitted model object (e.g., ssn_lm() or ssn_glm()).

newdata If omitted, the covariance matrix of the observed data is returned. If provided,
newdata is a data frame or sf object that contains coordinate information re-
quired to construct the covariance between newdata and the observed data. If
a data frame, newdata must contain variables that represent coordinates having
the same name as the coordinates from the observed data used to fit object. If
an sf object, coordinates are obtained from the geometry of newdata.

cov_type The type of covariance matrix returned. If newdata is omitted, the n×n covari-
ance matrix of the observed data is returned, where n is the sample size used to
fit object. If newdata is provided and cov_type is "pred.obs" (the default),
the m × n covariance matrix of the predicted and observed data is returned,
where m is the number of observations in the prediction data. If newdata is
provided and cov_type is "obs.pred", the n×m covariance matrix of the ob-
served and prediction data is returned. If newdata is provided and cov_type is
"pred.pred", the m×m covariance matrix of the prediction data is returned.

... Other arguments. Not used (needed for generic consistency).

Value

A covariance matrix (see cov_type).

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, predpts = "CapeHorn", overwrite = TRUE)

14 create_netgeom

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
covmatrix(ssn_mod)
covmatrix(ssn_mod, "CapeHorn")

create_netgeom Create netgeom column in SSN object

Description

Create netgeom column for edges, observed sites, and/or prediction sites in a Landscape Network
(LSN).

Usage

create_netgeom(sf_data, type = NULL, overwrite = FALSE)

Arguments

sf_data An sf object with LINESTING or POINT geometry created using link{lsn_to_ssn}
(see Details).

type Character string defining geometry type of sf_data. Default = NULL.
overwrite Logical indicating whether existing data should be overwritten if present. De-

fault = FALSE.

Details

Most users will not need to run create_netgeom themselves because it is called internally when
lsn_to_ssn is run or an SSN is imported using link[SSN2]{ssn_import} found in the SSN2 pack-
age. For users who do wish to run create_netgeom, the sf_data object must represent edges,
observed sites, or prediction sites in a SSN object created using link{lsn_to_ssn}.

The netgeom column contains information in character format used to describe the topology of
the LSN. The format and content of the netgeom column differs depending on whether sf_data
contains LINESTRING (edges) or POINT (observed or prediction sites) geometry. For edges, the
netgeom format is:

• 'ENETWORK (netID, rid, upDist)'

For observed or prediction sites, the netgeom format is:

• 'SNETWORK (netID, rid, upDist, ratio, pid, locID)'

The rid, ratio, upDist, netID, pid, and locID columns must be present in sf_data before netgeom
is added.

If overwrite = TRUE and a column named netgeom is present in sf_data, the data will be over-
written. Default = FALSE.

deviance.SSN2 15

Value

An sf object containing the original data from sf_data and an additional column named netgeom.

Examples

Create local temporary copy of MiddleFork04.ssn found in
the SSN2 package. Only necessary for this example.
copy_lsn_to_temp()

Import the SSN object with prediction points, pred1km
mf04<- ssn_import(

paste0(tempdir(), "/MiddleFork04.ssn"),
predpts = c("pred1km"),
overwrite = TRUE

)

Recalculate the netgeom column for the observed sites
sf_obs <- create_netgeom(

mf04$obs,
type = "POINT",
overwrite = TRUE

)

Recalculate the netgeom column for the edges
sf_edges <- create_netgeom(

mf04$edges,
type = "LINESTRING",
overwrite = TRUE

)

deviance.SSN2 Fitted model deviance

Description

Returns the deviance of a fitted model object.

Usage

S3 method for class 'ssn_lm'
deviance(object, ...)

S3 method for class 'ssn_glm'
deviance(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

16 fitted.SSN2

Details

The deviance is twice the difference in log-likelihoods between the saturated (perfect-fit) model and
the fitted model.

Value

The deviance.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_glm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
family = "Gamma",
tailup_type = "exponential",
additive = "afvArea"

)
deviance(ssn_mod)

fitted.SSN2 Extract model fitted values

Description

Extract fitted values from fitted model objects. fitted.values is an alias.

Usage

S3 method for class 'ssn_lm'
fitted(object, type = "response", ...)

S3 method for class 'ssn_lm'
fitted.values(object, type = "response", ...)

S3 method for class 'ssn_glm'
fitted(object, type = "response", ...)

S3 method for class 'ssn_glm'
fitted.values(object, type = "response", ...)

fitted.SSN2 17

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

type "response" for fitted values of the response, "tailup" for fitted values of the
tailup random errors, "taildown" for fitted values of the taildown random er-
rors, "euclid" for fitted values of the Euclidean random errors, "nugget" for
fitted values of the nugget random errors, or "randcov" for fitted values of the
random effects. If from ssn_glm(), "link" for fitted values on the link scale.
The default is "response".

... Other arguments. Not used (needed for generic consistency).

Details

When type is "response", the fitted values for each observation are the standard fitted values
Xβ̂. When type is "tailup", "taildown", "euclid", or "nugget" the fitted values for each
observation are (generally) the best linear unbiased predictors of the respective random error. When
type is "randcov", the fitted values for each level of each random effect are (generally) the best
linear unbiased predictors of the corresponding random effect. The fitted values for type "tailup",
"taildown", "euclid", "nugget", and "randcov" can generally be used to check assumptions for
each component of the fitted model object (e.g., check a Gaussian assumption).

If from ssn_glm(), when type is "response", the fitted values for each observation are the stan-
dard fitted values on the inverse link scale: g−1(Xβ̂ + ν), where g(.) is a link function, β are the
fixed effects, and ν are the spatial and random effects.

Value

The fitted values according to type.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
fitted(ssn_mod)
fitted.values(ssn_mod)

18 formula.SSN2

formula.SSN2 Model formulae

Description

Return formula used by a fitted model object.

Usage

S3 method for class 'ssn_lm'
formula(x, ...)

S3 method for class 'ssn_glm'
formula(x, ...)

Arguments

x A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

The formula used by a fitted model object.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
formula(ssn_mod)

glance.SSN2 19

glance.SSN2 Glance at a fitted model object

Description

Returns a row of model summaries from a fitted model object. Glance returns the same number of
columns for all models and estimation methods.

Usage

S3 method for class 'ssn_lm'
glance(x, ...)

S3 method for class 'ssn_glm'
glance(x, ...)

Arguments

x A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

A single-row tibble with columns

• n The sample size.

• p The number of fixed effects.

• npar The number of estimated covariance parameters.

• value The optimized value of the fitting function

• AIC The AIC.

• AICc The AICc.

• logLik The log-likelihood

• deviance The deviance.

• pseudo.r.squared The pseudo r-squared

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,

20 glances.SSN2

ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
glance(ssn_mod)

glances.SSN2 Glance at many fitted model objects

Description

glances() repeatedly calls glance() on several fitted model objects and binds the output together,
sorted by a column of interest.

Usage

S3 method for class 'ssn_lm'
glances(object, ..., sort_by = "AICc", decreasing = FALSE)

S3 method for class 'ssn_glm'
glances(object, ..., sort_by = "AICc", decreasing = FALSE)

Arguments

object Fitted model object from ssn_lm() or ssn_glm().

... Additional fitted model objects from ssn_lm() or ssn_glm().

sort_by Sort by a glance statistic (i.e., the name of a column output from glance() or
the order of model input (sort_by = "order"). The default is "AICc".

decreasing Should sort_by be decreasing or not? The default is FALSE.

Value

A tibble where each row represents the output of glance() for each fitted model object.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

tailup only
ssn_mod1 <- ssn_lm(

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",

hatvalues.SSN2 21

additive = "afvArea"
)
taildown only
ssn_mod2 <- ssn_lm(

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
taildown_type = "exponential"

)
glances(ssn_mod1, ssn_mod2)

hatvalues.SSN2 Compute leverage (hat) values

Description

Compute the leverage (hat) value for each observation from a fitted model object.

Usage

S3 method for class 'ssn_lm'
hatvalues(model, ...)

S3 method for class 'ssn_glm'
hatvalues(model, ...)

Arguments

model A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Details

Leverage values measure how far an observation’s explanatory variables are relative to the average
of the explanatory variables. In other words, observations with high leverage are typically consid-
ered to have an extreme or unusual combination of explanatory variables. Leverage values are the
diagonal of the hat (projection) matrix. The larger the hat value, the larger the leverage.

Value

A vector of leverage (hat) values for each observation from the fitted model object.

See Also

augment.SSN2() cooks.distance.SSN2() influence.SSN2() residuals.SSN2()

22 influence.SSN2

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
hatvalues(ssn_mod)

influence.SSN2 Regression diagnostics

Description

Provides basic quantities which are used in forming a wide variety of diagnostics for checking the
quality of fitted model objects.

Usage

S3 method for class 'ssn_lm'
influence(model, ...)

S3 method for class 'ssn_glm'
influence(model, ...)

Arguments

model A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Details

This function calls residuals.SSN2(), hatvalues.SSN2(), and cooks.distance.SSN2() and
puts the results into a tibble. It is primarily used when calling augment.SSN2().

Value

A tibble with residuals (.resid), leverage values (.hat), cook’s distance (.cooksd), and standard-
ized residuals (.std.resid).

labels.SSN2 23

See Also

augment.SSN2() cooks.distance.SSN2() hatvalues.SSN2() residuals.SSN2()

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
influence(ssn_mod)

labels.SSN2 Find labels from object

Description

Find a suitable set of labels from a fitted model object.

Usage

S3 method for class 'ssn_lm'
labels(object, ...)

S3 method for class 'ssn_glm'
labels(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

A character vector containing the terms used for the fixed effects from a fitted model object.

24 logLik.SSN2

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
labels(ssn_mod)

logLik.SSN2 Extract log-likelihood

Description

Find the log-likelihood of a fitted model.

Usage

S3 method for class 'ssn_lm'
logLik(object, ...)

S3 method for class 'ssn_glm'
logLik(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

The log-likelihood.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

loocv.SSN2 25

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
logLik(ssn_mod)

loocv.SSN2 Perform leave-one-out cross validation

Description

Perform leave-one-out cross validation with options for computationally efficient approximations
for big data.

Usage

S3 method for class 'ssn_lm'
loocv(object, cv_predict = FALSE, se.fit = FALSE, ...)

S3 method for class 'ssn_glm'
loocv(object, cv_predict = FALSE, se.fit = FALSE, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

cv_predict A logical indicating whether the leave-one-out fitted values should be returned.
Defaults to FALSE.

se.fit A logical indicating whether the leave-one-out prediction standard errors should
be returned. Defaults to FALSE.

... Other arguments. Not used (needed for generic consistency).

Details

Each observation is held-out from the data set and the remaining data are used to make a prediction
for the held-out observation. This is compared to the true value of the observation and several
model-fit statistics are computed across all observations.

Value

If cv_predict = FALSE and se.fit = FALSE, a tibble indicating several leave-one-out cross valida-
tion error metrics. If cv_predict = TRUE or se.fit = TRUE, a list with elements: stats, a tibble
indicating several leave-one-out cross validation metrics; cv_predict, a numeric vector with leave-
one-out predictions for each observation (if cv_predict = TRUE); and se.fit, a numeric vector
with leave-one-out prediction standard errors for each observation (if se.fit = TRUE).

If an ssn_lm object, the cross validation error metrics are:

26 mf04p

• bias: The average difference between the predicted value and true value

• std.bias: The average standardized difference between the predicted value and true value

• MSPE: The average squared difference between the predicted value and true value

• RMSPE: The root average squared difference between the predicted value and true value

• std.MSPE: The average standardized squared difference between the predicted value and true
value

• RAV: The root of the average estimated variance of the predicted value

• cor2: The squared correlation between the predicted and true values

• cover.80: Coverage rates of 80% prediction intervals built for the true values

• cover.90: Coverage rates of 90% prediction intervals built for the true values

• cover.95: Coverage rates of 95% prediction intervals built for the true values

If an ssn_glm object, the cross validation error metrics are:

• bias: The average difference between the predicted value and true value

• MSPE: The average squared difference between the predicted value and true value

• RMSPE: The root average squared difference between the predicted value and true value

• RAV: The root of the average estimated variance of the predicted value (on the link scale)

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
loocv(ssn_mod)

mf04p Imported SSN object from the MiddleFork04.ssn data folder

Description

The MiddleFork04.ssn data folder contains the spatial, attribute, and topological information needed
to construct a spatial stream network object using the SSN2 package. mf04p was created using
ssn_import().

MiddleFork04.ssn 27

Usage

mf04p

Format

An object of class SSN of length 4.

See Also

MiddleFork04.ssn for details about the contents of mf04p. ssn_import() to convert a .ssn object
to an SSN object in R. ssn_create_distmat for details about the distance matrix file structure.

MiddleFork04.ssn MiddleFork04.ssn: Middle Fork 2004 stream temperature dataset

Description

The MiddleFork04.ssn data folder contains the spatial, attribute, and topological information
needed to construct an SSN object using the SSN2 package.

Details

The MiddleFork04.ssn folder contains five geopackages:

• edges: geopackage with LINESTRING geometry representing the stream network

• sites: geopackage with POINT geometry representing the observed site locations

• pred1km: geopackage with POINT geometry prediction site locations at approximately 1km
intervals throughout the stream network

• CapeHorn: geopackage with POINT geometry representing prediction site locations on the
Cape Horn River

The MiddleFork04.ssn includes two text files, netID1.txt and netID2.txt, which contain the
topological information for the two stream networks in the Middle Fork 2004 dataset.

The distance folder contains four folders that store the hydrologic distance matrices for each of the
point datasets (obs, CapeHorn, and pred1km). See ssn_create_distmat() for a detailed descrip-
tion of the distance matrix file structure.

Attribute data is also stored within each of the spatial datasets. The column names are defined as
follows:

edges:

• rid: Reach identifier

• COMID: Common identifier of an NHD feature or relationship

• GNIS_Name: Feature name as found in the Geographic Names Information System

• REACHCODE: Unique identifier for a reach. The first 8 digits contain the identfier for the
HUC8 and the last 6 digits are a unique within-HUC8 identifier for the reach

28 MiddleFork04.ssn

• FTYPE: three-digit integer used to classify hydrography features in the NHD and define sub-
types

• FCODE: Numeric code that contains the feature type and its attributes as found in the NHD-
FCode lookup table

• AREAWTMAP: Area weighted mean annual precipitation (mm) at the lowermost location on
the edge

• SLOPE: Slope of the edge (cm/cm)

• rcaAreaKm2: Reach contributing area (km2) for each edge feature. The RCA represents the
land area that drains directly to the edge feature

• h2oAreaKm2: Watershed area (km2) for the lowermost location on the edge feature

• areaPI: Segment proportional influence value, calculated using watershed area (h2oAreaKm2)

• afvArea: Additive function value, calculated using areaPI

• upDist: Distance from the stream outlet (most downstream location in the the stream network)
to the uppermost location on the line segment

• Length: Length of line segment (m)

• netID: Network identifier

sites:

• rid: Reach identifier of the edge the site resides on

• pid: Point identifier

• STREAMNAME: Stream name

• COMID: Common identifier of an NHD feature or relationship

• AREAWTMAP: Area weighted mean annual precipitation (mm) at lowermost location on the
line segment where the site resides

• SLOPE: Slope of the line segment (cm/cm) where the site resides

• ELEV_DEM: Elevation at the site based on a 30m DEM

• Source: Source of the data - relates to the ID field of the source table

• Summer_mn: Overall summer mean termperature (C) of the deployment

• MaxOver20: Binary variable: 1 represents the maximum summer temperature was greater
than 20C and 0 indicates that it was less than 20C

• C16: Number of times daily stream temperature exceeded 16C

• C20: Number of times daily stream temperature exceeded 20C

• C24: Number of times daily stream temperature exceeded 24C

• FlowCMS: Average stream flow (cubic meters per sec) for August, by year, from 1950-2010
across 9 USGS gauges in the region

• AirMEANc: Average mean air temperature (C) from July 15 - August 31, from 1980-2009
across 10 COOP air stations within the domain

• AirMWMTc: Average maximum air temperature (C) from July 15 - August 31, from 1980-
2009 across 10 COOP air stations within the domain. MWMT = maximum 7-day moving
average of the maximum daily temperature (i.e. maximum of all the 7-day maximums)

MiddleFork04.ssn 29

• rcaAreaKm2: Reach contributing area (km2) for each edge feature the site resides on. The
RCA represents the land area that drains directly to the edge feature

• h2oAreaKm2: Watershed area (km2) for the lowermost location on the edge feature the site
resides on

• ratio: Site ratio value; provides the proportional distance from the downstream node of the
edge to the site location

• upDist: Distance upstream from the stream outlet (m)

• afvArea: Additive function value calculated using waterhsed area (h2oAreaKm2)

• locID: Location identifier

• netID: Stream network identifier

• snapdist: Distance (m) that site was moved when it was snapped to the edges

pred1km and CapeHorn:

• rid: Reach identifier of the edge the site resides on

• pid: Point identifier

• COMID: Common identifier of an NHD feature or relationship

• GNIS_Name: Feature name of the edge the site resides on, as found in the Geographic Names
Information System

• AREAWTMAP: Area weighted mean annual precipitation (mm) at lowermost location on the
line segment where the site resides

• SLOPE: Slope of the line segment (cm/cm) where the site resides

• ELEV_DEM: Elevation at the site based on a 30m DEM

• rcaAreaKm2: Reach contributing area (km2) for each edge feature the site resides on. The
RCA represents the land area that drains directly to the edge feature

• h2oAreaKm2: Watershed area (km2) for the lowermost location on the edge feature the site
resides on

• ratio: Site ratio value; provides the proportional distance along the edge to the site location

• upDist: Distance upstream from the stream outlet (m)

• afvArea: Additive function value calculated using watershed area (h2oAreaKm2)

• locID: Location identifier

• netID: Stream network identifier

• snapdist: Distance (m) that site was moved when it was snapped to the edges

• FlowCMS: Average stream flow (cubic meters per sec) for August, by year, from 1950-2010
across 9 USGS gauges in the region

• AirMEANc: Average mean air temperature (C) from July 15 - August 31, from 1980-2009
across 10 COOP air stations within the domain

• AirMWMTc: Average maximum air temperature (C) from July 15 - August 31, from 1980-
2009 across 10 COOP air stations within the domain. MWMT = maximum 7-day moving
average of the maximum daily temperature(i.e. maximum of all the 7-day maximums)

30 model.frame.SSN2

Source

edges are a modified version of the United States National Hydrography Dataset (http://nhd.usgs.gov/).
sites, pred1km and CapeHorn are unpublished United States Forest Service data.

See Also

mf04p for the Middle For 04 data as an SSN object.

model.frame.SSN2 Extract the model frame from a fitted model object

Description

Extract the model frame from a fitted model object.

Usage

S3 method for class 'ssn_lm'
model.frame(formula, ...)

S3 method for class 'ssn_glm'
model.frame(formula, ...)

Arguments

formula A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

A model frame that contains the variables used by the formula for the fitted model object.

See Also

stats::model.frame()

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,

model.matrix.SSN2 31

tailup_type = "exponential",
additive = "afvArea"

)
model.frame(ssn_mod)

model.matrix.SSN2 Extract the model matrix from a fitted model object

Description

Extract the model matrix (X) from a fitted model object.

Usage

S3 method for class 'ssn_lm'
model.matrix(object, ...)

S3 method for class 'ssn_glm'
model.matrix(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().
... Other arguments. Not used (needed for generic consistency).

Value

The model matrix (of the fixed effects), whose rows represent observations and whose columns
represent explanatory variables corresponding to each fixed effect.

See Also

stats::model.matrix()

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
model.matrix(ssn_mod)

32 plot.SSN2

plot.SSN2 Plot fitted model diagnostics

Description

Plot fitted model diagnostics such as residuals vs fitted values, quantile-quantile, scale-location,
Cook’s distance, residuals vs leverage, and Cook’s distance vs leverage.

Usage

S3 method for class 'ssn_lm'
plot(x, which, ...)

S3 method for class 'ssn_glm'
plot(x, which, ...)

Arguments

x A fitted model object from ssn_lm() or ssn_glm().

which An integer vector taking on values between 1 and 6, which indicates the plots to
return. Available plots are described in Details. If which has length greater than
one, additional plots are stepped through in order using <Return>. The default
is which = c(1, 2)

... Other arguments passed to other methods.

Details

For all fitted model objects„ the values of which make the corresponding plot:

• 1: Standardized residuals vs fitted values (of the response)

• 2: Normal quantile-quantile plot of standardized residuals

• 3: Scale-location plot of standardized residuals

• 4: Cook’s distance

• 5: Standardized residuals vs leverage

• 6: Cook’s distance vs leverage

Value

No return value. Function called for plotting side effects.

See Also

plot.Torgegram()

plot.Torgegram 33

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
plot(ssn_mod, which = 1)

plot.Torgegram Plot Torgegram

Description

Plot Torgegram

Usage

S3 method for class 'Torgegram'
plot(x, type, separate = FALSE, ...)

Arguments

x A Torgegram object from Torgegram().

type The type of semivariogram. Can take character values that are a subset of objects
in x. The default is names(x).

separate When type is length greater than one, whether each type be placed in a separate
plot. The default is FALSE.

... Other arguments passed to other methods.

Value

No return value. Function called for plotting side effects.

See Also

plot.SSN2

34 predict.SSN2

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

tg <- Torgegram(Summer_mn ~ 1, mf04p)
plot(tg)

predict.SSN2 Model predictions (Kriging)

Description

Predicted values and intervals based on a fitted model object.

Usage

S3 method for class 'ssn_lm'
predict(
object,
newdata,
se.fit = FALSE,
interval = c("none", "confidence", "prediction"),
level = 0.95,
block = FALSE,
...

)

S3 method for class 'ssn_glm'
predict(
object,
newdata,
type = c("link", "response"),
se.fit = FALSE,
interval = c("none", "confidence", "prediction"),
newdata_size,
level = 0.95,
var_correct = TRUE,
...

)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

predict.SSN2 35

newdata A character vector that indicates the name of the prediction data set for which
predictions are desired (accessible via object$ssn.object$preds). Note that
the prediction data must be in the original SSN object used to fit the model. If
newdata is omitted, predictions for all prediction data sets are returned. Note
that the name ".missing" indicates the prediction data set that contains the
missing observations in the data used to fit the model.

se.fit A logical indicating if standard errors are returned. The default is FALSE.

interval Type of interval calculation. The default is "none". Other options are "confidence"
(for confidence intervals) and "prediction" (for prediction intervals).

level Tolerance/confidence level. The default is 0.95.

block A logical indicating whether a block prediction over the entire region in newdata
should be returned. The default is FALSE, which returns point predictions for
each location in newdata. Currently only available for model fit using ssn_lm()
or models fit using ssn_glm() where family is "gaussian".

... Other arguments. Not used (needed for generic consistency).

type The scale (response or link) of predictions obtained using ssn_glm objects.

newdata_size The size value for each observation in newdata used when predicting for the
binomial family.

var_correct A logical indicating whether to return the corrected prediction variances when
predicting via models fit using ssn_glm. The default is TRUE.

Details

The (empirical) best linear unbiased predictions (i.e., Kriging predictions) at each site are returned
when interval is "none" or "prediction" alongside standard errors. Prediction intervals are also
returned if interval is "prediction". When interval is "confidence", the estimated mean is
returned alongside standard errors and confidence intervals for the mean.

Value

If se.fit is FALSE, predict.ssn() returns a vector of predictions or a matrix of predictions with
column names fit, lwr, and upr if interval is "confidence" or "prediction". If se.fit is
TRUE, a list with the following components is returned:

• fit: vector or matrix as above

• se.fit: standard error of each fit

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, predpts = "pred1km", overwrite = TRUE)

ssn_mod <- ssn_lm(

36 print.SSN2

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
predict(ssn_mod, "pred1km")

print.SSN Print SSN object

Description

Print information about the data found in an SSN object.

Usage

S3 method for class 'SSN'
print(x, ...)

Arguments

x An SSN object.

... Other arguments. Not used (needed for generic consistency).

Value

Print summary to console

print.SSN2 Print values

Description

Print fitted model objects and summaries.

Usage

S3 method for class 'ssn_lm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'ssn_glm'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

S3 method for class 'summary.ssn_lm'
print(
x,

pseudoR2.SSN2 37

digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...

)

S3 method for class 'summary.ssn_glm'
print(
x,
digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"),
...

)

S3 method for class 'anova.ssn_lm'
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...

)

S3 method for class 'anova.ssn_glm'
print(
x,
digits = max(getOption("digits") - 2L, 3L),
signif.stars = getOption("show.signif.stars"),
...

)

Arguments

x A fitted model object from ssn_lm(), a fitted model object from ssn_glm(), or
output from summary(x) or or anova(x).

digits The number of significant digits to use when printing.

... Other arguments passed to or from other methods.

signif.stars Logical. If TRUE, significance stars are printed for each coefficient

Value

Printed fitted model objects and summaries with formatting.

pseudoR2.SSN2 Compute a pseudo r-squared

Description

Compute a pseudo r-squared for a fitted model object.

38 pseudoR2.SSN2

Usage

S3 method for class 'ssn_lm'
pseudoR2(object, adjust = FALSE, ...)

S3 method for class 'ssn_glm'
pseudoR2(object, adjust = FALSE, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

adjust A logical indicating whether the pseudo r-squared should be adjusted to account
for the number of explanatory variables. The default is FALSE.

... Other arguments. Not used (needed for generic consistency).

Details

Several pseudo r-squared statistics exist for in the literature. We define this pseudo r-squared as one
minus the ratio of the deviance of a full model relative to the deviance of a null (intercept only)
model. This pseudo r-squared can be viewed as a generalization of the classical r-squared definition
seen as one minus the ratio of error sums of squares from the full model relative to the error sums of
squares from the null model. If adjusted, the adjustment is analogous to the the classical r-squared
adjustment.

Value

The pseudo r-squared as a numeric vector.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
pseudoR2(ssn_mod)

residuals.SSN2 39

residuals.SSN2 Extract fitted model residuals

Description

Extract residuals from a fitted model object. resid is an alias.

Usage

S3 method for class 'ssn_lm'
residuals(object, type = "response", ...)

S3 method for class 'ssn_lm'
resid(object, type = "response", ...)

S3 method for class 'ssn_lm'
rstandard(model, ...)

S3 method for class 'ssn_glm'
residuals(object, type = "deviance", ...)

S3 method for class 'ssn_glm'
resid(object, type = "deviance", ...)

S3 method for class 'ssn_glm'
rstandard(model, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

type "response" for response residuals, "pearson" for Pearson residuals, or "standardized"
for standardized residuals. For ssn_lm() fitted model objects, the default is
"response". For ssn_glm() fitted model objects, deviance residuals are also
available ("deviance") and are the default residual type.

... Other arguments. Not used (needed for generic consistency).

model A fitted model object from ssn_lm() or ssn_glm().

Details

The response residuals are taken as the response minus the fitted values for the response: y −Xβ̂.
The Pearson residuals are the response residuals pre-multiplied by their inverse square root. The
standardized residuals are Pearson residuals divided by the square root of one minus the leverage
(hat) value. The standardized residuals are often used to check model assumptions, as they have
mean zero and variance approximately one.

rstandard() is an alias for residuals(model, type = "standardized").

40 ssn_create_distmat

Value

The residuals as a numeric vector.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
residuals(ssn_mod)
resid(ssn_mod)
rstandard(ssn_mod)

ssn_create_distmat Calculate Hydrologic Distances for an SSN object

Description

Creates a collection of (non-symmetric) matrices containing pairwise downstream hydrologic dis-
tances between sites in an SSN object

Usage

ssn_create_distmat(
ssn.object,
predpts = NULL,
overwrite = FALSE,
among_predpts = FALSE,
only_predpts = FALSE

)

Arguments

ssn.object An SSN object
predpts name of prediction points in an SSN object. When a vector with length greater

than one, each name is iterated upon. Default is NULL.
overwrite Logical. If TRUE, overwrite existing distance matrices. Defaults to FALSE.
among_predpts Logical. If TRUE, compute the pairwise distances between the prediction sites.

Defaults to FALSE.
only_predpts Logical. If TRUE, only compute distances for prediction sites. Defaults to FALSE.

ssn_create_distmat 41

Details

A distance matrix that contains the hydrologic distance between any two sites in SSN object is
needed to fit a spatial statistical model using the tail-up and tail-down autocovariance functions
described in Ver Hoef and Peterson (2010). These models are implemented in R via ssn_lm and
ssn_glm in theSSN2 package. The hydrologic distance information needed to model the covariance
between flow-connected (i.e. water flows from one location to the other) and flow-unconnected
(i.e. water does not flow from one location to the other, but they reside on the same network) loca-
tions differs. The total hydrologic distance is a directionless measure; it represents the hydrologic
distance between two sites, ignoring flow direction. The hydrologic distance from each site to a
common downstream stream junction is used when creating models for flow-unconnected pairs,
which we term downstream hydrologic distance. In contrast, the total hydrologic distance is used
for modeling flow-connected pairs, which we term total hydrologic distance.

A downstream hydrologic distance matrix provides enough information to meet the data require-
ments for both the tail-up and tail-down models. When two locations are flow-connected, the down-
stream hydrologic distance from the upstream location to the downstream location is greater than
zero, but it is zero in the other direction. When two locations are flow-unconnected the downstream
hydrologic distance will be greater than zero in both directions. A site’s downstream hydrologic
distance to itself is equal to zero. The format of the downstream hydrologic distance matrix is
efficient because distance information needed to fit both the tail-up and tail-down models is only
stored once. As an example, a matrix containing the total hydrologic distance between sites is easily
calculated by adding the downstream distance matrix to its transpose.

The downstream hydrologic distances are calculated based on the binaryIDs and stored as matrices.
The matrices are stored in a directory named ‘distance’, which is created by the ssn_create_distmat
function within the .ssn directory. The distance directory will always contain at least one direc-
tory named ‘obs’, which contains a number of .RData files, one for each network that has ob-
served sites residing on it. The naming convention for the files is based on the netID number (e.g.
dist.net1.RData). Each matrix in the ‘obs’ folder contains the information to form a square matrix,
which contains the downstream hydrologic distance between each pair of observed sites on the net-
work. Direction is preserved, with columns representing the FROM site and rows representing the
TO site. Row and column names correspond to the pid attribute for each site.

If the argument predpts is specified in the call to the function, the downstream hydrologic dis-
tances between the observed and prediction sites will also be computed. A new directory is created
within the distance directory, with the name corresponding to the names attribute for the preds (e.g.
attributes(ssn.object$preds)$names). A sequence of .RData files is created within this di-
rectory, similar to the structure for the observed sites, except that two objects are stored for each
network that contains both observed and prediction sites. The letters a and b are used in the naming
convention to distinguish between the two objects (e.g. dist.net1.a and dist.net1.b). The matrices
that these objects represent are not necessarily square. In matrices of type a, rows correspond to
observed locations and columns to prediction locations. In contrast, rows correspond to prediction
locations and columns to observed locations in matrices of type b. Direction is also preserved, with
columns representing the FROM site and rows representing the TO site in both object types. Again,
row and column names correspond to the pid attribute for each site.

If among_predpts = TRUE, the downstream hydrologic distances will also be computed between
prediction sites, for each network. Again these are stored within the distance directory with the
name corresponding to the prediction points dataset. The naming convention for these prediction
to prediction site distance matrices is the same as the distance matrices stored in the ‘obs’ directory
(e.g. dist.net1.RData). These extra distance matrices are needed to perform block Kriging using

42 ssn_get_data

predict.ssn_lm.

If only_predpts = TRUE, the downstream hydrologic distances will not be calculated between ob-
served sites themselves. Pairwise distances will only be calculated for observed and prediction loca-
tions and. Pairwise distances between prediction locations will also be calculated if among_predpts
= TRUE.

Value

The ssn_create_distmat function creates a collection of hierarchical directories in the ssn$path
directory, which store the pairwise distances between sites associated with the SSN object. See
details section for additional information.

Examples

Copy the MiddleForke04.ssn data to a local temporary directory.
Only needed for this example.
copy_lsn_to_temp()
Import SSN data
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = c("pred1km.gpkg", "CapeHorn"),
overwrite = TRUE

)

Create distance matrices for observations and one set of prediction sites
Include hydrologic distance matrices among prediction sites.
ssn_create_distmat(mf04p,

predpts = "pred1km", overwrite = TRUE,
among_predpts = TRUE

)

Create distance matrices for an additional set of prediction points.
Distance matrices for observations and pred1km prediction sites are
not recalculated.
ssn_create_distmat(mf04p,

predpts = "CapeHorn", overwrite = TRUE,
among_predpts = TRUE, only_predpts = TRUE

)

ssn_get_data Get a data.frame from an SSN, ssn_lm, or ssn_glm object

Description

The ssn_get_data function extracts an sf data.frame for the observation or prediction data from an
SSN, ssn_lm, or ssn_glm object.

Usage

ssn_get_data(x, name = "obs")

ssn_get_data 43

Arguments

x An object of class SSN, ssn_lm, or ssn_glm.

name the internal name of the dataset in the object x. For observed values, this will
always be "obs", the default.

Details

The internal name for observed data in objects of class SSN is "obs" and it is the default. If another
name is specified, it must represent a prediction data set in the SSN, ssn_lm, or ssn_glm object. For
SSN objects, these names are obtained using the call names(x$preds). For all other object classes,
the names are obtained using the call names(x$ssn.object$preds).

Value

An sf data.frame

See Also

ssn_put_data()

Examples

Extract observed data from an SSN object
Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, predpts = "pred1km", overwrite = TRUE)

obs.df <- ssn_get_data(mf04p)
dim(obs.df)

Extract prediction data from an SSN object
names(mf04p$preds)
pred1km.df <- ssn_get_data(mf04p, name = "pred1km")
names(pred1km.df)

extract observed data from an ssn_lm object
ssn_mod <- ssn_lm(

formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
obs.mod.df <- ssn_get_data(ssn_mod)
summary(obs.mod.df)

44 ssn_get_netgeom

ssn_get_netgeom Extract netgeom column

Description

Extract topological information from netgeom column

Usage

ssn_get_netgeom(x, netvars = "all", reformat = FALSE)

Arguments

x An sf data.frame found in an SSN object or the netgeom column as a vector
netvars Network coordinate variables to return. Default is "all". For edges, valid col-

umn names include: "NetworkID", "SegmentID", and "DistanceUpstream". For
point datasets, valid column names include "NetworkID", "SegmentID", "Dis-
tanceUpstream", "ratio", "pid", and "locID".

reformat Convert network coordinate variables from character to numeric.

Details

When an SSN object is generated using the importSSN function, a text column named "netgeom"
is added to the edges, observed sites, and prediction sites (if they exist) data.frames. The netgeom
column contains data used to describe how edge and site features relate to one another in topo-
logical space. For edges, netgeom values contain the "ENETWORK" prefix, with 3 space delim-
ited values in parentheses: "ENETWORK (NetworkID SegmentID DistanceUpstream)". For point
datasets (observed and prediction sites), the values contain the "SNETWORK" prefix, followed by
6 space delimited values in parentheses: "SNETWORK (NetworkID SegmentID DistanceUpstream
ratio pid locID)". The ssn_get_netgeom function extracts and converts these values from text to
numeric, returning either a data.frame (default) or vector containing the variables requested via
netvars.

Value

If more than one column is requested using netvars, the function returns a data.frame (default). If
only one column is requested, the result is a vector.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_get_netgeom(mf04p$obs)
ssn_get_netgeom(mf04p$edges, "DistanceUpstream")

ssn_get_stream_distmat 45

ssn_get_stream_distmat

Get stream distance matrices from an SSN object

Description

Extracts the stream network distance matrices for the observation or prediction data from an SSN
object.

Usage

ssn_get_stream_distmat(x, name = "obs")

Arguments

x An SSN object

name Internal name of the dataset in the object x. For observed values, this will always
be "obs", the default. To get a stream network distance matrix for a prediction
data set, the name of the dataset must be given, in quotes.

Details

The internal name for observed data in objects of class SSN is "obs" and it is the default. If another
name is specified, it must represent a prediction data set in the SSN object. For SSN objects, these
names are obtained using the call names(x$preds).

Note that these are not traditional symmetric distance matrices. First, distances in an SSN object rep-
resent stream distance, or hydrologic distance, which is the distance between two locations when
movement is restricted to the branching stream network. Another important difference is the dis-
tance matrices for SSN objects contain the downstream only stream distance between two locations,
making them asymmetric. This asymmetry provides a way to store two types of spatial relationships
based on stream distance:

• Flow-connected: Water flows from an upstream site to a downstream site.

• Flow-unconnected: Two sites reside on the same stream network, but do not share flow.

For example, if two sites are flow-connected the downstream distance from the upstream site to
the downstream site is > 0, while the downstream distance between the downstream site and the
upstream site = 0. For flow-unconnected sites, the downstream distance represents the distance
from each site to the closest downstream junction and will be > 0 in both directions. Direction is
preserved, with columns representing the FROM site and rows representing the TO site. Row and
column names correspond to the unique point identifier "pid" for each site. From this matrix, it is
also possible to get total stream distance (downstream + upstream) between any two sites on the
same network (see examples for additional details).

Stream distances are only calculated within a network and so the asymmetric matrices are also
stored by network. For observation data, a single square matrix of distances is returned for each
network, with the names based on the netID value (e.g. "dist.net1", "dist.net2", etc.). However,

46 ssn_get_stream_distmat

two distance matrices ("a" and "b") are required to store the downstream only distance between
observed and prediction sites. The label "a" represents the downstream stream distance from pre-
diction sites to observation sites, and the label "b" represents the distance from observation sites to
predictions sites. Thus, the list of prediction matrices are labeled "dist.net1.a" for the downstream
only distance from prediction sites in the columns, to observation sites in the rows, for the first
network. A prediction matrix labeled "dist.net1.b" contains downstream distances from observa-
tion sites in the columns to prediction sites in the rows, for the first network. The downstream
only distance matrices for observations and predictions will be rectangular, unless the number of
observation and prediction locations are equal. If the argument amongPreds = TRUE was used in
the function ssn_create_distmat, then the distance between prediction sites themselves is also
returned, using the same labelling convention as for among observation sites. That is, the matrices
for each network will be labeled "dist.net1", "dist.net2", etc., for the first and second network, etc.

Value

A list of asymmetric downstream only stream distance matrices, by network.

References

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach to spatial statistical models
of stream networks. The Journal of the American Statistical Association, 105(489), 22–24

See Also

ssn_create_distmat()

Examples

For this example only, copy MiddleFork04.ssn directory to R's
temporary directory
copy_lsn_to_temp()
Create an SSN object with prediction sites
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = "pred1km", overwrite = TRUE
)

Create distance matrices for obs x obs, obs x preds, and preds x
preds
Not run:
ssn_create_distmat(mf04p,

predpts = "pred1km", among_predpts = TRUE,
overwrite = TRUE

)

End(Not run)

Check names of prediction datasets
names(mf04p$preds)

Get list of stream distance matrices for observations
dist_obs <- ssn_get_stream_distmat(mf04p)

ssn_glm 47

Display structure of list and names of the matrices
str(dist_obs)
names(dist_obs)
Look at first 5 rows and columns in asymmetric
downstream only distance matrix for netID == 1
dist_obs$dist.net1[1:5, 1:5]

Create symmetric total stream distance matrix between
observations
strdist_2 <- dist_obs$dist.net2 + t(dist_obs$dist.net2)
strdist_2[5:10, 5:10]

Get maximum downstream only distance between
observations on netID == 2
a.mat <- pmax(dist_obs$dist.net2, t(dist_obs$dist.net2))
a.mat[5:10, 5:10]

Get minimum downstream only distance between observations. If
minimum distance == 0, sites are flow-connected
b.mat <- pmin(dist_obs$dist.net2, t(dist_obs$dist.net2))
b.mat[5:10, 5:10]

Get distance matrices for pred1km
dist_pred1km <- ssn_get_stream_distmat(mf04p, name = "pred1km")
str(dist_pred1km)
names(dist_pred1km)
Look at first 5 rows and columns of downstream only distances
FROM prediction sites TO observed sites on netID == 1
dist_pred1km$dist.net1.a[1:5, 1:5]

Look at downstream only stream distances among prediction
sites in pred1km on netID == 1. This is useful for block
prediction
dist_pred1km$dist.net1[1:5, 1:5]

ssn_glm Fitting Generalized Linear Models for Spatial Stream Networks

Description

This function works on spatial stream network objects to fit generalized linear models with spatially
autocorrelated errors using likelihood methods, allowing for non-spatial random effects, anisotropy,
partition factors, big data methods, and more. The spatial formulation is described in Ver Hoef and
Peterson (2010) and Peterson and Ver Hoef (2010).

Usage

ssn_glm(
formula,
ssn.object,

48 ssn_glm

family,
tailup_type = "none",
taildown_type = "none",
euclid_type = "none",
nugget_type = "nugget",
tailup_initial,
taildown_initial,
euclid_initial,
nugget_initial,
dispersion_initial,
additive,
estmethod = "reml",
anisotropy = FALSE,
random,
randcov_initial,
partition_factor,
...

)

Arguments

formula A two-sided linear formula describing the fixed effect structure of the model,
with the response to the left of the ~ operator and the terms on the right, sepa-
rated by + operators.

ssn.object A spatial stream network object with class SSN.

family The generalized linear model family for use with ssn_glm(). Available options
include "Gaussian", "poisson", "nbinomial" (negative binomial), "binomial",
"beta", "Gamma", and "invgauss". When family is "Gaussian", arguments
are passed to and evaluated by ssn_lm(). Can be quoted or unquoted. Note that
the family argument only takes a single value, rather than the list structure used
by stats::glm. See Details for more.

tailup_type The tailup covariance function type. Available options include "linear", "spherical",
"exponential", "mariah", "epa", and "none". Parameterizations are described
in Details.

taildown_type The taildown covariance function type. Available options include "linear",
"spherical", "exponential", "mariah", "epa", and "none". Parameteriza-
tions are described in Details.

euclid_type The euclidean covariance function type. Available options include "spherical",
"exponential", "gaussian", "cosine", "cubic", "pentaspherical", "wave",
"jbessel", "gravity", "rquad", "magnetic", and "none". Parameterizations
are described in Details.

nugget_type The nugget covariance function type. Available options include "nugget" or
"none". Parameterizations are described in Details.

tailup_initial An object from tailup_initial() specifying initial and/or known values for
the tailup covariance parameters.

ssn_glm 49

taildown_initial

An object from taildown_initial() specifying initial and/or known values
for the taildown covariance parameters.

euclid_initial An object from euclid_initial() specifying initial and/or known values for
the euclidean covariance parameters.

nugget_initial An object from nugget_initial() specifying initial and/or known values for
the nugget covariance parameters.

dispersion_initial

An object from dispersion_initial() specifying initial and/or known values
for the tailup covariance parameters.

additive The name of the variable in ssn.object that is used to define spatial weights.
Can be quoted or unquoted. For the tailup covariance functions, these additive
weights are used for branching. Technical details that describe the role of the
additive variable in the tailup covariance function are available in Ver Hoef and
Peterson (2010).

estmethod The estimation method. Available options include "reml" for restricted maxi-
mum likelihood and "ml" for maximum likelihood. The default is "reml".

anisotropy A logical indicating whether (geometric) anisotropy should be modeled. Not
required if spcov_initial is provided with 1) rotate assumed unknown or
assumed known and non-zero or 2) scale assumed unknown or assumed known
and less than one. When anisotropy is TRUE, computational times can signifi-
cantly increase. The default is FALSE.

random A one-sided linear formula describing the random effect structure of the model.
Terms are specified to the right of the ~ operator. Each term has the struc-
ture x1 + ... + xn | g1/.../gm, where x1 + ... + xn specifies the model for
the random effects and g1/.../gm is the grouping structure. Separate terms
are separated by + and must generally be wrapped in parentheses. Random in-
tercepts are added to each model implicitly when at least one other variable is
defined. If a random intercept is not desired, this must be explicitly defined
(e.g., x1 + ... + xn - 1 | g1/.../gm). If only a random intercept is desired for
a grouping structure, the random intercept must be specified as 1 | g1/.../gm.
Note that g1/.../gm is shorthand for (1 | g1/.../gm). If only random inter-
cepts are desired and the shorthand notation is used, parentheses can be omitted.

randcov_initial

An optional object specifying initial and/or known values for the random effect
variances. See spmodel::randcov_initial().

partition_factor

A one-sided linear formula with a single term specifying the partition factor.
The partition factor assumes observations from different levels of the partition
factor are uncorrelated.

... Other arguments to stats::optim().

Details

The generalized linear model for spatial stream networks can be written as g(µ) = η = Xβ+ zu+
zd+ ze+n, where µ is the expectation of the response given the random errors, y, g() is a function

50 ssn_glm

that links the mean and η (and is called a link function), X is the fixed effects design matrix, β are
the fixed effects, zu is tailup random error, zd is taildown random error, and ze is Euclidean random
error, and n is nugget random error.

There are six generalized linear model families available: poisson assumes y is a Poisson random
variable nbinomial assumes y is a negative binomial random variable, binomial assumes y is a
binomial random variable, beta assumes y is a beta random variable, Gamma assumes y is a gamma
random variable, and inverse.gaussian assumes y is an inverse Gaussian random variable.

The supports for y for each family are given below:

• family: support of y

• Gaussian: −∞ < y < ∞
• poisson: 0 ≤ y; y an integer

• nbinomial: 0 ≤ y; y an integer

• binomial: 0 ≤ y; y an integer

• beta: 0 < y < 1

• Gamma: 0 < y

• inverse.gaussian: 0 < y

The generalized linear model families and the parameterizations of their link functions are given
below:

• family: link function

• Gaussian: g(µ) = η (identity link)

• poisson: g(µ) = log(η) (log link)

• nbinomial: g(µ) = log(η) (log link)

• binomial: g(µ) = log(η/(1− η)) (logit link)

• beta: g(µ) = log(η/(1− η)) (logit link)

• Gamma: g(µ) = log(η) (log link)

• inverse.gaussian: g(µ) = log(η) (log link)

The variance function of an individual y (given µ) for each generalized linear model family is given
below:

• family: V ar(y)

• Gaussian: σ2

• poisson: µϕ

• nbinomial: µ+ µ2/ϕ

• binomial: nµ(1− µ)ϕ

• beta: µ(1− µ)/(1 + ϕ)

• Gamma: µ2/ϕ

• inverse.gaussian: µ2/ϕ

ssn_glm 51

The parameter ϕ is a dispersion parameter that influences V ar(y). For the poisson and binomial
families, ϕ is always one. Note that this inverse Gaussian parameterization is different than a stan-
dard inverse Gaussian parameterization, which has variance µ3/λ. Setting ϕ = λ/µ yields our
parameterization, which is preferred for computational stability. Also note that the dispersion pa-
rameter is often defined in the literature as V (µ)ϕ, where V (µ) is the variance function of the mean.
We do not use this parameterization, which is important to recognize while interpreting dispersion
estimates. For more on generalized linear model constructions, see McCullagh and Nelder (1989).

In the generalized linear model context, the tailup, taildown, Euclidean, and nugget covariance
affect the modeled mean of an observation (conditional on these effects). On the link scale, the
tailup random errors capture spatial covariance moving downstream (and depend on downstream
distance), the taildown random errors capture spatial covariance moving upstream (and depend on
upstream) distance, the Euclidean random errors capture spatial covariance that depends on Eu-
clidean distance, and the nugget random errors captures variability independent of spatial locations.
η is modeled using a spatial covariance function expressed as de(zu) ∗R(zu) + de(zd) ∗R(zd) +
de(ze) ∗ R(ze) + nugget ∗ I . de(zu), de(zu), and de(zd) represent the tailup, taildown, and
Euclidean variances, respectively. R(zu), R(zd), and R(ze) represent the tailup, taildown, and
Euclidean correlation matrices, respectively. Each correlation matrix depends on a range parameter
that controls the distance-decay behavior of the correlation. nugget represents the nugget variance
and I represents an identity matrix.

tailup_type Details: Let D be a matrix of hydrologic distances, W be a diagonal matrix of weights
from additive, r = D/range, and I be an identity matrix. Then parametric forms for flow-
connected elements of R(zu) are given below:

• linear: (1− r) ∗ (r <= 1) ∗W
• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1) ∗W
• exponential: exp(−r) ∗W
• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0) ∗W
• epa: (D − range)2 ∗ F ∗ (r <= 1) ∗W/16range5

• none: I * W

Details describing the F matrix in the epa covariance are given in Garreta et al. (2010). Flow-
unconnected elements of R(zu) are assumed uncorrelated. Observations on different networks are
also assumed uncorrelated.

taildown_type Details: Let D be a matrix of hydrologic distances, r = D/range, and I be an
identity matrix. Then parametric forms for flow-connected elements of R(zd) are given below:

• linear: (1− r) ∗ (r <= 1)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

• exponential: exp(−r)

• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0)

• epa: (D − range)2 ∗ F1 ∗ (r <= 1)/16range5

• none: I

Now let A be a matrix that contains the shorter of the two distances between two sites and the
common downstream junction, r1 = A/range, B be a matrix that contains the longer of the two
distances between two sites and the common downstream junction, r2 = B/range, and I be an
identity matrix. Then parametric forms for flow-unconnected elements of R(zd) are given below:

52 ssn_glm

• linear: (1− r2) ∗ (r2 <= 1)

• spherical: (1− 1.5r1 + 0.5r2) ∗ (1− r2)2 ∗ (r2 <= 1)

• exponential: exp(−(r1 + r2))

• mariah: (log(90r1+1)−log(90r2+1))/(90r1−90r2)∗(A = /B)+(1/(90r1+1))∗(A = B)

• epa: (B − range)2 ∗ F2 ∗ (r2 <= 1)/16range5

• none: I

Details describing the F1 and F2 matrices in the epa covariance are given in Garreta et al. (2010).
Observations on different networks are assumed uncorrelated.

euclid_type Details: Let D be a matrix of Euclidean distances, r = D/range, and I be an identity
matrix. Then parametric forms for elements of R(ze) are given below:

• exponential: exp(−r)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

• gaussian: exp(−r2)

• cubic: (1− 7r2 + 8.75r3 − 3.5r5 + 0.75r7) ∗ (r <= 1)

• pentaspherical: (1− 1.875r + 1.25r3 − 0.375r5) ∗ (r <= 1)

• cosine: cos(r)

• wave: sin(r) ∗ (h > 0)/r + (h = 0)

• jbessel: Bj(h ∗ range), Bj is Bessel-J function

• gravity: (1 + r2)−0.5

• rquad: (1 + r2)−1

• magnetic: (1 + r2)−1.5

• none: I

nugget_type Details: Let I be an identity matrix and 0 be the zero matrix. Then parametric forms
for elements the nugget variance are given below:

• nugget: I

• none: 0

In short, the nugget effect is modeled when nugget_type is "nugget" and omitted when nugget_type
is "none".

estmethod Details: The various estimation methods are

• reml: Maximize the restricted log-likelihood.

• ml: Maximize the log-likelihood.

anisotropy Details: By default, all Euclidean covariance parameters except rotate and scale
are assumed unknown, requiring estimation. If either rotate or scale are given initial values
other than 0 and 1 (respectively) or are assumed unknown in euclid_initial(), anisotropy is
implicitly set to TRUE. (Geometric) Anisotropy is modeled by transforming a Euclidean covariance
function that decays differently in different directions to one that decays equally in all directions
via rotation and scaling of the original Euclidean coordinates. The rotation is controlled by the
rotate parameter in [0, π] radians. The scaling is controlled by the scale parameter in [0, 1]. The

ssn_glm 53

anisotropy correction involves first a rotation of the coordinates clockwise by rotate and then a
scaling of the coordinates’ minor axis by the reciprocal of scale. The Euclidean covariance is then
computed using these transformed coordinates.

random Details: If random effects are used (the estimation method must be "reml" or "ml"), the
model can be written as g(µ) = η = Xβ +W1γ1 + ...Wjγj + zu+ zd+ ze+ n, where each Z
is a random effects design matrix and each u is a random effect.

partition_factor Details: The partition factor can be represented in matrix form as P , where
elements of P equal one for observations in the same level of the partition factor and zero otherwise.
The covariance matrix involving only the spatial and random effects components is then multiplied
element-wise (Hadmard product) by P , yielding the final covariance matrix.

Other Details: Observations with NA response values are removed for model fitting, but their values
can be predicted afterwards by running predict(object).

Value

A list with many elements that store information about the fitted model object and has class ssn_glm.
Many generic functions that summarize model fit are available for ssn_glm objects, including AIC,
AICc, anova, augment, coef, cooks.distance, covmatrix, deviance, fitted, formula, glance,
glances, hatvalues, influence, labels, logLik, loocv, model.frame, model.matrix, plot,
predict, print, pseudoR2, summary, terms, tidy, update, varcomp, and vcov.

This fitted model list contains the following elements:

• additive: The name of the additive function value column.

• anisotropy: Whether euclidean anisotropy was modeled.

• call: The function call.

• coefficients: Model coefficients.

• contrasts: Any user-supplied contrasts.

• cooks_distance: Cook’s distance values.

• crs: The geographic coordinate reference system.

• deviance: The model deviance.

• diagtol: A tolerance value that may be added to the diagonal of ovariance matrices to en-
courage decomposition stability.

• estmethod: The estimation method.

• euclid_max: The maximum euclidean distance.

• family: The generalized linear model family

• fitted: Fitted values.

• formula: The model formula.

• hatvalues: The hat (leverage) values.

• is_known: An object that identifies which parameters are known.

• local_index: An index identifier used internally for sorting.

• missing_index: Which rows in the "obs" object had missing responses.

• n: The sample size.

54 ssn_glm

• npar: The number of estimated covariance parameters.

• observed_index: Which rows in the "obs" object had observed responses.

• optim: The optimization output.

• p: The number of fixed effects.

• partition_factor: The partition factor formula.

• pseudoR2: The pseudo R-squared.

• random: The random effect formula.

• residuals: The residuals.

• sf_column_name: The name of the geometry columns ssn.object

• size: The size of the binomial trials if relevant.

• ssn.object: An updated ssn.object.

• tail_max: The maximum stream distance.

• terms: The model terms.

• vcov: Variance-covariance matrices

• xlevels: The levels of factors in the model matrix.

• y: The response.

These list elements are meant to be used with various generic functions (e.g., residuals() that
operate on the model object. While possible to access elements of the fitted model list directly, we
strongly advise against doing so when there is a generic available to return the element of interest.
For example, we strongly recommend using residuals() to obtain model residuals instead of
accessing the fitted model list directly via object$residuals.

Note

This function does not perform any internal scaling. If optimization is not stable due to large
extremely large variances, scale relevant variables so they have variance 1 before optimization.

References

Garreta, V., Monestiez, P. and Ver Hoef, J.M. (2010) Spatial modelling and prediction on river
networks: up model, down model, or hybrid? Environmetrics 21(5), 439–456.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Peterson, E.E. and Ver Hoef, J.M. (2010) A mixed-model moving-average approach to geostatistical
modeling in stream networks. Ecology 91(3), 644–651.

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach for spatial statistical models
of stream networks (with discussion). Journal of the American Statistical Association 105, 6–18.
DOI: 10.1198/jasa.2009.ap08248. Rejoinder pgs. 22–24.

ssn_import 55

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_gmod <- ssn_glm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
family = "Gamma",
tailup_type = "exponential",
additive = "afvArea"

)
summary(ssn_gmod)

ssn_import Import SSN object

Description

This function reads spatial data from a .ssn folder and creates an SSN object.

Usage

ssn_import(path, include_obs = TRUE, predpts = NULL, overwrite = FALSE)

Arguments

path Filepath to the .ssn directory. See details.

include_obs default = TRUE. Logical indicating whether observed sites should be included in
the SSN object.

predpts Vector of prediction site dataset names found within the .ssn folder. See details.

overwrite default = FALSE. If TRUE, overwrite existing binaryID.db files and netgeom col-
umn(s) if it exists in the edges, observed sites (if include_obs = TRUE), and
prediction site datasets (if they exist).

Details

The ssn_import function imports spatial data (shapefile or GeoPackage format) from a .ssn folder
generated using the SSNbler package function SSNbler::lsn_to_ssn. The .ssn folder contains all
of the spatial, topological and attribute data needed to fit a spatial statistical stream network model
to streams data. This includes:

• An edges dataset with LINESTRING geometry representing the stream network.

56 ssn_import

• A sites dataset with POINT geometry where observed data were collected on the stream net-
work.

• Prediction sites dataset(s) representing locations where predictions will be made.

• netID.dat file(s) for each distinct network, which stores the topological relationships of the
line features in edges.

A more detailed description of the .ssn directory and its contents is provided in Peterson and Ver
Hoef (2014).

The ssn_import imports the edges, observed sites (optional), and prediction sites (optional) as sf
data.frame objects. A new column named ’netgeom’ is created to store important data represent-
ing topological relationships in a spatial stream network model. These data are stored in character
format, which is less likely to be inadvertantly changed by users. See create_netgeom for a more
detailed description of the format and contents of ’netgeom’.

The information contained in the netID text files is imported into an SQLite database, binaryID.db,
which is stored in the .ssn directory. This information is used internally by ssn_create_distmat,
ssn_lm and ssn_glm to calculate the data necessary to fit a spatial statistical model to stream net-
work data. If overwrite = TRUE (overwrite = FALSE is the default) and a binaryID.db file already
exists within the .ssn directory, it will be overwriten when the SSN object is created.

At a minimum, an SSN object must always contain streams, which are referred to as edges. The
SSN object would also typically contain a set of observed sites, where measurements have been
collected. Only one observed dataset is permitted in an SSN object. When include_obs=FALSE,
an SSN object is created without observations. This option provides flexibility for users who would
like to simulate data on a set of artifical sites on an existing stream network. Note that observation
sites must be included in the SSN object in order to fit models using ssn_lm or ssn_glm. The
SSN object may contain multiple sets of prediction points (or none), which are stored as separate
datasets in the .ssn directory. If predpts is a named vector, the names of the preds list in the SSN
object correspond to the vector names. Otherwise, they are set to the basename of the prediction
site dataset file(s) specified in predpts. The ssn_import_predpts function allows users to import
additional sets of prediction sites to a an existing SSN object.

Value

ssn_import returns an object of class SSN, which is a list with four elements containing:

• edges: An sf data.frame containing the stream network, with an additional ’netgeom’ col-
umn.

• obs: An sf data.frame containing observed site locations, with an additional ’netgeom’ col-
umn. NA if include_obs = FALSE.

• preds: A list of sf data.frames containing prediction site locations. An empty list is returned
if predpts is not provided.

• path: The local filepath for the .ssn directory associated with the SSN object.

References

Peterson, E., and Ver Hoef, J.M. (2014) STARS: An ArcGIS toolset used to calculate the spatial
information needed to fit spatial statistical stream network models to stream network data. Journal
of Statistical Software 56(2), 1–17.

ssn_import_predpts 57

Examples

Create local temporary copy of MiddleFork04.ssn found in
SSN2/lsndata folder. Only necessary for this example.
copy_lsn_to_temp()

Import SSN object with no prediction sites
mf04 <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

overwrite = TRUE
)

Import SSN object with 3 sets of prediction sites
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = c(
"pred1km",
"CapeHorn"

),
overwrite = TRUE

)

ssn_import_predpts Import prediction points into an SSN, ssn_lm, or ssn_glm object

Description

A shapefile of prediction points found in the .ssn directory are imported into an existing object of
class SSN, ssn_lm, or ssn_glm.

Usage

ssn_import_predpts(x, predpts)

Arguments

x An object of classSSN, ssn_lm, or ssn_glm.

predpts Name of the prediction point dataset to import in character format. See details.

Details

ssn_import_predpts imports one set of prediction points residing in the .ssn directory into an ex-
isting SSN, ssn_lm, or ssn_glm object. The prediction dataset must be in shapefile or geopackage
format (.shp or .gpkg, respectively) and reside in the ssn.object$path directory. The path for an SSN
object can be updated using ssn_update_path() prior to importing prediction datasets. The argu-
ment predpts accepts the name of the prediction point dataset, with or without the file extension. If
it is passed as a named vector (of length 1), then the name provided is used as the prediction dataset
name in the SSN object prediction sites list (e.g. names(ssn.obj$preds)). Otherwise, the file base-
name is used in the names attribute. See ssn_import for a detailed description of the prediction
dataset format within the SSN class object.

58 ssn_initial

When the prediction dataset is imported, a new column named netgeom is created. If this col-
umn already exists it is overwritten. Please see create_netgeom for a detailed description of the
netgeom column and the information it contains.

The prediction dataset specified in predpts must contain the spatial, topological and attribute in-
formation needed to make predictions using an ssn_lm or ssn_glm object. This information is
generated using the SSNbler package, which makes use of the functionality found in the sf and
igraph packages to process streams data in vector format.

Value

an object of class SSN, ssn_lm, or ssn_glm which contains the new prediction dataset.

Examples

Create local temporary copy of MiddleFork04.ssn found in
SSN2/lsndata folder. Only necessary for this example.
copy_lsn_to_temp()

Import SSN object with no prediction sites
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

overwrite = TRUE
)

Import pred1km prediction dataset into SSN object and assign the
name preds1
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

overwrite = TRUE)
mf04p <- ssn_import_predpts(mf04p, predpts = c(preds1 = "pred1km"))
names(mf04p$preds)

Import CapeHorn prediction dataset into a ssn_glm object, using
the default file basename as the name
ssn_gmod <- ssn_glm(Summer_mn ~ netID, mf04p,

family = "Gamma",
tailup_type = "exponential", additive = "afvArea"

)
ssn_gmod <- ssn_import_predpts(ssn_gmod, predpts = "CapeHorn")
names(ssn_gmod$ssn.object$preds)

ssn_initial Create a covariance parameter initial object

Description

Create a covariance parameter initial object that specifies initial and/or known values to use while
estimating specific covariance parameters with ssn_lm() or ssn_glm(). See spmodel::randcov_initial()
for documentation regarding random effect covariance parameter initial objects.

ssn_initial 59

Usage

tailup_initial(tailup_type, de, range, known)

taildown_initial(taildown_type, de, range, known)

euclid_initial(euclid_type, de, range, rotate, scale, known)

nugget_initial(nugget_type, nugget, known)

Arguments

tailup_type The tailup covariance function type. Available options include "linear", "spherical",
"exponential", "mariah", "epa", and "none".

de The spatially dependent (correlated) random error variance. Commonly referred
to as a partial sill.

range The correlation parameter.

known A character vector indicating which covariance parameters are to be assumed
known. The value "given" is shorthand for assuming all covariance parameters
given to *_initial() are assumed known.

taildown_type The taildown covariance function type. Available options include "linear",
"spherical", "exponential", "mariah", "epa", and "none".

euclid_type The euclidean covariance function type. Available options include "spherical",
"exponential", "gaussian", "cosine", "cubic", "pentaspherical", "wave",
"jbessel", "gravity", "rquad", "magnetic", and "none".

rotate Anisotropy rotation parameter (from 0 to π radians) for the euclidean portion of
the covariance. A value of 0 (the default) implies no rotation.

scale Anisotropy scale parameter (from 0 to 1) for the euclidean portion of the covari-
ance. A value of 1 (the default) implies no scaling.

nugget_type The nugget covariance function type. Available options include "nugget" or
"none".

nugget The spatially independent (not correlated) random error variance. Commonly
referred to as a nugget.

Details

Create an initial object for use with ssn_lm() or ssn_glm(). NA values can be given for ie, rotate,
and scale, which lets these functions find initial values for parameters that are sometimes otherwise
assumed known (e.g., rotate and scale with ssn_lm() and ssn_glm(). Parametric forms for each
spatial covariance type are presented below.

tailup_type Details: Let D be a matrix of hydrologic distances, W be a diagonal matrix of weights
from additive, r = D/range, and I be an identity matrix. Then parametric forms for flow-
connected elements of R(zu) are given below:

• linear: (1− r) ∗ (r <= 1) ∗W
• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1) ∗W

60 ssn_initial

• exponential: exp(−r) ∗W
• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0) ∗W
• epa: (D − range)2 ∗ F ∗ (r <= 1) ∗W/16range5

• none: I * W

Details describing the F matrix in the epa covariance are given in Garreta et al. (2010). Flow-
unconnected elements of R(zu) are assumed uncorrelated. Observations on different networks are
also assumed uncorrelated.

taildown_type Details: Let D be a matrix of hydrologic distances, r = D/range, and I be an
identity matrix. Then parametric forms for flow-connected elements of R(zd) are given below:

• linear: (1− r) ∗ (r <= 1)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

• exponential: exp(−r)

• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0)

• epa: (D − range)2 ∗ F1 ∗ (r <= 1)/16range5

• none: I

Now let A be a matrix that contains the shorter of the two distances between two sites and the
common downstream junction, r1 = A/range, B be a matrix that contains the longer of the two
distances between two sites and the common downstream junction, r2 = B/range, and I be an
identity matrix. Then parametric forms for flow-unconnected elements of R(zd) are given below:

• linear: (1− r2) ∗ (r2 <= 1)

• spherical: (1− 1.5r1 + 0.5r2) ∗ (1− r2)2 ∗ (r2 <= 1)

• exponential: exp(−(r1 + r2))

• mariah: (log(90r1+1)−log(90r2+1))/(90r1−90r2)∗(A = /B)+(1/(90r1+1))∗(A = B)

• epa: (B − range)2 ∗ F2 ∗ (r2 <= 1)/16range5

• none: I

Details describing the F1 and F2 matrices in the epa covariance are given in Garreta et al. (2010).
Observations on different networks are assumed uncorrelated.

euclid_type Details: Let D be a matrix of Euclidean distances, r = D/range, and I be an identity
matrix. Then parametric forms for elements of R(ze) are given below:

• exponential: exp(−r)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

• gaussian: exp(−r2)

• cubic: (1− 7r2 + 8.75r3 − 3.5r5 + 0.75r7) ∗ (r <= 1)

• pentaspherical: (1− 1.875r + 1.25r3 − 0.375r5) ∗ (r <= 1)

• cosine: cos(r)

• wave: sin(r) ∗ (h > 0)/r + (h = 0)

• jbessel: Bj(h ∗ range), Bj is Bessel-J function

ssn_lm 61

• gravity: (1 + r2)−0.5

• rquad: (1 + r2)−1

• magnetic: (1 + r2)−1.5

• none: I

nugget_type Details: Let I be an identity matrix and 0 be the zero matrix. Then parametric forms
for elements the nugget variance are given below:

• nugget: I

• none: 0

In short, the nugget effect is modeled when nugget_type is "nugget" and omitted when nugget_type
is "none".

Dispersion and random effect initial objects are specified via spmodel::dispersion_initial()
and spmodel::randcov_initial(), respectively.

Value

A list with two elements: initial and is_known. initial is a named numeric vector indicating
the spatial covariance parameters with specified initial and/or known values. is_known is a named
numeric vector indicating whether the spatial covariance parameters in initial are known or not.
The class of the list matches the the relevant spatial covariance type.

References

Peterson, E.E. and Ver Hoef, J.M. (2010) A mixed-model moving-average approach to geostatistical
modeling in stream networks. Ecology 91(3), 644–651.

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach for spatial statistical models
of stream networks (with discussion). Journal of the American Statistical Association 105, 6–18.
DOI: 10.1198/jasa.2009.ap08248. Rejoinder pgs. 22–24.

Examples

tailup_initial("exponential", de = 1, range = 20, known = "range")
tailup_initial("exponential", de = 1, range = 20, known = "given")
euclid_initial("spherical", de = 2, range = 4, scale = 0.8, known = c("range", "scale"))
dispersion_initial("nbinomial", dispersion = 5)

ssn_lm Fitting Linear Models for Spatial Stream Networks

Description

This function works on spatial stream network objects to fit linear models with spatially autocorre-
lated errors using likelihood methods, allowing for non-spatial random effects, anisotropy, partition
factors, big data methods, and more. The spatial formulation is described in Ver Hoef and Peterson
(2010) and Peterson and Ver Hoef (2010).

62 ssn_lm

Usage

ssn_lm(
formula,
ssn.object,
tailup_type = "none",
taildown_type = "none",
euclid_type = "none",
nugget_type = "nugget",
tailup_initial,
taildown_initial,
euclid_initial,
nugget_initial,
additive,
estmethod = "reml",
anisotropy = FALSE,
random,
randcov_initial,
partition_factor,
...

)

Arguments

formula A two-sided linear formula describing the fixed effect structure of the model,
with the response to the left of the ~ operator and the terms on the right, sepa-
rated by + operators.

ssn.object A spatial stream network object with class SSN.

tailup_type The tailup covariance function type. Available options include "linear", "spherical",
"exponential", "mariah", "epa", and "none". Parameterizations are described
in Details.

taildown_type The taildown covariance function type. Available options include "linear",
"spherical", "exponential", "mariah", "epa", and "none". Parameteriza-
tions are described in Details.

euclid_type The euclidean covariance function type. Available options include "spherical",
"exponential", "gaussian", "cosine", "cubic", "pentaspherical", "wave",
"jbessel", "gravity", "rquad", "magnetic", and "none". Parameterizations
are described in Details.

nugget_type The nugget covariance function type. Available options include "nugget" or
"none". Parameterizations are described in Details.

tailup_initial An object from tailup_initial() specifying initial and/or known values for
the tailup covariance parameters.

taildown_initial

An object from taildown_initial() specifying initial and/or known values
for the taildown covariance parameters.

euclid_initial An object from euclid_initial() specifying initial and/or known values for
the euclidean covariance parameters.

ssn_lm 63

nugget_initial An object from nugget_initial() specifying initial and/or known values for
the nugget covariance parameters.

additive The name of the variable in ssn.object that is used to define spatial weights.
Can be quoted or unquoted. For the tailup covariance functions, these additive
weights are used for branching. Technical details that describe the role of the
additive variable in the tailup covariance function are available in Ver Hoef and
Peterson (2010).

estmethod The estimation method. Available options include "reml" for restricted maxi-
mum likelihood and "ml" for maximum likelihood. The default is "reml".

anisotropy A logical indicating whether (geometric) anisotropy should be modeled. Not
required if spcov_initial is provided with 1) rotate assumed unknown or
assumed known and non-zero or 2) scale assumed unknown or assumed known
and less than one. When anisotropy is TRUE, computational times can signifi-
cantly increase. The default is FALSE.

random A one-sided linear formula describing the random effect structure of the model.
Terms are specified to the right of the ~ operator. Each term has the struc-
ture x1 + ... + xn | g1/.../gm, where x1 + ... + xn specifies the model for
the random effects and g1/.../gm is the grouping structure. Separate terms
are separated by + and must generally be wrapped in parentheses. Random in-
tercepts are added to each model implicitly when at least one other variable is
defined. If a random intercept is not desired, this must be explicitly defined
(e.g., x1 + ... + xn - 1 | g1/.../gm). If only a random intercept is desired for
a grouping structure, the random intercept must be specified as 1 | g1/.../gm.
Note that g1/.../gm is shorthand for (1 | g1/.../gm). If only random inter-
cepts are desired and the shorthand notation is used, parentheses can be omitted.

randcov_initial

An optional object specifying initial and/or known values for the random effect
variances. See spmodel::randcov_initial().

partition_factor

A one-sided linear formula with a single term specifying the partition factor.
The partition factor assumes observations from different levels of the partition
factor are uncorrelated.

... Other arguments to stats::optim().

Details

The linear model for spatial stream networks can be written as y = Xβ + zu + zd + ze + n,
where X is the fixed effects design matrix, β are the fixed effects, zu is tailup random error,
zd is taildown random error, and ze is Euclidean random error, and n is nugget random error.
The tailup random errors capture spatial covariance moving downstream (and depend on down-
stream distance), the taildown random errors capture spatial covariance moving upstream (and
depend on upstream) distance, the Euclidean random errors capture spatial covariance that de-
pends on Euclidean distance, and the nugget random errors captures variability independent of
spatial locations. The response y is modeled using a spatial covariance function expressed as
de(zu) ∗ R(zu) + de(zd) ∗ R(zd) + de(ze) ∗ R(ze) + nugget ∗ I . de(zu), de(zu), and de(zd)
represent the tailup, taildown, and Euclidean variances, respectively. R(zu), R(zd), and R(ze)
represent the tailup, taildown, and Euclidean correlation matrices, respectively. Each correlation

64 ssn_lm

matrix depends on a range parameter that controls the distance-decay behavior of the correlation.
nugget represents the nugget variance and I represents an identity matrix.

tailup_type Details: Let D be a matrix of hydrologic distances, W be a diagonal matrix of weights
from additive, r = D/range, and I be an identity matrix. Then parametric forms for flow-
connected elements of R(zu) are given below:

• linear: (1− r) ∗ (r <= 1) ∗W
• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1) ∗W
• exponential: exp(−r) ∗W
• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0) ∗W
• epa: (D − range)2 ∗ F ∗ (r <= 1) ∗W/16range5

• none: I * W

Details describing the F matrix in the epa covariance are given in Garreta et al. (2010). Flow-
unconnected elements of R(zu) are assumed uncorrelated. Observations on different networks are
also assumed uncorrelated.

taildown_type Details: Let D be a matrix of hydrologic distances, r = D/range, and I be an
identity matrix. Then parametric forms for flow-connected elements of R(zd) are given below:

• linear: (1− r) ∗ (r <= 1)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

• exponential: exp(−r)

• mariah: log(90r + 1)/90r ∗ (D > 0) + 1 ∗ (D = 0)

• epa: (D − range)2 ∗ F1 ∗ (r <= 1)/16range5

• none: I

Now let A be a matrix that contains the shorter of the two distances between two sites and the
common downstream junction, r1 = A/range, B be a matrix that contains the longer of the two
distances between two sites and the common downstream junction, r2 = B/range, and I be an
identity matrix. Then parametric forms for flow-unconnected elements of R(zd) are given below:

• linear: (1− r2) ∗ (r2 <= 1)

• spherical: (1− 1.5r1 + 0.5r2) ∗ (1− r2)2 ∗ (r2 <= 1)

• exponential: exp(−(r1 + r2))

• mariah: (log(90r1+1)−log(90r2+1))/(90r1−90r2)∗(A = /B)+(1/(90r1+1))∗(A = B)

• epa: (B − range)2 ∗ F2 ∗ (r2 <= 1)/16range5

• none: I

Details describing the F1 and F2 matrices in the epa covariance are given in Garreta et al. (2010).
Observations on different networks are assumed uncorrelated.

euclid_type Details: Let D be a matrix of Euclidean distances, r = D/range, and I be an identity
matrix. Then parametric forms for elements of R(ze) are given below:

• exponential: exp(−r)

• spherical: (1− 1.5r + 0.5r3) ∗ (r <= 1)

ssn_lm 65

• gaussian: exp(−r2)

• cubic: (1− 7r2 + 8.75r3 − 3.5r5 + 0.75r7) ∗ (r <= 1)

• pentaspherical: (1− 1.875r + 1.25r3 − 0.375r5) ∗ (r <= 1)

• cosine: cos(r)

• wave: sin(r) ∗ (h > 0)/r + (h = 0)

• jbessel: Bj(h ∗ range), Bj is Bessel-J function

• gravity: (1 + r2)−0.5

• rquad: (1 + r2)−1

• magnetic: (1 + r2)−1.5

• none: I

nugget_type Details: Let I be an identity matrix and 0 be the zero matrix. Then parametric forms
for elements the nugget variance are given below:

• nugget: I

• none: 0

In short, the nugget effect is modeled when nugget_type is "nugget" and omitted when nugget_type
is "none".

estmethod Details: The various estimation methods are

• reml: Maximize the restricted log-likelihood.

• ml: Maximize the log-likelihood.

anisotropy Details: By default, all Euclidean covariance parameters except rotate and scale
are assumed unknown, requiring estimation. If either rotate or scale are given initial values
other than 0 and 1 (respectively) or are assumed unknown in euclid_initial(), anisotropy is
implicitly set to TRUE. (Geometric) Anisotropy is modeled by transforming a Euclidean covariance
function that decays differently in different directions to one that decays equally in all directions
via rotation and scaling of the original Euclidean coordinates. The rotation is controlled by the
rotate parameter in [0, π] radians. The scaling is controlled by the scale parameter in [0, 1]. The
anisotropy correction involves first a rotation of the coordinates clockwise by rotate and then a
scaling of the coordinates’ minor axis by the reciprocal of scale. The Euclidean covariance is then
computed using these transformed coordinates.

random Details: If random effects are used, the model can be written as y = Xβ + W1γ1 +
...Wjγj+zu+zd+ze+n, where each Z is a random effects design matrix and each u is a random
effect.

partition_factor Details: The partition factor can be represented in matrix form as P , where
elements of P equal one for observations in the same level of the partition factor and zero otherwise.
The covariance matrix involving only the spatial and random effects components is then multiplied
element-wise (Hadmard product) by P , yielding the final covariance matrix.

Other Details: Observations with NA response values are removed for model fitting, but their values
can be predicted afterwards by running predict(object).

66 ssn_lm

Value

A list with many elements that store information about the fitted model object and has class ssn_lm.
Many generic functions that summarize model fit are available for ssn_lm objects, including AIC,
AICc, anova, augment, coef, cooks.distance, covmatrix, deviance, fitted, formula, glance,
glances, hatvalues, influence, labels, logLik, loocv, model.frame, model.matrix, plot,
predict, print, pseudoR2, summary, terms, tidy, update, varcomp, and vcov.

This fitted model list contains the following elements:

• additive: The name of the additive function value column.

• anisotropy: Whether euclidean anisotropy was modeled.

• call: The function call.

• coefficients: Model coefficients.

• contrasts: Any user-supplied contrasts.

• cooks_distance: Cook’s distance values.

• crs: The geographic coordinate reference system.

• deviance: The model deviance.

• diagtol: A tolerance value that may be added to the diagonal of ovariance matrices to en-
courage decomposition stability.

• estmethod: The estimation method.

• euclid_max: The maximum euclidean distance.

• fitted: Fitted values.

• formula: The model formula.

• hatvalues: The hat (leverage) values.

• is_known: An object that identifies which parameters are known.

• local_index: An index identifier used internally for sorting.

• missing_index: Which rows in the "obs" object had missing responses.

• n: The sample size.

• npar: The number of estimated covariance parameters.

• observed_index: Which rows in the "obs" object had observed responses.

• optim: The optimization output.

• p: The number of fixed effects.

• partition_factor: The partition factor formula.

• pseudoR2: The pseudo R-squared.

• random: The random effect formula.

• residuals: The residuals.

• sf_column_name: The name of the geometry columns ssn.object

• ssn.object: An updated ssn.object.

• tail_max: The maximum stream distance.

• terms: The model terms.

ssn_names 67

• vcov: Variance-covariance matrices

• xlevels: The levels of factors in the model matrix.

These list elements are meant to be used with various generic functions (e.g., residuals() that
operate on the model object. While possible to access elements of the fitted model list directly, we
strongly advise against doing so when there is a generic available to return the element of interest.
For example, we strongly recommend using residuals() to obtain model residuals instead of
accessing the fitted model list directly via object$residuals.

Note

This function does not perform any internal scaling. If optimization is not stable due to large
extremely large variances, scale relevant variables so they have variance 1 before optimization.

References

Garreta, V., Monestiez, P. and Ver Hoef, J.M. (2010) Spatial modelling and prediction on river
networks: up model, down model, or hybrid? Environmetrics 21(5), 439–456.

Peterson, E.E. and Ver Hoef, J.M. (2010) A mixed-model moving-average approach to geostatistical
modeling in stream networks. Ecology 91(3), 644–651.

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach for spatial statistical models
of stream networks (with discussion). Journal of the American Statistical Association 105, 6–18.
DOI: 10.1198/jasa.2009.ap08248. Rejoinder pgs. 22–24.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
summary(ssn_mod)

ssn_names Return names of data in an SSN object

Description

Extract and print names from the edges, sites and preds elements of an SSN object.

68 ssn_params

Usage

ssn_names(ssn.object)

Arguments

ssn.object An SSN object.

Value

Print variable names to console

ssn_params Create covariance parameter objects.

Description

Create a covariance parameter object for us with other functions. See spmodel::randcov_params()
for documentation regarding random effect covariance parameter objects.

Usage

tailup_params(tailup_type, de, range)

taildown_params(taildown_type, de, range)

euclid_params(euclid_type, de, range, rotate, scale)

nugget_params(nugget_type, nugget)

Arguments

tailup_type The tailup covariance function type. Available options include "linear", "spherical",
"exponential", "mariah", "epa", and "none".

de The spatially dependent (correlated) random error variance. Commonly referred
to as a partial sill.

range The correlation parameter.

taildown_type The taildown covariance function type. Available options include "linear",
"spherical", "exponential", "mariah", "epa", and "none".

euclid_type The euclidean covariance function type. Available options include "spherical",
"exponential", "gaussian", "cosine", "cubic", "pentaspherical", "wave",
"jbessel", "gravity", "rquad", "magnetic", and "none".

rotate Anisotropy rotation parameter (from 0 to π radians) for the euclidean portion of
the covariance. A value of 0 (the default) implies no rotation.

scale Anisotropy scale parameter (from 0 to 1) for the euclidean portion of the covari-
ance. A value of 1 (the default) implies no scaling.

ssn_put_data 69

nugget_type The nugget covariance function type. Available options include "nugget" or
"none".

nugget The spatially independent (not correlated) random error variance. Commonly
referred to as a nugget.

Value

A parameter object with class that matches the relevant type argument.

References

Peterson, E.E. and Ver Hoef, J.M. (2010) A mixed-model moving-average approach to geostatistical
modeling in stream networks. Ecology 91(3), 644–651.

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach for spatial statistical models
of stream networks (with discussion). Journal of the American Statistical Association 105, 6–18.
DOI: 10.1198/jasa.2009.ap08248. Rejoinder pgs. 22–24.

Examples

tailup_params("exponential", de = 1, range = 20)
taildown_params("exponential", de = 1, range = 20)
euclid_params("exponential", de = 1, range = 20, rotate = 0, scale = 1)
nugget_params("nugget", nugget = 1)

ssn_put_data Put an sf data.frame in an SSN object

Description

The ssn_put_data function puts an sf data.frame representing observation or prediction data into
an SSN, ssn_lm, or ssn_glm object.

Usage

ssn_put_data(data, x, name = "obs", resize_data = FALSE)

Arguments

data sf data.frame with point geometry.

x An object of class SSN, ssn_lm, or ssn_glm.

name the internal name of the data set in the object x. For observed data, this will
always be "obs", the default.

resize_data Logical. Indicates whether sf_df can have a different number of features than
the current data.frame in the object. Default is FALSE.

70 ssn_simulate

Details

The internal name for observed data in objects of class SSN, ssn_lm, and ssn_glm is "obs" and it is
the default. If another name is specified, it must represent a prediction dataset in the object. For SSN
objects, these names are obtained using the call names(x$preds). For all other object classes, the
names are obtained using the call names(x$ssn.object$preds).

The resize_sf_data argument specifies whether sf_data can have a different number of features
(i.e., rows) than the sf data.frame it is replacing. Care should be taken when resize_df is set to
TRUE, especially if the new sf_data has more features than the existing sf data.frame. In these cases,
the user is responsible for ensuring that the additional features have the correct spatial, topological,
and attribute data to accurately represent spatial relationships in the SSN object.

Value

Returns an object of the same class as x, which contains the sf data.frame sf_data.

See Also

ssn_get_data()

Examples

data(mf04p)
Extract observation data.frame from SSN object
obs.df <- ssn_get_data(mf04p)
Create a new column for summer mean temperature and set Value in
obs.df$Value <- obs.df$Summer_mn
obs.df$Value[1] <- NA

Put the modified sf data.frame into the SSN object
mf04p <- ssn_put_data(obs.df, mf04p)
head(ssn_get_data(mf04p)[, c("Summer_mn", "Value")])

ssn_simulate Simulate random variables on a stream network

Description

Simulate random variables on a stream network with a specific mean and covariance structure. De-
signed to use ssn_simulate(), but individual simulation functions for each resposne distribution
also exist.

Usage

ssn_simulate(
family = "Gaussian",
ssn.object,
network = "obs",
tailup_params,

ssn_simulate 71

taildown_params,
euclid_params,
nugget_params,
additive,
mean = 0,
samples = 1,
dispersion = 1,
size = 1,
randcov_params,
partition_factor,
...

)

ssn_rbeta(
ssn.object,
network = "obs",
tailup_params,
taildown_params,
euclid_params,
nugget_params,
dispersion = 1,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rbinom(
ssn.object,
network = "obs",
tailup_params,
taildown_params,
euclid_params,
nugget_params,
mean = 0,
size = 1,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rgamma(
ssn.object,
network = "obs",

72 ssn_simulate

tailup_params,
taildown_params,
euclid_params,
nugget_params,
dispersion = 1,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rinvgauss(
ssn.object,
network = "obs",
tailup_params,
taildown_params,
euclid_params,
nugget_params,
dispersion = 1,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rnbinom(
ssn.object,
network = "obs",
tailup_params,
taildown_params,
euclid_params,
nugget_params,
dispersion = 1,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rnorm(
ssn.object,
network = "obs",

ssn_simulate 73

tailup_params,
taildown_params,
euclid_params,
nugget_params,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

ssn_rpois(
ssn.object,
network = "obs",
tailup_params,
taildown_params,
euclid_params,
nugget_params,
mean = 0,
samples = 1,
additive,
randcov_params,
partition_factor,
...

)

Arguments

family The response distribution family. The default is "Gaussian".

ssn.object A spatial stream network object with class SSN. Random variables are simulated
for each row of ssn.object$obs.

network The spatial stream network to simulate on. Currently only allowed to be "obs"
for the ssn.object$obs object.

tailup_params An object from tailup_params() specifying the tailup covariance parameters.
taildown_params

An object from taildown_params() specifying the taildown covariance param-
eters.

euclid_params An object from euclid_params() specifying the Euclidean covariance param-
eters.

nugget_params An object from nugget_params() specifying the nugget covariance parameters.

additive The name of the variable in ssn.object that is used to define spatial weights.
Can be quoted or unquoted. For the tailup covariance functions, these additive
weights are used for branching. Technical details that describe the role of the
additive variable in the tailup covariance function are available in Ver Hoef and
Peterson (2010).

74 ssn_simulate

mean A numeric vector representing the mean. mean must have length 1 (in which
case it is recycled) or length equal to the number of rows in data. The default is
0.

samples The number of independent samples to generate. The default is 1.

dispersion The dispersion value (if relevant).

size A numeric vector representing the sample size for each binomial trial. The de-
fault is 1, which corresponds to a Bernoulli trial for each observation.

randcov_params A spmodel::randcov_params() object.

partition_factor

A formula indicating the partition factor.

... Other arguments. Not used (needed for generic consistency).

Details

Random variables are simulated via the product of the covariance matrix’s square (Cholesky) root
and independent standard normal random variables on the link scale, which are then used to simulate
a relevant variable on the response scale according to family. Computing the square root is a
significant computational burden and likely unfeasible for sample sizes much past 10,000. Because
this square root only needs to be computed once, however, it is nearly the sample computational
cost to call ssn_rnorm() for any value of samples.

If not using ssn_simulate(), individual simulation functions for each response distribution do
exist:

• ssn_rnorm(): Simulate from a Gaussian distribution

• ssn_rpois(): Simulate from a Poisson distribution

• ssn_rnbinom(): Simulate from a negative binomial distribution

• ssn_rbinom(): Simulate from a binomial distribution

• ssn_rbeta(): Simulate from a beta distribution

• ssn_rgamma(): Simulate from a gamma distribution

• ssn_rinvgauss(): Simulate from an inverse Gaussian distribution

Value

If samples is 1, a vector of random variables for each row of ssn.object$obs is returned. If
samples is greater than one, a matrix of random variables is returned, where the rows correspond
to each row of ssn.object$obs and the columns correspond to independent samples.

References

Ver Hoef, J.M. and Peterson, E.E. (2010) A moving average approach for spatial statistical models
of stream networks (with discussion). Journal of the American Statistical Association 105, 6–18.
DOI: 10.1198/jasa.2009.ap08248. Rejoinder pgs. 22–24.

ssn_split_predpts 75

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

tailup <- tailup_params("exponential", de = 0.1, range = 200)
taildown <- taildown_params("exponential", de = 0.4, range = 300)
euclid <- euclid_params("spherical", de = 0.2, range = 1000, rotate = 0, scale = 1)
nugget <- nugget_params("nugget", nugget = 0.1)
ssn_simulate("gaussian", mf04p, "obs", tailup, taildown, euclid, nugget, additive = "afvArea")

ssn_split_predpts Split a prediction dataset in an SSN object

Description

The splitPrediction function is used to split prediction sets in an SSN object into smaller pre-
diction sets. It returns a SSN object with additional prediction sets based on equal interval splits, a
factor, integer, character or logical column stored within the prediction set, or a logical expression.

Usage

ssn_split_predpts(
ssn,
predpts,
size_predpts,
by,
subset,
id_predpts,
keep = TRUE,
drop_levels = FALSE,
overwrite = FALSE

)

Arguments

ssn An SSN object.

predpts A character string representing the name of the prediction dataset.

size_predpts numeric value representing the size of the new prediction sets. The existing
prediction set is split equally to produce multiple prediction sets of this size

by character string representing the column name of type factor, integer, character
or logical that the split will be based on

76 ssn_split_predpts

subset logical expression indicating which elements or rows to keep; missing values
are taken as FALSE

id_predpts character string representing the new prediction dataset name. This value is only
specified when the subset method is used

keep logical value indicating whether the original prediction dataset should be re-
tained in the SSN object. Default is TRUE

drop_levels logical value indicating whether empty factor levels should be dropped in the by
column when the new prediction dataset(s) are created. Default is FALSE

overwrite logical indicating whether the new prediction dataset geopackage should be
deleted in the .ssn directory if it already exists. Default = FALSE

Details

Three methods have been provided to split prediction sets: size, by, and subset. The size method
is used to split the existing prediction set into multiple equally-sized prediction sets using the
size_predpts argument. Note that the final prediction set may be smaller in size than the oth-
ers if the total number of predictions is not evenly divisible by size_predpts. The by method is
used if the prediction set is to be split into multiple new prediction sets based on an existing column
of type factor, integer, character, or logical specified using the argument by. The subset method is
used to create one new prediction set based on a logical expression defined in subset.

When more than one prediction dataset is created the prediction dataset names will be appended
with a hyphen and prediction dataset number if more than one prediction dataset is created. For
example, when "preds" is split using size_predpts, the new names will be "preds-1", "preds-2",
and so forth.

When keep=FALSE, the prediction dataset is removed from the SSN object stored in memory, but is
not deleted from the .ssn directory specified in ssn$path.

Note that, only one method may be specified when the ssn_split_predpts function is called. The
distance matrices for the new prediction datasets must be created using the ssn_create_distmat
before predictions can be made.

Value

returns the SSN specified in ssn, with one or more new prediction sets. Geopackages of the new
prediction sets are written to the .ssn directory designated in ssn$path.

Examples

Import SSN object
copy_lsn_to_temp() ## Only needed for this example
ssn <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = c("pred1km", "CapeHorn"),
overwrite = TRUE

)

Split predictions based on 'size' method
ssn1 <- ssn_split_predpts(ssn, "CapeHorn",

size_predpts = 200,
keep = FALSE, overwrite = TRUE

ssn_subset 77

)
names(ssn1$preds)
nrow(ssn1$preds[["CapeHorn-1"]])

Split predictions using 'by' method
ssn$preds$pred1km$net.fac <- as.factor(ssn$preds$pred1km$netID)
ssn2 <- ssn_split_predpts(ssn, "pred1km",

by = "net.fac",
overwrite = TRUE

)
names(ssn2$preds)

Split predictions using 'subset' method
ssn3 <- ssn_split_predpts(ssn, "pred1km",

subset = ratio > 0.5,
id_predpts = "RATIO_05", overwrite = TRUE

)
names(ssn3$preds)

ssn_subset Subset an SSN object

Description

Returns an SSN object that has been subset based on a logical expression.

Usage

ssn_subset(ssn, path, subset, clip = FALSE, overwrite = FALSE)

Arguments

ssn An SSN object.

path The filepath to the .ssn folder, in string format, where the subset SSN will be
saved.

subset A logical expression indicating which features to keep.

clip If TRUE, create a subset of the edges and prediction sites, based on the same
logical expression used to subset the observed sites. Default = FALSE.

overwrite If TRUE, overwrite the folder specified in path if it exists. Default = FALSE.

Details

This function creates a subset of the original SSN object based on a logical expression defined in
the subset argument. The subset argument is treated as an expression within ssn_subset() and
so the full argument is not a string; although values in factor or character format will still require
quotes (see examples). If clip = TRUE, then the columns referred to in subset must be present in
the edges and all of the prediction datasets (if present in the SSN object). Note that features with

78 SSN_to_SSN2

missing values in the subset expression are treated as false and are not included in the subset SSN
object.

Once the subset SSN object has been written to the local directory, it is re-imported using ssn_import.
During this process, the binaryID.db is recreated. If distance matrices exist in the original SSN
object, they are not copied or recalculated for the new SSN object. Users will need to run the
ssn_create_distmat to create the distance matrices before fitting models to the data in the subset
SSN.

Value

an object of class SSN, which is stored locally in the .ssn directory specified in path. It also creates
and stores an SQLite database, binaryID.db, within the .ssn directory.

Examples

Import SSN object
copy_lsn_to_temp() ## Only needed for this example
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = "pred1km",
overwrite = TRUE

)

Subset SSN observations, edges, and prediction sites on network 1
ssn.sub1 <- ssn_subset(mf04p,

path = paste0(tempdir(), "/subset1.ssn"),
subset = netID == 1, clip = TRUE,
overwrite = TRUE

)

Subset SSN observations, removing two sites
ssn.sub2 <- ssn_subset(mf04p,

path = paste0(tempdir(), "/subset2.ssn"),
subset = !COMID %in% c("23519461", "23519365"),
overwrite = TRUE

)

SSN_to_SSN2 Convert object from SpatialStreamNetwork class to SSN class

Description

Convert an S4 SpatialStreamNetwork object created in the SSN package to an S3 SSN object used
in the SSN2 package.

Usage

SSN_to_SSN2(object)

ssn_update_path 79

Arguments

object A SpatialStreamNetwork object

Details

SSN_to_SSN2() has been made available to help users migrate from the SSN package to the updated
SSN2 package. It is used to convert existing S4 SpatialStreamNetwork objects stored in saved
workspaces to the S3 SSN class object used in the SSN2 package. Note that ssn_import is used to
create an S3 SSN object from data stored locally in a .ssn directory.

Value

An S3 SSN class object.

ssn_update_path Update path in an SSN object

Description

Update the local path in an existing SSN object based on an user defined file.

Usage

ssn_update_path(x, path, verbose = FALSE)

Arguments

x An SSN, ssn_lm or ssn_glm object.

path Filepath to the .ssn folder associated with the SSN object.

verbose A logical that indicates if the new path should be printed to the console.

Details

At times, it may be necessary to move a .ssn directory, which is linked to an SSN object in an R
workspace. If the .ssn directory is moved, the path must be updated before using the ssn_glmssn
function and other functions that read/write to the .ssn directory. The ssn_update_path is a helper
function that serves this purpose.

Value

An SSN object with a new path list element.

80 ssn_write

Examples

Use mf04p SSN object provided in SSN2
data(mf04p)

For examples only, make sure mf04p has the correct path
If you use ssn_import(), the path will be correct
newpath <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_update_path(mf04p, newpath)

ssn_write write an SSN object

Description

This function writes an SSN object to a local .ssn directory

Usage

ssn_write(ssn, path, overwrite = FALSE, copy_dist = FALSE, import = FALSE)

Arguments

ssn An SSN object.

path filepath to the local .ssn directory to write to.

overwrite If TRUE, overwrite existing files in file (if it exists). Defaults to FALSE.

copy_dist If TRUE, copy distance matrices to file (if they exist). Defaults to FALSE.

import If TRUE, import and return the SSN object after writing to file. Defaults to FALSE.

Value

ssn_write creates an .ssn directory that contains the spatial, topological, and attribute information
stored in the original SSN object. Spatial datasets found in the SSN object (e.g. edges, obs, and
prediction sites) are saved in GeoPackage format. When import = TRUE, the SSN object is imported
and returned.

Examples

For examples only, copy MiddleFork04.ssn directory to R's
temporary directory
copy_lsn_to_temp()
Import SSN object with prediction sites
mf04p <- ssn_import(paste0(tempdir(), "/MiddleFork04.ssn"),

predpts = "pred1km",
overwrite = TRUE

)

Write SSN to new .ssn directory

summary.SSN 81

ssn_write(mf04p,
path = paste0(tempdir(), "/tempSSN.ssn"),
overwrite = TRUE

)

Write SSN to .ssn directory and return SSN object
tempSSN <- ssn_write(mf04p, path = paste0(

tempdir(),
"/tempSSN.ssn"

), overwrite = TRUE, import = TRUE)

summary.SSN Summarize an SSN object

Description

Summarize data found in an SSN object.

Usage

S3 method for class 'SSN'
summary(object, ...)

Arguments

object An SSN object.

... Other arguments. Not used (needed for generic consistency).

Details

summary.SSN() creates a summary of a SSN object intended to be printed using print(). This
summary contains information about the number of observed and prediction locations, as well as
the column names found in their respective sf data.frames.

Value

A list with several fitted model quantities used to create informative summaries when printing.

82 summary.SSN2

summary.SSN2 Summarize a fitted model object

Description

Summarize a fitted model object.

Usage

S3 method for class 'ssn_lm'
summary(object, ...)

S3 method for class 'ssn_glm'
summary(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Details

summary.ssn() creates a summary of a fitted model object intended to be printed using print().
This summary contains useful information like the original function call, residuals, a coefficients
table, a pseudo r-squared, and estimated covariance parameters.

Value

A list with several fitted model quantities used to create informative summaries when printing.

See Also

print.SSN2

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

tidy.SSN2 83

)
summary(ssn_mod)

tidy.SSN2 Tidy a fitted model object

Description

Tidy a fitted model object into a summarized tibble.

Usage

S3 method for class 'ssn_lm'
tidy(x, conf.int = FALSE, conf.level = 0.95, effects = "fixed", ...)

S3 method for class 'ssn_glm'
tidy(x, conf.int = FALSE, conf.level = 0.95, effects = "fixed", ...)

Arguments

x A fitted model object from ssn_lm() or ssn_glm().

conf.int Logical indicating whether or not to include a confidence interval in the tidied
output. The default is FALSE.

conf.level The confidence level to use for the confidence interval if conf.int is TRUE. Must
be strictly greater than 0 and less than 1. The default is 0.95, which corresponds
to a 95 percent confidence interval.

effects The type of effects to tidy. Available options are "fixed" (fixed effects), "tailup"
(tailup covariance parameters), "taildown" (taildown covariance parameters),
"euclid" (Euclidean covariance parameters), "nugget" (nugget covariance pa-
rameter), "dispersion" (dispersion parameter if relevant), "ssn" for all of
"tailup", "taildown", "euclid", "nugget", and "dispersion", and "randcov"
(random effect variances). The default is "fixed".

... Other arguments. Not used (needed for generic consistency).

Value

A tidy tibble of summary information effects.

See Also

glance.SSN2() augment.SSN2()

84 Torgegram

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
tidy(ssn_mod)

Torgegram Compute the empirical semivariogram

Description

Compute the empirical semivariogram for varying bin sizes and cutoff values.

Usage

Torgegram(
formula,
ssn.object,
type = c("flowcon", "flowuncon"),
bins = 15,
cutoff,
partition_factor

)

Arguments

formula A formula describing the fixed effect structure.
ssn.object A spatial stream network object with class SSN.
type The Torgegram type. A vector with possible values "flowcon" for flow-connected

distances, "flowuncon" for flow-unconnected distances, and "euclid" for Eu-
clidean distances. The default is to show both flow-connected and flow-unconnected
distances.

bins The number of equally spaced bins. The default is 15.
cutoff The maximum distance considered. The default is half the diagonal of the

bounding box from the coordinates.
partition_factor

An optional formula specifying the partition factor. If specified, semivariances
are only computed for observations sharing the same level of the partition factor.

Torgegram 85

Details

The Torgegram is an empirical semivariogram is a tool used to visualize and model spatial de-
pendence by estimating the semivariance of a process at varying distances separately for flow-
connected, flow-unconnected, and Euclidean distances. For a constant-mean process, the semi-
variance at distance h is denoted γ(h) and defined as 0.5 ∗ V ar(z1 − z2). Under second-order
stationarity, γ(h) = Cov(0) − Cov(h), where Cov(h) is the covariance function at distance h.
Typically the residuals from an ordinary least squares fit defined by formula are second-order sta-
tionary with mean zero. These residuals are used to compute the empirical semivariogram. At
a distance h, the empirical semivariance is 1/N(h)

∑
(r1 − r2)2, where N(h) is the number of

(unique) pairs in the set of observations whose distance separation is h and r1 and r2 are residuals
corresponding to observations whose distance separation is h. In spmodel, these distance bins ac-
tually contain observations whose distance separation is h +- c, where c is a constant determined
implicitly by bins. Typically, only observations whose distance separation is below some cutoff
are used to compute the empirical semivariogram (this cutoff is determined by cutoff).

Value

A list with elements correspond to type. Each element is data frame with distance bins (bins), the
average distance (dist), the semivariance (gamma), and the number of (unique) pairs (np) for the
respective type.

References

Zimmerman, D. L., & Ver Hoef, J. M. (2017). The Torgegram for fluvial variography: character-
izing spatial dependence on stream networks. Journal of Computational and Graphical Statistics,
26(2), 253–264.

See Also

plot.Torgegram()

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

tg <- Torgegram(Summer_mn ~ 1, mf04p)
plot(tg)

86 varcomp.SSN2

varcomp.SSN2 Variability component comparison

Description

Compare the proportion of total variability explained by the fixed effects and each variance param-
eter.

Usage

S3 method for class 'ssn_lm'
varcomp(object, ...)

S3 method for class 'ssn_glm'
varcomp(object, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

Value

A tibble that partitions the the total variability by the fixed effects and each variance parameter.
The proportion of variability explained by the fixed effects is the pseudo R-squared obtained by
psuedoR2(). The remaining proportion is spread accordingly among each variance parameter:
"tailup_de", "taildown_de", "euclid_de", "nugget", and if random effects are used, each
named random effect. For ssn_glm(), models, only the variances on the link scale are considered
(i.e., the variance function of the response is omitted).

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
varcomp(ssn_mod)

vcov.SSN2 87

vcov.SSN2 Calculate variance-covariance matrix for a fitted model object

Description

Calculate variance-covariance matrix for a fitted model object.

Usage

S3 method for class 'ssn_lm'
vcov(object, ...)

S3 method for class 'ssn_glm'
vcov(object, var_correct = TRUE, ...)

Arguments

object A fitted model object from ssn_lm() or ssn_glm().

... Other arguments. Not used (needed for generic consistency).

var_correct A logical indicating whether to return the corrected variance-covariance matrix
for models fit using ssn_glm() (when family is different from "Gaussian").
The default is TRUE.

Value

The variance-covariance matrix of coefficients obtained via coef(). Currently, only the variance-
covariance matrix of the fixed effects is supported.

Examples

Copy the mf04p .ssn data to a local directory and read it into R
When modeling with your .ssn object, you will load it using the relevant
path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(temp_path, overwrite = TRUE)

ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM,
ssn.object = mf04p,
tailup_type = "exponential",
additive = "afvArea"

)
vcov(ssn_mod)

Index

∗ datasets
mf04p, 26

AIC.SSN2, 3
AIC.ssn_glm (AIC.SSN2), 3
AIC.ssn_lm (AIC.SSN2), 3
AICc.ssn_glm (AIC.SSN2), 3
AICc.ssn_lm (AIC.SSN2), 3
anova.SSN2, 4
anova.ssn_glm (anova.SSN2), 4
anova.ssn_lm (anova.SSN2), 4
augment.SSN2, 6
augment.SSN2(), 11, 21–23, 83
augment.ssn_glm (augment.SSN2), 6
augment.ssn_lm (augment.SSN2), 6

coef.SSN2, 9
coef.ssn_glm (coef.SSN2), 9
coef.ssn_lm (coef.SSN2), 9
coefficients.ssn_glm (coef.SSN2), 9
coefficients.ssn_lm (coef.SSN2), 9
confint.SSN2, 10
confint.ssn_glm (confint.SSN2), 10
confint.ssn_lm (confint.SSN2), 10
cooks.distance.SSN2, 11
cooks.distance.SSN2(), 21–23
cooks.distance.ssn_glm

(cooks.distance.SSN2), 11
cooks.distance.ssn_lm

(cooks.distance.SSN2), 11
copy_lsn_to_temp, 12
covmatrix.SSN2, 13
covmatrix.ssn_glm (covmatrix.SSN2), 13
covmatrix.ssn_lm (covmatrix.SSN2), 13
create_netgeom, 14, 56, 58

deviance.SSN2, 15
deviance.ssn_glm (deviance.SSN2), 15
deviance.ssn_lm (deviance.SSN2), 15
dispersion_initial(), 49

euclid_initial (ssn_initial), 58
euclid_initial(), 49, 52, 62, 65
euclid_params (ssn_params), 68
euclid_params(), 73

fitted.SSN2, 16
fitted.ssn_glm (fitted.SSN2), 16
fitted.ssn_lm (fitted.SSN2), 16
fitted.values.ssn_glm (fitted.SSN2), 16
fitted.values.ssn_lm (fitted.SSN2), 16
formula.SSN2, 18
formula.ssn_glm (formula.SSN2), 18
formula.ssn_lm (formula.SSN2), 18

glance.SSN2, 19
glance.SSN2(), 8, 83
glance.ssn_glm (glance.SSN2), 19
glance.ssn_lm (glance.SSN2), 19
glances.SSN2, 20
glances.ssn_glm (glances.SSN2), 20
glances.ssn_lm (glances.SSN2), 20

hatvalues.SSN2, 21
hatvalues.SSN2(), 11, 22, 23
hatvalues.ssn_glm (hatvalues.SSN2), 21
hatvalues.ssn_lm (hatvalues.SSN2), 21

influence.SSN2, 22
influence.SSN2(), 11, 21
influence.ssn_glm (influence.SSN2), 22
influence.ssn_lm (influence.SSN2), 22

labels.SSN2, 23
labels.ssn_glm (labels.SSN2), 23
labels.ssn_lm (labels.SSN2), 23
list, 46
logLik.SSN2, 24
logLik.ssn_glm (logLik.SSN2), 24
logLik.ssn_lm (logLik.SSN2), 24
loocv.SSN2, 25
loocv.ssn_glm (loocv.SSN2), 25

88

INDEX 89

loocv.ssn_lm (loocv.SSN2), 25

mf04p, 26, 30
MiddleFork04.ssn, 27, 27
model.frame.SSN2, 30
model.frame.ssn_glm (model.frame.SSN2),

30
model.frame.ssn_lm (model.frame.SSN2),

30
model.matrix.SSN2, 31
model.matrix.ssn_glm

(model.matrix.SSN2), 31
model.matrix.ssn_lm

(model.matrix.SSN2), 31

nugget_initial (ssn_initial), 58
nugget_initial(), 49, 63
nugget_params (ssn_params), 68
nugget_params(), 73

plot.SSN2, 32, 33
plot.ssn_glm (plot.SSN2), 32
plot.ssn_lm (plot.SSN2), 32
plot.Torgegram, 33
plot.Torgegram(), 32, 85
predict.SSN2, 34
predict.ssn_glm (predict.SSN2), 34
predict.ssn_lm, 42
predict.ssn_lm (predict.SSN2), 34
print.anova.ssn_glm (print.SSN2), 36
print.anova.ssn_lm (print.SSN2), 36
print.SSN, 36
print.SSN2, 36, 82
print.ssn_glm (print.SSN2), 36
print.ssn_lm (print.SSN2), 36
print.summary.ssn_glm (print.SSN2), 36
print.summary.ssn_lm (print.SSN2), 36
pseudoR2.SSN2, 37
pseudoR2.ssn_glm (pseudoR2.SSN2), 37
pseudoR2.ssn_lm (pseudoR2.SSN2), 37

resid.ssn_glm (residuals.SSN2), 39
resid.ssn_lm (residuals.SSN2), 39
residuals.SSN2, 39
residuals.SSN2(), 11, 21–23
residuals.ssn_glm (residuals.SSN2), 39
residuals.ssn_lm (residuals.SSN2), 39
rstandard.ssn_glm (residuals.SSN2), 39
rstandard.ssn_lm (residuals.SSN2), 39

spmodel::dispersion_initial(), 61
spmodel::randcov_initial(), 49, 58, 61,

63
spmodel::randcov_params(), 68, 74
ssn_create_distmat, 27, 40, 56, 78
ssn_create_distmat(), 27, 46
ssn_get_data, 42
ssn_get_data(), 70
ssn_get_netgeom, 44
ssn_get_stream_distmat, 45
ssn_glm, 47, 56
ssn_glm(), 3, 5, 7, 9–11, 13, 15, 17–25,

30–32, 34, 37–39, 58, 59, 82, 83, 86,
87

ssn_import, 55, 57, 78, 79
ssn_import(), 26, 27
ssn_import_predpts, 56, 57
ssn_initial, 58
ssn_lm, 56, 61
ssn_lm(), 3, 5, 7, 9–11, 13, 15, 17–25, 30–32,

34, 37–39, 48, 58, 59, 82, 83, 86, 87
ssn_names, 67
ssn_params, 68
ssn_put_data, 69
ssn_put_data(), 43
ssn_rbeta (ssn_simulate), 70
ssn_rbinom (ssn_simulate), 70
ssn_rgamma (ssn_simulate), 70
ssn_rinvgauss (ssn_simulate), 70
ssn_rnbinom (ssn_simulate), 70
ssn_rnorm (ssn_simulate), 70
ssn_rpois (ssn_simulate), 70
ssn_simulate, 70
ssn_split_predpts, 75
ssn_subset, 77
SSN_to_SSN2, 78
ssn_update_path, 79
ssn_write, 80
stats::glm, 48
stats::model.frame(), 30
stats::model.matrix(), 31
summary.SSN, 81
summary.SSN2, 82
summary.ssn_glm (summary.SSN2), 82
summary.ssn_lm (summary.SSN2), 82

taildown_initial (ssn_initial), 58
taildown_initial(), 49, 62
taildown_params (ssn_params), 68

90 INDEX

taildown_params(), 73
tailup_initial (ssn_initial), 58
tailup_initial(), 48, 62
tailup_params (ssn_params), 68
tailup_params(), 73
tidy.anova.ssn_glm (anova.SSN2), 4
tidy.anova.ssn_lm (anova.SSN2), 4
tidy.SSN2, 83
tidy.SSN2(), 8
tidy.ssn_glm (tidy.SSN2), 83
tidy.ssn_lm (tidy.SSN2), 83
Torgegram, 84
Torgegram(), 33

varcomp.SSN2, 86
varcomp.ssn_glm (varcomp.SSN2), 86
varcomp.ssn_lm (varcomp.SSN2), 86
vcov.SSN2, 87
vcov.ssn_glm (vcov.SSN2), 87
vcov.ssn_lm (vcov.SSN2), 87

	AIC.SSN2
	anova.SSN2
	augment.SSN2
	coef.SSN2
	confint.SSN2
	cooks.distance.SSN2
	copy_lsn_to_temp
	covmatrix.SSN2
	create_netgeom
	deviance.SSN2
	fitted.SSN2
	formula.SSN2
	glance.SSN2
	glances.SSN2
	hatvalues.SSN2
	influence.SSN2
	labels.SSN2
	logLik.SSN2
	loocv.SSN2
	mf04p
	MiddleFork04.ssn
	model.frame.SSN2
	model.matrix.SSN2
	plot.SSN2
	plot.Torgegram
	predict.SSN2
	print.SSN
	print.SSN2
	pseudoR2.SSN2
	residuals.SSN2
	ssn_create_distmat
	ssn_get_data
	ssn_get_netgeom
	ssn_get_stream_distmat
	ssn_glm
	ssn_import
	ssn_import_predpts
	ssn_initial
	ssn_lm
	ssn_names
	ssn_params
	ssn_put_data
	ssn_simulate
	ssn_split_predpts
	ssn_subset
	SSN_to_SSN2
	ssn_update_path
	ssn_write
	summary.SSN
	summary.SSN2
	tidy.SSN2
	Torgegram
	varcomp.SSN2
	vcov.SSN2
	Index

