Package ‘SOMbrero’

June 19, 2025
Title SOM Bound to Realize Euclidean and Relational Outputs
Version 1.4-3
Date 2025-06-19
Maintainer Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

Description The stochastic (also called on-line) version of the Self-Organising
Map (SOM) algorithm is provided. Different versions of the
algorithm are implemented, for numeric and relational data and for
contingency tables as described, respectively, in Kohonen (2001)
<isbn:3-540-67921-9>, Olteanu & Villa-Vialaneix (2005)
<doi:10.1016/j.neucom.2013.11.047> and Cottrell et al (2004)
<doi:10.1016/j.neunet.2004.07.010>. The package also contains many
plotting features (to help the user interpret the results), can
handle (and impute) missing values and is delivered with a
graphical user interface based on 'shiny'.

BugReports https://github.com/tuxette/SOMbrero/issues

URL http://sombrero.clementine.wf/
Depends R (>=3.1.0), igraph (>= 1.0), markdown

Imports scatterplot3d, shiny, grDevices, graphics, stats, ggplot2,
ggwordcloud, metR, interp, rlang

Suggests testthat, rmarkdown, knitr, hexbin, shinycssloaders, shinyBS,
shinyjs, shinyjqui, RColorBrewer

License GPL (>=2)
Repository CRAN
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.3.2
Language en-US

NeedsCompilation no

https://doi.org/10.1016/j.neucom.2013.11.047
https://doi.org/10.1016/j.neunet.2004.07.010
https://github.com/tuxette/SOMbrero/issues
http://sombrero.clementine.wf/

2 SOMbrero-package
Author Nathalie Vialaneix [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1156-0639>),
Elise Maigne [aut],
Jerome Mariette [aut],
Madalina Olteanu [aut],
Fabrice Rossi [aut],
Laura Bendhaiba [ctb],
Julien Boelaert [ctb]
Date/Publication 2025-06-19 18:30:18 UTC
Contents
SOMbrero-package 2
IMPULE o o e e e e e e e e e e e e e e e e e 4
InitGrid e 5
NitSOM e 6
Iesmis e e e e e e 9
myGrid 10
plot.somRes e e e e e 11
predict.somRes L e 13
presidentielles2002 L 14
projectlGraph L 15
protoDist 16
quality e 17
sombreroGUI e 18
somRes.plotting e 19
superClass L. e 23
trainSOM L e e e 26
Index 29
SOMbrero-package Self Organizing Maps Bound to Realize Euclidean and Relational Out-
puts
Description

This package implements the stochastic (also called on-line) Self-Organizing Map (SOM) algo-
rithms for numeric and relational data.

It is based on a grid (see initGrid), which is part of the parameters given to the algorithm (see
initSOM and trainSOM). Many graphs can help you with the results (see plot.somRes).

The version of the SOM algorithm implemented in this package is the stochastic version.

Several variants able to handle non-vectorial data are also implemented in their stochastic versions:
type = "korresp” for contingency tables, as described in Cottrell et al. (2004) (with the observa-
tion weights defined in Cottrell and Letrémy, 2005a) and type = "relational” for dissimilarity
data, as described in Olteanu and Villa-Vialaneix (2015a) with the fast implementation of Mariette

https://orcid.org/0000-0003-1156-0639

SOMpbrero-package 3

et al. (2017). A special focus has been put on representing graphs, as described in Olteanu and
Villa-Vialaneix (2015b).

In addition, the numeric version of the algorithm handles missing values: missing entries are not
used during training but the resulting map can be used to fill missing entries (using the entry of the
corresponding prototype). The method is taken from Cottrell and Letrémy (2005b).

Author(s)

Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
Elise Maigné <elise.maigne@inrae.fr>

Jérome Mariette <jerome.mariette@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine. fr>
Fabrice Rossi <fabrice.rossi@apiacoa.org>

Laura Bendhaiba <laurabendhaiba@gmail.com>
Julien Boelaert <julien.boelaert@gmail.com>

Maintainer: Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

See

Kohonen T. (2001) Self-Organizing Maps. Berlin/Heidelberg: Springer-Verlag, 3rd edition.
Cottrell M., Ibbou S., Letrémy P. (2004) SOM-based algorithms for qualitative variables. Neural
Networks, 17, 1149-1167.

Cottrell M., Letrémy P. (2005a) How to use the Kohonen algorithm to simultaneously analyse indi-
viduals in a survey. Neurocomputing, 21, 119-138.

Cottrell M., Letrémy P. (2005b) Missing values: processing with the Kohonen algorithm. Proceed-
ings of Applied Stochastic Models and Data Analysis (ASMDA 2005), 489-496.

Letrémy P. (2005) Programmes basés sur 1’algorithme de Kohonen et dediés a I’analyse des don-
nées. SAS/IML programs for ’korresp’.

Mariette J., Rossi F., Olteanu M., Villa-Vialaneix N. (2017) Accelerating stochastic kernel SOM.
In: M. Verleysen, XXVth European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning (ESANN 2017), i6doc, Bruges, Belgium, 269-274.

Olteanu M., Villa-Vialaneix N. (2015a) On-line relational and multiple relational SOM. Neurocom-
puting, 147, 15-30.

Olteanu M., Villa-Vialaneix N. (2015b) Using SOMbrero for clustering and visualizing graphs.
Journal de la Société Frangaise de Statistique, 156, 95-119.

Rossi F. (2013) yasomi: Yet Another Self-Organising Map Implementation. R package, version 0.3.
https://github.com/fabrice-rossi/yasomi

Villa-Vialaneix N. (2017) Stochastic self-organizing map variants with the R package SOMbrero.
In: J.C. Lamirel, M. Cottrell, M. Olteanu, 12th International Workshop on Self-Organizing Maps
and Learning Vector Quantization, Clustering and Data Visualization (Proceedings of WSOM 2017),
IEEE, Nancy, France.

Also

initGrid, trainSOM, plot.somRes and sombreroGUI.

https://github.com/fabrice-rossi/yasomi

4 impute

impute Impute values from prototype information

Description

Impute values by replacing missing entries with the corresponding assigned prototype entries

Usage
impute(object, ...)
Arguments
object a somRes object.
unused.
Value

Imputed matrix as in Cottrell and Letrémy, (2005)

Author(s)

Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Cottrell M., Letrémy P. (2005) Missing values: processing with the Kohonen algorithm. Proceed-
ings of Applied Stochastic Models and Data Analysis (ASMDA 2005), 489-496.

See Also

trainSOM

Examples

Run trainSOM algorithm on the iris data with 500 iterations

set.seed(1505)

missings <- cbind(sample(1:150, 50, replace = TRUE),
sample(1:4, 50, replace = TRUE))

x.data <- as.matrix(iris[, 1:41)

x.data[missings] <- NA

iris.som <- trainSOM(x.data = x.data)

iris.som

impute(iris.som)

initGrid 5

initGrid Create an empty grid

Description

Create an empty (square) grid equipped with topology.

Usage
initGrid(
dimension = c(5, 5),
topo = c("square”, "hexagonal”),
dist.type = c("euclidean”, "maximum”, "manhattan”, "canberra"”, "minkowski"”, "letremy")
)
Arguments
dimension a 2-dimensional vector giving the dimensions (width, length) of the grid
topo topology of the grid. Accept values "square” (Default) or "hexagonal”.
dist.type distance type that defines the topology of the grid (see ’Details’). Default to
"euclidean”
Details

The units (neurons) of the grid are positionned at coordinates (1,1), (1,2), (1,3), ..., (2,1), (2,2), ...,
for the square topology. The topology of the map is defined by a distance based on those coor-

n o on n o on n o on

dinates, that can be one of "euclidean”, "maximum”, "manhattan”, "canberra”, "minkowski”,
"letremy"”, where the first 5 ones correspond to distance methods implemented in dist and "letremy”
is the distance of the original implementation by Patrick Letrémy that switches between "maximum”
and "euclidean” during the training.

Value
an object of class myGrid with the following entries:
* coord 2-column matrix with x and y coordinates of the grid units
* topo topology of the grid;

* dim dimensions of the grid (width corresponds to x coordinates)

e dist.type distance type that defines the topology of the grid.

Author(s)

Elise Maigné <elise.maigne@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine. fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

6 initSOM

References
Letrémy P. (2005) Programmes basés sur 1’algorithme de Kohonen et dédiés a I’analyse des don-
nées. SAS/IML programs for "korresp’.

See Also

plot.myGrid for plotting the grid

Examples
initGrid()
initGrid(dimension=c(5, 7), dist.type = "maximum")
initSOM Initialize parameters for the SOM algorithm
Description

The initSOM function returns a paramSOM class object that contains the parameters needed to run
the SOM algorithm.

Usage
initSOM(
dimension = c(5, 5),
topo = c("square”, "hexagonal”),
radius.type = c("gaussian”, "letremy"”),
dist.type = switch(match.arg(radius.type), letremy = "letremy”, gaussian = "euclidean”),
type = c("numeric”, "relational”, "korresp"),
mode = c("online"),
affectation = c(”standard”, "heskes"),
maxit = 500,

nb.save = 0,
verbose = FALSE,
proto@ = NULL,
init.proto = switch(type, numeric = "random”, relational = "obs"”, korresp = "random"),
scaling = switch(type, numeric = "unitvar”, relational = "none"”, korresp = "chi2"),
epsd = 1

)

S3 method for class 'paramSOM'
print(x, ...)

S3 method for class 'paramSOM'
summary (object, ...)

initSOM

Arguments

dimension

topo

radius. type

dist.type

type

mode

affectation

maxit

nb.save

verbose

proto@

init.proto

scaling

Vector of two integer points corresponding to the x dimension and the y dimen-
sion of the myGrid class object. Default values are: (5,5). Other data-driven
defaults are set by function trainSOM.

The topology to be used to build the grid of the myGrid class object. Accept
values "square” (Default) or "hexagonal”.

The neighborhood type. Default value is "gaussian”, which corresponds to a
Gaussian neighborhood. The annealing of the neighborhood during the training
step is similar to the one implemented in yasomi. The alternative value corre-
sponds to an piecewise linear neighborhood as implemented by Patrick Letrémy
in his SAS scripts.

The neighborhood relationship on the grid. One of c("letremy”, "euclidean”,
"maximum”, "manhattan”, "canberra”, "minkowski”). When radius. type

is letremy, default value is letremy which is the original implementation by

Patrick Letrémy. When radius. type is gaussian, default value is euclidean.

The other possible values are passed to method in function dist. dist.type =

"letremy” is not permitted with radius. type = "gaussian”. Only euclidian

is allowed with hexagonal topology.

The SOM algorithm type. Possible values are: numeric (default value), korresp
and relational.

The SOM algorithm mode. Default value is online.

The SOM affectation type. Default value is standard which corresponds to
a hard affectation. Alternative is heskes which corresponds to Heskes’s soft
affectation.

The maximum number of iterations to be done during the SOM algorithm pro-
cess. Default value is 500. Other data-driven defaults are set by function trainSOM.

The number of intermediate back-ups to be done during the algorithm process.
Default value is 0.

The boolean value which activates the verbose mode during the SOM algorithm
process. Default value is FALSE.

The initial prototypes. Default value is NULL.

The method to be used to initialize the prototypes, which may be "random”
(randomization), "obs" (each prototype is assigned a random observation) or
"pca”. In pca the prototypes are initialized to the observations closest to a grid
along the two first principal components of the data (numeric case) or along
a two-dimensional multidimensional scaling (relational case, equivalent to a
relational PCA). Default value is random for the numeric and korresp types,
and obs for the relational type. pca is not available for korresp SOM.

The type of data pre-processing. For numeric SOM, possibilities are unitvar
(data are centered and scaled; this is the default value for a numeric SOM), none
(no pre-processing), and center (data are centered but not scaled). For korresp
SOM, the only available value is chi2. For relational SOM, possibilities
are none (no pre-processing, default value for relational SOM) and cosine.
This last one first turns the dissimilarity into a similarity using the suggestion

https://github.com/fabrice-rossi/yasomi

epso

object

Value

initSOM

in (Lee and Verleysen, 2007). Then, a cosine normalization as described in
(Ben-Hur and Weston, 2010) is applied to the kernel, that is finally turned back
into its induced distance. For further details on this processing, have a look at the
corresponding documentation in the directory "doc" of the package’s installation
directory.

The scaling value for the stochastic gradient descent step in the prototypes’
update. The scaling value for the stochastic gradient descent step is equal to

0.3€g
0 2t /@m where t is the current step number and dim is the grid dimension

(width multiplied by height).
an object of class paramSOM.
not used

an object of class paramSOM.

The initSOM function returns an object of class paramSOM which is a list of the parameters passed
to the initSOM function, plus the default parameters for the ones not specified by the user.

Author(s)

Elise Maigné <elise.maigne@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Ben-Hur A., Weston J. (2010) A user’s guide to support vector machine. In: Data Mining Tech-
niques for the Life Sciences, Springer-Verlag, 223-239.

Heskes T. (1999) Energy functions for self-organizing maps. In: Kohonen Maps, Oja E., Kaski S.
(Eds.), Elsevier, 303-315.

Lee J., Verleysen M. (2007) Nonlinear Dimensionality Reduction. Information Science and Statis-
tics series, Springer.

Letrémy P. (2005) Programmes basés sur 1’algorithme de Kohonen et dediés a 1’analyse des don-
nées. SAS/IML programs for "korresp’.

Rossi F. (2013) yasomi: Yet Another Self-Organising Map Implementation. R package, version 0.3.
https://github.com/fabrice-rossi/yasomi

See Also

See initGrid for creating a SOM prior structure (grid).

Examples

create a default 'paramSOM' class object
default.paramSOM <- initSOM()
summary (default.paramSOM)

https://github.com/fabrice-rossi/yasomi

lesmis 9

lesmis Dataset "Les Misérables"”

Description

This dataset contains the coappearance network (igraph object) of characters in the novel Les Mis-
érables (written by the French writter Victor Hugo).

Format

lesmis is an igraph object. Its vertices are the characters of the novel and an edge indicates that the
two characters appear together in the same chapter of the novel, at least once. Vertex attributes for
this graph are ‘id’, a vertex number between 1 and 77, and ‘label’, the character’s name. The edge
attribute ‘value’ gives the number of co-appearances between the two characters afferent to the
edge (the igraph can thus be made a weighted graph using this attribute). Finally, a graph attribute
‘layout’ is used to provide a layout (generated with the igraph function layout_with_fr) for
visualizing the graph.

dissim.lesmis is a dissimilarity matrix computed with the function shortest_paths and con-
taining the length of the shortest paths between pairs of nodes.

Details

Les Misérables is a French historical novel, written by Victor Hugo and published in 1862. The
co-appearance network has been extracted by D.E. Knuth (1993).

References

Hugo V. (1862) Les Miserables.

Knuth D.E. (1993) The Stanford GraphBase: A Platform for Combinatorial Computing. Reading
(MA): Addison-Wesley.

Examples

data(lesmis)

Not run:

summary (lesmis)
plot(lesmis,vertex.size=0)
End(Not run)

10 myGrid

myGrid Methods for 'myGrid’ objects.

Description

Methods for the result of initGrid (myGrid object)

Usage

S3 method for class 'myGrid'
print(x, ...)

S3 method for class 'myGrid'
summary (object, ...)

S3 method for class 'myGrid'

plot(x, show.names = TRUE, names = 1:prod(x$dim), ...)
Arguments
X myGrid object
Further arguments to the plot function.
object myGrid object
show. names Whether the cluster names must be printed in center of the grid or not. Default
to TRUE (names not displayed).
names If show.names = TRUE, values of the names to display. Default to the cluster
number.
Details

The myGrid class has the following entries:

* coord 2-column matrix with x and y coordinates of the grid units
* topo topology of the grid;
* dim dimensions of the grid (width corresponds to x coordinates)

* dist. type distance type that defines the topology of the grid.

During plotting, the color filling process uses the coordinates of the object x included in x$coord.

Author(s)

Elise Maigné <elise.maigne@inrae.fr>
Madalina Olteanu, <olteanu@ceremade.dauphine. fr>
Nathalie Vialaneix, <nathalie.vialaneix@inrae.fr>

plot.somRes 11

See Also

initGrid to define a myGrid class object.

Examples

creating grid
a.grid <- initGrid(dimension=c(5,5), topo="square”, dist.type="maximum")

plotting grid

without any color specification

plot(a.grid)

generating colors from rainbow() function

my.colors <- grDevices::rainbow(5%5)

plot(a.grid) + ggplot2::scale_fill_manual(values = my.colors)

plot.somRes Plot a somRes class object

Description

Produce graphics to help interpreting a somRes object.

Usage

S3 method for class 'somRes'
plot(
X,
what = c("obs"”, "prototypes”, "energy"”, "add"),
type = switch(what, obs = "hitmap"”, prototypes = "color”, add = "pie"”, energy =
"energy”),
variable = NULL,
my.palette = NULL,
is.scaled = if (x$parameters$type == "numeric”) TRUE else FALSE,
show.names = TRUE,
names = if (what != "energy") switch(type, graph = 1:prod(x$parameters$the.grid$dim),
1:prod(x$parameters$the.grid$dim)) else NULL,
proportional = TRUE,
pie.graph = FALSE,
pie.variable = NULL,
s.radius = 1,
view = if (x$parameters$type == "korresp”) "r" else NULL,

12

Arguments

X

what

type

variable

my.palette

is.scaled

show.names

names

proportional

pie.graph

pie.variable

s.radius

view

Details

plot.somRes

A somRes class object.

What you want to plot. Either the observations (obs, default case), the evolu-
tion of energy (energy), the prototypes (prototypes) or an additional variable
(add).

Further argument indicating which type of chart you want to have. Choices
depend on the value of what (what="energy" has no type argument). Default
values are "hitmap" for obs, "color"” for prototypes and "pie” for add. See

section “Details” below for further details.

Either the variable to be used for what="add" or the index of the variable of
the data set to consider. For type="boxplot”, the default value is the sequence
from 1 to the minimum between 5 and the number of columns of the data set. In
all other cases, default value is 1. See somRes.plotting for further details.

A vector of colors. If omitted, predefined palettes are used, depending on the
plot case. This argument is used for the following combinations: all "color”
types and "prototypes”/"poly.dist".

A boolean indicating whether values should be scaled prior to plotting or not.
Default value is TRUE when type="numeric"” and FALSE in the other cases.

Boolean used to indicate whether each neuron should have a title or not, if
relevant. Default to TRUE. It is feasible on the following cases: all "color”,

n on n on

"lines”, "meanline”, "barplot”, "boxplot”, "names” types, "add”/"pie”,

non

"prototypes”/"umatrix”, "prototypes”/"poly.dist"” and "add"/"words".

The names to be printed for each neuron if show.names=TRUE. Default to a
number which identifies the neuron.

Boolean used when what="add" and type="pie". It indicates if the pies should
be proportional to the number of observations in the class. Default value is TRUE.

Boolean used when what="add" and type="graph”. It indicates if the vertices
should be pies or not.

The variable needed to plot the pies when what="add", type="graph"” and ar-
gument pie.graph=TRUE.

The size of the pies to be plotted (maximum size when proportional=TRUE) for
what="add", type="graph” and pie.graph=TRUE. The default value is @.9.

Used only when the algorithm’s type is "korresp”. It indicates whether rows
("r") or columns ("c") must be drawn.

Further arguments to be passed to the underlined plot function (which can be
plot, barplot, pie... depending on type; see somRes.plotting for further
details).

See somRes.plotting for further details and more examples.

predict.somRes 13

Author(s)

Elise Maigné <elise.maigne @inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

See Also

trainSOM to run the SOM algorithm, that returns a somRes class object.

Examples

run the SOM algorithm on the numerical data of 'iris' data set
iris.som <- trainSOM(x.data = iris[, 1:4], nb.save = 2)

plots

on energy

plot(iris.som, what = "energy")

on observations
plot(iris.som, what =
on prototypes
plot(iris.som, what = "prototypes”, type = "3d"”, variable = "Sepal.Length")
on an additional variable: the flower species

n "

obs”, type = "lines")

plot(iris.som, what = "add"”, type = "pie", variable = iris$Species)
predict.somRes Predict the classification of a new observation
Description

Predict the neuron where a new observation is classified

Usage
S3 method for class 'somRes'
predict(object, x.new = NULL, ..., radius = Q)
Arguments
object a somRes object.
X.new a new observation (optional). Default values is NULL which corresponds to

performing prediction on the training dataset.
not used.

radius current radius used to perform soft affectation (when affectation = "heskes”,
see initSOM for further details about Heskes’ soft affectation). Default value is
‘0’, which corresponds to a hard affectation.

14 presidentielles2002

Details

The number of columns of the new observations (or its length if only one observation is provided)
must match the number of columns of the data set given to the SOM algorithm (see trainSOM).

Value

predict.somRes returns the number of the neuron to which the new observation is assigned (i.e.,
neuron with the closest prototype).

When the algorithm’s type is "korresp”, x.new must be the original contingency table passed to
the algorithm.

Author(s)

Jérome Mariette <jerome.mariette@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Fabrice Rossi <fabrice.rossi@apiacoa.org>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

See Also

trainSOM

Examples

set.seed(2343)
my.som <- trainSOM(x.data = iris[-100, 1:4], dimension = c(5, 5))
predict(my.som, iris[100, 1:4])

presidentielles2002 2002 French presidential election data set

Description

This data set provides the number of votes at the first round of the 2002 French presidential election
for each of the 16 candidates for 106 administrative districts called "Départements".

Format

presidentielles2002 is a data frame of 106 rows (the French administrative districts called "Dé-
partements") and 16 columns (the candidates).

Source

The data are provided by the French ministry "Ministere de I'Intérieur”. The original data can be
downloaded at https://www.interieur.gouv.fr/Elections/Les-resultats/Presidentielles
(2002 élections and "Résultats par départements").

https://www.interieur.gouv.fr/Elections/Les-resultats/Presidentielles

projectlGraph 15

References

The 2002 French presidential election consisted of two rounds. The second round attracted a greater
than usual amount of international attention because of far-right candidate Le Pen’s unexpected
victory over Socialist candidate Lionel Jospin. The event is known because, on the one hand, the
number of candidates was unusually high (16) and, on the other hand, because the polls had failed
to predict that Jean-Marie Le Pen would be on the second round.

Further comments at https://en.wikipedia.org/wiki/2002_French_presidential_election.

Examples

data(presidentielles2002)
apply(presidentielles2002, 2, sum)

projectIGraph Compute the projection of a graph on a grid

Description

Compute the projection of a graph, provided as an igraph object, on the grid of the somRes object.

Usage
projectIGraph(object, init.graph, ...)
Arguments
object a somRes object.
init.graph an igraph whose number of vertices is equal to the clustering length of the
somRes object.
Not used.
Value

The result is an igraph which vertexes are the clusters (the clustering is thus understood as a
vertex clustering) and the edges are the counts of edges in the original graph between two vertices
corresponding to the two clusters in the projected graph or, if init.graph is a weighted graph, the
sum of the weights between the pairs of vertices corresponding to the two clusters.

The resulting igraph object’s attributes are:
* the graph attribute layout which provides the layout of the projected graph according to the
grid of the SOM;

* the vertex attributes name and size which, respectively are the vertex number on the grid and
the number of vertexes included in the corresponding cluster;

* the edge attribute weight which gives the number of edges (or the sum of the weights) between
the vertexes of the two corresponding clusters.

https://en.wikipedia.org/wiki/2002_French_presidential_election

16 protoDist

Author(s)

Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Olteanu M., Villa-Vialaneix N. (2015) Using SOMbrero for clustering and visualizing graphs. Jour-
nal de la Société Frangaise de Statistique, 156, 95-119.

See Also

projectIGraph.somSC which uses the results of a super-clustering to obtain another projected
graph. plot.somRes with the option type="graph" or plot.somSC with the option type="projgraph”.

Examples

data(lesmis)

set.seed(7383)

mis.som <- trainSOM(x.data=dissim.lesmis, type="relational”, nb.save=10)
proj.lesmis <- projectIGraph(mis.som, lesmis)

Not run: plot(proj.lesmis)

protoDist Compute distances between prototypes

Description

Compute distances, either between all prototypes (mode = "complete") or only between prototypes’
neighbours (mode = "neighbors").

Usage
protoDist(object, mode = c("complete”, "neighbors"), radius =1, ...)
Arguments
object a somRes object.
mode Specifies which distances should be computed (default to "complete”).
radius Radius used to fetch the neighbors (default to 1). The distance used to compute
the neighbors is the Euclidean distance.
Not used.
Details

When mode="complete”, distances between all prototypes are computed. When mode="neighbors”,
distances are computed only between the prototypes and their neighbors. If the data were prepro-
cessed during the SOM training procedure, the distances are computed on the normalized values of
the prototypes.

quality 17

Value

When mode = "complete”, the function returns a square matrix which dimensions are equal to the
product of the grid dimensions.

When mode = "neighbors"”, the function returns a list which length is equal to the product of the
grid dimensions; the length of each item is equal to the number of neighbors. Neurons are consid-
ered to have 8 neighbors at most (i.e., two neurons are neighbors if they have an Euclidean distance
smaller than radius. Natural choice for radius is 1 for hexagonal topology and 1 or v/2 for square
topology (4 and 8 neighbors respectively).

Author(s)

Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

See Also

trainSOM

Examples

set.seed(2343)
my.som <- trainSOM(x.data = iris[,1:4], dimension = c(5,5))
protoDist(my.som)

quality Compute SOM algorithm quality criteria

Description

The quality function computes several quality criteria for the result of a SOM algorithm.

Usage
quality(sommap, quality.type, ...)
Arguments
sommap A somRes object (see trainSOM for details).

quality.type The quality type to compute. Two types are implemented: quantization and
topographic. The output of the function is one of those or both of them using
the option "all". Default value is the latter.

Not used.

18 sombreroGUI

Value

The quality function returns either a numeric value (if only one type is computed) or a list a
numeric values (if all types are computed).

The quantization error calculates the mean squared euclidean distance between the sample vectors
and their respective cluster prototypes. It is a decreasing function of the size of the map.

The topographic error is the simplest of the topology preservation measure: it calculates the ratio
of sample vectors for which the second best matching unit is not in the direct neighborhood of the
best matching unit.

Author(s)

Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Polzlbauer G. (2004) Survey and comparison of quality measures for self-organizing maps. In:
Proceedings of the Fifth Workshop on Data Analysis (WDA’04), Paralic, J., Polzlbauer, G., Rauber,
A. (eds) Sliezsky dom, Vysoke Tatry, Slovakia: Elfa Academic Press, 67-82.

See Also

trainSOM, plot.somRes

Examples

my.som <- trainSOM(x.data = iris[,1:4])
quality(my.som, quality.type = "all")
quality(my.som, quality.type = "topographic"”)

sombreroGUI Graphical Web User Interface for SOMbrero

Description

Start the SOMbrero GUI.

Usage
sombreroGUI ()

Value

This function starts the graphical user interface with the default system browser. This interface
is more lickely to work properly with Firefox https://www.mozilla.org/fr/firefox/new/. In
case Firefox is not your default browser, copy/paste http://localhost:8100 into the URL bar.

Note that the same interface is available online at https://sombrero.sk8.inrae.fr/.

https://www.mozilla.org/fr/firefox/new/
https://sombrero.sk8.inrae.fr/

somRes.plotting 19

Author(s)

Elise Maigné <elise.maigne @inrae.fr>

Julien Boelaert <julien.boelaert@gmail.com>
Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Villa-Vialaneix N. (2017) Stochastic self-organizing map variants with the R package SOMbrero.
In: J.C. Lamirel, M. Cottrell, M. Olteanu, 12th International Workshop on Self-Organizing Maps
and Learning Vector Quantization, Clustering and Data Visualization (Proceedings of WSOM 2017),
IEEE, Nancy, France.

RStudio and Inc. (2013). shiny: Web Application Framework for R. R package version 0.7.0.
https://cran.r-project.org/package=shiny

somRes.plotting Plotting somRes results

Description

Useful details on how to produce graphics to help interpreting a somRes object.

Important: the graphics availables for the different types of SOM are marked with a N, a K or aR.
(N = numerical SOM, K = korresp SOM and R = relational SOM).

Graphics on the observations: what = "obs”

For the cases what = "obs"” and what = "add", if a neuron is empty, nothing will be plotted at its
location.

The possible values for type are:

"hitmap” (K, R) plots proportional areas according to the number of observations per neuron. It
is the default plot when what="obs".

"color"” (N) can have one more argument, variable, the name or index of the variable to be
considered (default, 1, the first variable). Neurons are filled using the given colors according
to the average value level of the observations for the chosen variable.

"lines” (N) plots a line for each observation in every neuron, between variables. A vector of
variables (names or indexes) can be provided with the argument variable.

"meanline” (N) plots, for each neuron, the average value level of the observations, with lines and
points. One point represents a variable. By default, all variables of the dataset used to train
the algorithm are plotted but a vector of variables (names or indexes) can be provided with the
argument variable.

"barplot” (N) is similar to "meanline” but using barplots. Then, a bar represents a variable.

https://cran.r-project.org/package=shiny

20 somRes.plotting

"boxplot” (N) plots boxplots for the observations in every neuron, by variable. Like "lines”,
"meanline” and "barplot” a vector of variables (names or indexes) can be provided with the
argument variable.

"names” (N, K, R) prints on the grid the element names (i.e., the row names or row and column
names in the case of korresp) in the neuron to which it belongs.

Graphic on the energy: what = "energy” (N, K, R)

This graphic is only available if some intermediate backups have been registered (i.e., with the
argument nb. save of trainSOM or initSOMresulting in x$parameters$nb. save>1). Graphic plots
the evolution of the level of the energy according to the registered steps.

Graphics on the prototypes: what = "prototypes”

The possible values for type are:

"lines"” (N, K, R) has the same behavior as the "1ines"” case described in the observations sec-
tion, but according to the prototypes level.

"barplot” (N, K, R) has the same behavior as the "barplot” case described in the observations
section, but according to the prototypes level.

"color” (N, K) has the same behavior as the "color” case described in the observations section,
but according to the prototypes level.

"3d" (N) case is similar to the "color” case, but in 3 dimensions, with x and y the coordinates of
the grid and z the value of the prototypes for the considered variable. This function can take
two more arguments: maxsize (default to 2) and minsize (default to @.5) for the size of the
points representing neurons.

"smooth.dist” (N, K, R) depicts the average distance between a prototypes and its neighbors on
a map where x and y are the coordinates of the prototypes on the grid.

"poly.dist” (N, K, R) also represents the distances between prototypes but with polygons plotted
for each neuron. The closest from the border the polygon point is, the closest the pairs of
prototypes are. The color used for filling the polygon shows the number of observations in
each neuron. A white polygon means that there is no observation. With the default colors, a
red polygon means a high number of observations.

"umatrix” (N, K, R) is another way of plotting distances between prototypes. The grid is plotted
and filled with my . palette colors according to the mean distance between the current neuron
and the neighboring neurons. With the default colors, red indicates proximity.

"mds"” (N, K, R) plots the number of the neuron on a map according to a Multi Dimensional Scaling
(MDS) projection on a two dimensional space.

"grid.dist” (N, K, R) plots on a 2 dimension map all distances. The number of points on this
picture is equal to 2umberof neur(’“”(;umber ofnewrons—1) O the x axis corresponds to the proto-

type distances whereas the y axis depicts the grid distances.

Graphics on an additional variable: what="add"

The case what="add" considers an additional variable, which has to be given to the argument
variable. Its length must match the number of observations in the original data.

somRes.plotting 21

When the algorithm’s type is korresp, no graphic is available for what = "add".

The possible values for type are:

"color” (N, R) has the same behavior as the "color” case described in the observations section.
Then, the additional variable must be a numerical vector.

"lines"” (N, R) has the same behavior as the "lines” case described in the observations section.
Then, the additional variable must be a numerical matrix or a data frame.

"boxplot” (N, R) has the same behavior as the "boxplot” case described in the observations sec-
tion. Then, the additional variable must be either a numeric vector or a numeric matrix/data
frame.

"barplot” (N, R) has the same behavior as the "barplot” case described in the observations sec-
tion. Then, the additional variable must be either a numeric vector or a numeric matrix/data
frame.

"pie” (N) requires the argument variable to be a vector, which will be passed to the function
as.factor, and plots one pie for each neuron according to this factor. By default, the size
of the pie is proportional to the number of observations affected to its neuron but this can be
changed with the argument proportional = FALSE.

"names” (N, R) has the same behavior as the "names” case described in the observations section.
Then, the names to be printed are the elements of the variable given to the variable argument.
This case can take one more argument: size (default to 4) for the size of the words.

"words"” (N, R) needs the argument variable be a numeric matrix or a data.frame: names of
the columns will be used as words and the values express the frequency of a given word
in the observation. Then, for each neuron of the grid, the words will be printed with sizes
proportional to the sum of their values in the neuron. If the variable given is a contingency
table, it will plot directly the frequency of the words in the neurons.

"graph” (N, R) requires that the argument variable is an igraph object (see library("igraph").
According to the existing edges in the graph and to the clustering obtained with the SOM al-
gorithm, a clustered graph will be produced where a vertex between two vertices represents
a neuron and the width of an edge is proportional to the number of edges in the given graph
between the vertices affected to the corresponding neurons. The option can handle two more
arguments: pie.graph and pie.variable. These are used to display the vertex as pie charts.
For this case, pie. graph must be set to TRUE and a factor vector is supplied by pie.variable.

Further arguments via ...

Further arguments, their reference functions and the plot.somRes cases are summarized in the
following list:

e plot.igraph is called by the cases:

— what = "add"” / type = "graph”

— what = "add" / type = "projgraph” (for a superclass object)
* persp is called by the case what = "prototypes” / type = "3d"

* ggplot is called in all the other cases.

In complement to ggplot,

22 somRes.plotting

* geom_text_wordcloud is called by the cases:

— type = "names”
— what = "add"” / type = "words"”
» geom_contour_fill is called by the case what = "prototypes” / type = "smooth.dist"

Author(s)

Elise Maigné <elise.maigne@inrae.fr>
Madalina Olteanu <madalina.olteanu@univ-parisl.fr>
Nathalie Vialaneix <nathalie.vialaneix@inra.fr>

Examples

Numerical SOM
run the SOM algorithm on the numerical data of 'iris' data set
iris.som <- trainSOM(x.data = iris[,1:4], nb.save = 2)

#iHHHAH energy plot
plot(iris.som, what = "energy"”) # energy

#i#H#H#HH# plots on observations

plot(iris.som, what = "obs"”, type = "hitmap")
Not run:

plot(iris.som, what = "obs"”, type = "lines")
plot(iris.som, what = "obs”, type = "barplot")
plot(iris.som, what = "obs”, type = "boxplot")

n

plot(iris.som, what = "obs"”, type = "meanline")
plot(iris.som, what = "obs"”, type = "color”, variable = 1)
plot(iris.som, what = "obs"”, type = "names”)

End(Not run)

#i#H#HH##E plots on prototypes

plot(iris.som, what = "prototypes”, type = "3d"”, variable = "Sepal.Length")
Not run:

plot(iris.som, what = "prototypes”, type = "lines")

plot(iris.som, what = "prototypes”, type = "barplot”)

plot(iris.som, what = "prototypes”, type = "umatrix")

plot(iris.som, what = "prototypes”, type = "color”, variable = "Petal.Length")
plot(iris.som, what = "prototypes”, type = "smooth.dist")

plot(iris.som, what = "prototypes”, type = "poly.dist")

plot(iris.som, what = "prototypes”, type = "grid.dist")

plot(iris.som, what = "prototypes”, type = "mds")

End(Not run)

#####H## plots on an additional variable: the flower species

plot(iris.som, what = "add"”, type = "pie", variable = iris$Species)
Not run:

plot(iris.som, what = "add"”, type = "names", variable = iris$Species)
plot(iris.som, what = "add"”, type = "words"”, variable = iris[,1:2])

End(Not run)

superClass 23

superClass Create super-clusters from SOM results

Description

Aggregate the resulting clustering of the SOM algorithm into super-clusters.

Usage

superClass(sommap, method, members, k, h, ...)

S3 method for class 'somSC'
print(x, ...)

S3 method for class 'somSC'
summary(object, ...)

S3 method for class 'somSC'
plot(
X,
what = c("obs", "prototypes”, "add"),
type = c("dendrogram”, "grid", "hitmap"”, "lines”, "meanline”, "barplot”, "boxplot",
"mds", "color”, "poly.dist"”, "pie", "graph", "dendro3d"”, "projgraph”),
plot.var = TRUE,
show.names = TRUE,
names = 1:prod(xsomparameters$the.grid$dim),

n

)
S3 method for class 'somSC'
projectIGraph(object, init.graph, ...)
Arguments
sommap A somRes object.
method Argument passed to the hclust function.
members Argument passed to the hclust function.
k Argument passed to the cutree function (number of super-clusters to cut the
dendrogram).
h Argument passed to the cutree function (height where to cut the dendrogram).

Used for plot. somSC: further arguments passed either to the function plot (case
type="dendro”) or to plot.myGrid (case type="grid") or to plot.somRes
(all other cases).

X A somSC object.
object A somSC object.

24 superClass

what What you want to plot for superClass object. Either the observations (obs), the
prototypes (prototypes) or an additional variable (add), or NULL if not appro-
priate. Automatically set for types "hitmap" (to "obs"), ’grid’ (to "prototypes”),
default to "obs" otherwise. If what="'add', the function plot.somRes will be
called with the argument what set to "add".

type The type of plot to draw. Default value is "dendrogram”, to plot the den-
drogram of the clustering. Case "grid” plots the grid in color according to
the super clustering. Case "projgraph” uses an is_igraph object passed to
the argument variable and plots the projected graph as defined by the func-
tion projectIGraph.somSC. All other cases are those available in the function
plot.somRes and surimpose the super-clusters over these plots.

plot.var A boolean indicating whether a graph showing the evolution of the explained
variance should be plotted. This argument is only used when type="dendrogram”,
its default value is TRUE.

show. names Whether the cluster titles must be printed in center of the grid or not for type="grid".
Default to FALSE (titles not displayed).

names If show.names = TRUE, values of the title to display for type="grid". Default
to "Cluster " followed by the cluster number.

init.graph An igraph object which is projected according to the super-clusters. The number
of vertices of init.graph must be equal to the number of rows in the original
dataset processed by the SOM (case "korresp” is not handled by this function).
In the projected graph, the vertices are positionned at the center of gravity of the
super-clusters (more details in the section Details below).

Details

The superClass function can be used in 2 ways:

* to choose the number of super clusters via an hclust object: then, both arguments k and h are
not filled.

* to cut the clustering into super clusters: then, either argument k or argument h must be filled.
See cutree for details on these arguments.

The squared distance between prototypes is passed to the algorithm.

summary on a superClass object produces a complete summary of the results that displays the
number of clusters and super-clusters, the clustering itself and performs ANOVA analyses. For
type="numeric” the ANOVA is performed for each input variable and test the difference of this
variable across the super-clusters of the map. For type="relational” a dissimilarity ANOVA is
performed (see (Anderson, 2001), except that in the present version, a crude estimate of the p-value
is used which is based on the Fisher distribution and not on a permutation test.

On plots, the different super classes are identified in the following ways:
* either with different color, when type is set among: "grid” (N, K, R), "hitmap” (N, K, R),

"lines" (N, K, R), "barplot” (N, K, R), "boxplot”, "poly.dist" (N, K, R), "mds" (N, K,
R), "dendro3d” (N, K, R), "graph” (R), "projgraph” (R)

* or with title, when type is set among: "color” (N, K), "pie” (N, R)

superClass 25

In the list above, the charts available for a numerical SOM are marked with a N, with a K for a
korresp SOM and with a R for relational SOM.

projectIGraph.somSC produces a projected graph from the is_igraph object passed to the argu-
ment variable as described in (Olteanu and Villa-Vialaneix, 2015). The attributes of this graph are
the same than the ones obtained from the SOM map itself in the function projectIGraph.somRes.
plot.somSC used with type="projgraph” calculates this graph and represents it by positionning
the super-vertexes at the center of gravity of the super-clusters. This feature can be combined with
pie.graph=TRUE to super-impose the information from an external factor related to the individuals
in the original dataset (or, equivalently, to the vertexes of the graph).

Value

The superClass function returns an object of class somSC which is a list of the following elements:

cluster The super clustering of the prototypes (only if either k or h are given by user).
tree An hclust object.
som The somRes object given as argument (see trainSOM for details).

The projectIGraph.somSC function returns an object of class is_igraph with the following at-
tributes:

layout provides the layout of the projected graph according to the center of gravity of
the super-clusters positioned on the SOM grid (graph attribute);

name and size respectively are the vertex number on the grid and the number of vertexes in-
cluded in the corresponding cluster (vertex attribute);

weight gives the number of edges (or the sum of the weights) between the vertexes of
the two corresponding clusters (edge attribute).

Author(s)

Elise Maigné <elise.maigne@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine.fr>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References

Anderson M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26, 32-46.

Olteanu M., Villa-Vialaneix N. (2015) Using SOMbrero for clustering and visualizing graphs. Jour-
nal de la Societe Francaise de Statistique, 156, 95-119.

See Also

hclust, cutree, trainSOM, plot.somRes

26 trainSOM

Examples

set.seed(11051729)

my.som <- trainSOM(x.data = iris[,1:4])
choose the number of super-clusters
sc <- superClass(my.som)

plot(sc)

cut the clustering

sc <- superClass(my.som, k = 4)

summary (sc)

plot(sc)

plot(sc, type = "grid")

plot(sc, what = "obs"”, type = "hitmap")

trainSOM Run the SOM algorithm

Description

The trainSOM function returns a somRes class object which contains the outputs of the algorithm.
Usage
trainSOM(x.data, ...)

S3 method for class 'somRes'
print(x, ...)

S3 method for class 'somRes'

summary(object, ...)
Arguments
x.data a data frame or matrix containing the observations to be mapped on the grid by
the SOM algorithm.

Further arguments to be passed to the function initSOM for specifying the pa-
rameters of the algorithm. The default values of the arguments maxit and
dimension are calculated according to the SOM type if the user does not set
them:

* maxit is equal to (number of rows+number of columns)*5 if the SOM type
is korresp. It is equal to number of rows*5 in all other SOM types

* dimension: for a korresp SOM, is approximately equal to the square root
of the number of observations to be classified divided by 10 but it is never
smaller than 5 or larger than 10.

X an object of class somRes.

object an object of class somRes.

trainSOM 27

Details

The version of the SOM algorithm implemented in this package is the stochastic version.

Several variants able to handle non-vectorial data are also implemented in their stochastic versions:
type="korresp” for contingency tables, as described in Cottrell et al. (2004) (with weights as
in Cottrell and Letrémy, 2005a); type = "relational” for dissimilarity matrices, as described in
Olteanu et al. (2015), with the fast implementation introduced in Mariette et al. (2017).

Missing values are handled as described in Cottrell et al. (2005b), not using missing entries of
the selected observation during winner computation or prototype updates. This allows to proceed
with the imputation of missing entries with the corresponding entries of the cluster prototype (with
impute).

summary produces a complete summary of the results that displays the parameters of the SOM, qual-
ity criteria and ANOVA. For type = "numeric” the ANOVA is performed for each input variable
and test the difference of this variable across the clusters of the map. For type = "relational”
a dissimilarity ANOVA is performed (Anderson, 2001), except that in the present version, a crude
estimate of the p-value is used which is based on the Fisher distribution and not on a permutation
test.

Value

The trainSOM function returns an object of class somRes which contains the following components:

clustering the final classification of the data.

prototypes the final coordinates of the prototypes.

energy the final energy of the map. For the numeric case, energy with data having
missing entries is based on data imputation as described in Cottrell and Letrémy
(2005b).

backup a list containing some intermediate backups of the prototypes coordinates, clus-

tering, energy and the indexes of the recorded backups, if nb.save is set to a
value larger than 1.

data the original dataset used to train the algorithm.
parameters a list of the map’s parameters, which is an object of class paramSOM as produced

by the function initSOM.

The function summary.somRes also provides an ANOVA (ANalysis Of VAriance) of each input
numeric variables in function of the map’s clusters. This is helpful to see which variables participate
to the clustering.

Note

Warning! Recording intermediate backups with the argument nb.save can strongly increase the
computational time since calculating the entire clustering and the energy is time consuming. Use
this option with care and only when it is strictly necessary.

28 trainSOM

Author(s)

Elise Maigné <elise.maigne@inrae.fr>

Jérome Mariette <jerome.mariette@inrae.fr>
Madalina Olteanu <olteanu@ceremade.dauphine. fr>
Fabrice Rossi <fabrice.rossi@apiacoa.org>
Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>

References
Anderson M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26, 32-46.
Kohonen T. (2001) Self-Organizing Maps. Berlin/Heidelberg: Springer-Verlag, 3rd edition.

Cottrell M., Ibbou S., Letrémy P. (2004) SOM-based algorithms for qualitative variables. Neural
Networks, 17, 1149-1167.

Cottrell M., Letrémy P. (2005a) How to use the Kohonen algorithm to simultaneously analyse indi-
viduals in a survey. Neurocomputing, 21, 119-138.

Cottrell M., Letrémy P. (2005b) Missing values: processing with the Kohonen algorithm. Proceed-
ings of Applied Stochastic Models and Data Analysis (ASMDA 2005), 489-496.

Olteanu M., Villa-Vialaneix N. (2015) On-line relational and multiple relational SOM. Neurocom-
puting, 147, 15-30.

Mariette J., Rossi F., Olteanu M., Mariette J. (2017) Accelerating stochastic kernel SOM. In: M.
Verleysen, XXVth European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2017), i6doc, Bruges, Belgium, 269-274.

See Also

See initSOM for a description of the parameters to pass to the trainSOM function to change its
behavior and plot. somRes to plot the outputs of the algorithm.

Examples

Run trainSOM algorithm on the iris data with 500 iterations
iris.som <- trainSOM(x.data=iris[,1:4])

iris.som

summary(iris.som)

Index

barplot, 12
cutree, 23-25

dissim.lesmis (lesmis), 9
dist, 5,7

geom_contour_fill, 22
geom_text_wordcloud, 22
ggplot, 21

hclust, 23-25

igraph, 9, 15, 24
impute, 4, 27
initGrid, 2, 3,5, 8, 10, 11
initSOM, 2, 6, 13, 26-28
is_igraph, 24, 25

layout_with_fr, 9
lesmis, 9

myGrid, 10
myGrid-class (myGrid), 10

paramSOM-class (initSOM), 6
persp, 21

pie, 12

plot, 10, 12,23
plot.igraph, 21
plot.myGrid, 6, 23
plot.myGrid (myGrid), 10
plot.somRes, 2, 3, 11, 16, 18, 23-25, 28
plot.somSC, 16, 25
plot.somSC (superClass), 23
predict.somRes, 13
presidentielles2002, 14
print.myGrid (myGrid), 10
print.paramSOM (initSOM), 6
print.somRes (trainSOM), 26
print.somSC (superClass), 23

29

projectIGraph, 15
projectIGraph.somRes, 25
projectIGraph.somSC, 16, 25
projectIGraph.somSC (superClass), 23
protoDist, 16

quality, 17

shortest_paths, 9

SOMbrero (SOMbrero-package), 2
SOMbrero-package, 2
sombreroGUI, 3, 18
somRes.plotting, 12, 19
somSC-class (superClass), 23
summary, 27

summary.myGrid (myGrid), 10
summary.paramSOM (initSOM), 6
summary . somRes (trainSOM), 26
summary . somSC (superClass), 23
superClass, 23

trainSOM, 24, 13, 14, 17, 18, 25, 26

	SOMbrero-package
	impute
	initGrid
	initSOM
	lesmis
	myGrid
	plot.somRes
	predict.somRes
	presidentielles2002
	projectIGraph
	protoDist
	quality
	sombreroGUI
	somRes.plotting
	superClass
	trainSOM
	Index

