Package ‘SMME’

January 20, 2025
Type Package
Title Soft Maximin Estimation for Large Scale Heterogeneous Data
Version 1.1.1
Date 2023-01-02
Maintainer Adam Lund <adam. lund@math.ku.dk>

Description Efficient procedure for solving the soft maximin problem for large scale heteroge-
neous data, see Lund, Mogensen and Hansen (2022) <doi:10.1111/sjos.12580>. Cur-
rently Lasso and SCAD penalized estimation is implemented. Note this package sub-
sumes and replaces the SMMA package.

License MIT + file LICENSE

Imports Rcpp (>=0.12.12)

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.1.2

NeedsCompilation yes

Author Adam Lund [aut, cre]

Repository CRAN

Date/Publication 2023-01-08 10:30:02 UTC

Contents

predict SMME . . . . . .
print. SMME . . . ..
RH .

Index


https://doi.org/10.1111/sjos.12580

2 iwt

iwt Inverse discrete wavelet transform

Description
This function performs a level J decomposition of the input array (1d, 2d, or 3d) using the pyramid
algorithm (Mallat 1989).

Usage
iwt(x, wf = "1a8", J = NULL)

Arguments

X a 1, 2, or 3 dimensional data array. The size of each dimension must be dyadic.

wf the type of wavelet family used. See R-package waveslim for options.

J is the level (depth) of the decomposition. For default NULL the max depth is
used making iwt (x) equal to multiplying x with the inverse of corresponding
wavelet matrix.

Details

This is a C++/R wrapper function for a C implementation of the inverse discrete wavelet transform
by Brandon Whitcher, Rigorous Analytics Ltd, licensed under the BSD 3 license https://cran.r-
project.org/web/licenses/BSD_3_clause, see the Waveslim package; Percival and Walden (2000);
Gencay, Selcuk and Whitcher (2001).

Given a data array (1d, 2d or 3d) with dyadic sizes this transform is computed efficiently via the
pyramid algorithm see Mallat (1989).

This functionality is used in the computations underlying softmaximin to perform multiplications
involving the wavelet (design) matrix efficiently.

Value

An array with dimensions equal to those of x.

Author(s)
Adam Lund, Brandon Whitcher

References
Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.



predict. SMME 3

Examples

###1d
X <- as.matrix(rnorm(23))
range(x - iwt(wt(x)))

###2d
x <- matrix(rnorm(2*(3 + 4)), 23, 2*4)
range(x - iwt(wt(x)))

###3d
x <= array(rnorm(2*(3 + 4 + 5)), c(2*3, 2*4, 2"5))
range(x - iwt(wt(x)))

predict.SMME Make Prediction From a SMME Object

Description

Given new covariate data this function computes the linear predictors based on the estimated model
coefficients in an object produced by the function softmaximin. Note that the data can be supplied
in three different formats: i) for general models as a n’ X p matrix (p is the number of model
coefficients and n’ is the number of new data points), ii) for array models with custom design as a
list of one, two or three Kronecker component matrices each of size n; x p;,i = 1,2,3 (n/, is the
number of new marginal data points in the ¢th dimension), iii) for wavelet based models a string
indicating the wavelet used to produce the model object.

Usage

## S3 method for class 'SMME'
predict(object, x, ...)

Arguments

object An object of class SMME, produced with softmaximin with m. fitted models
for each value of zeta.

X An object that should be like the input to the softmaximin call that produced
object. For general models a matrix with column dimension equal to that of the
original input.For array models with custom design a list like the one supplied
to softmaximin to produce object and for a wavelet design the name of the
wavelet used to produce object.

ignored.

Value

A list of length length(zeta). If x is a n’ x p matrix each list item is a n’ x m matrix containing
the linear predictors computed for each 1lambda. If x is a string or a list of tensor component matrices
and fit$dim = d, each list item is a d + 1 array containing predictions computed for each lambda.



4 print. SMME

Author(s)
Adam Lund

Examples

#i#size of example
nl <- 65; n2 <- 26; n3 <- 13; pl <- 13; p2 <- 5; p3 <-4

#i#marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, @, 0.5), nl1, p1)

X2 <- matrix(rnorm(n2 * p2, @, 0.5), n2, p2)

X3 <- matrix(rnorm(n3 * p3, @, 0.5), n3, p3)

X <- list(X1, X2, X3)

component <- rbinom(pl * p2 * p3, 1, 0.1)

Betal <- array(rnorm(pl * p2 * p3, @0, 0.1) + component, c(pl , p2, p3))
Beta2 <- array(rnorm(pl * p2 * p3, @, 0.1) + component, c(pl , p2, p3))
mul <- RH(X3, RH(X2, RH(X1, Betal)))

mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))

Y1 <- array(rnorm(nl * n2 *x n3, mul), dim = c(n1, n2, n3))

Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
YC,,, 11 <= Y1; Y[,,, 2] <= Y2;

fit <- softmaximin(X, Y, zeta = c(1, 10), penalty = "lasso”, alg = "npg")

##new data in tensor component form

X1 <= matrix(rnorm(2 * p1), nrow = 2)

X2 <- matrix(rnorm(3 * p2), nrow = 3)

X3 <- matrix(rnorm(4 * p3), nrow = 4)

Yhat <- predict(fit, x = list(X1, X2, X3))

print.SMME Print Function for objects of Class SMME

Description

This function will print some information about the SMME object.

Usage
## S3 method for class 'SMME'
print(x, ...)

Arguments
X a SMME object

ignored



RH 5

Author(s)
Adam Lund

Examples

##size of example
nl <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <-5; p3 <-4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(nl * p1, @, 0.5), n1, p1)

X2 <- matrix(rnorm(n2 * p2, @, 0.5), n2, p2)

X3 <- matrix(rnorm(n3 * p3, @, 0.5), n3, p3)

X <= list(X1, X2, X3)

component <- rbinom(pl * p2 * p3, 1, 0.1)

Betal <- array(rnorm(pl * p2 * p3, @, .1) + component, c(pl , p2, p3))
Beta2 <- array(rnorm(pl * p2 * p3, @, .1) + component, c(pl , p2, p3))
mul <- RH(X3, RH(X2, RH(X1, Betal)))

mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))

Y1 <- array(rnorm(nl * n2 * n3, mul), dim = c(nl1, n2, n3))

Y2 <- array(rnorm(nl * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
YL,,, 11 <= Y1; YL,,, 2] <- Y2;

fit <- softmaximin(X, Y, zeta = 10, penalty = "lasso”, alg = "npg")
fit

RH The Rotated H-transform of a 3d Array by a Matrix

Description
This function is an implementation of the p-operator found in Currie et al 2006. It forms the basis
of the GLAM arithmetic.

Usage
RH(M, A)

Arguments

M an X p; matrix.
A a 3d array of size p; X p X p3.
Details

For details see Currie et al 2006. Note that this particular implementation is not used in the routines
underlying the optimization procedure.



6 SMME

Value

A 3d array of size py X p3 X n.

Author(s)

Adam Lund

References

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.

Examples
nl <- 65; n2 <- 26; n3 <- 13; pl1 <- 13; p2 <- 5; p3 <- 4

#i#marginal design matrices (Kronecker components)
X1 <= matrix(rnorm(n1 * p1), nl1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <= matrix(rnorm(n3 * p3), n3, p3)

Beta <- array(rnorm(pl * p2 * p3, 0, 1), c(pl , p2, p3))
max (abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))

SMME Soft Maximin Estimation for Large Scale Heterogenous Data

Description

Efficient procedure for solving the Lasso or SCAD penalized soft maximin problem for large
scale_y data. This software implements two proximal gradient based algorithms (NPG and FISTA)
to solve different forms of the soft maximin problem from Lund et al., 2022. 1) For general group
specific design the soft maximin problem is solved using the NPG algorithm. 2) For fixed identical
d-array-tensor design across groups, where d = 1,2, 3, the estimation procedure uses either the
FISTA algorithm or the NPG algorithm and is implemented for the following two cases; i) For a
tensor design matrix the algorithms use array arithmetic to speed up design matrix multiplications
using only the tensor components ii) For a wavelet design matrix the algorithms use the pyramid
algorithm to completely avoid the design matrix and speed up design matrix multiplications. Multi-
threading is possible when openMP is available for R.

Note this package SMME replaces the SMMA package.



SMME

Usage

softmaximin(x,

Arguments

X

zeta

penalty
alg
nlambda

Y,

zet
pen
alg
nla
lam
lam
sca
pen
rel
max
ste
btm
C =
tau
M =
nu

Lmi
1se
nth

a,

alty = c("lasso”, "scad"),
= c("npg", "fista"),

mbda = 30,

bda.min.ratio = 1e-04,

bda = NULL,

ley =1,
alty.factor = NULL,

tol = 1e-05,

iter = 1000,

ps =1,
ax = 100,

0.0001,

=2,

4,
:],

n

o,
= TRUE,
reads = 2)

Either a list containing the G group specific design matrices of sizes n; X p;
(general model), a list containing the d (d € {1, 2, 3}) tensor components (tensor
array model) or a string indicating which wavelet design to use (wavelet array
model), see wt for options.

list containing the G group specific response vectors of sizes n; x 1. Alterna-
tively for a model with identical tensor design across G groups, yis an array of
sizemny X -+ x ng x G (d € {1,2,3}) containing the response values.

vector of strictly positive floats controlling the softmaximin approximation ac-
curacy. When length(zeta) > 1 the procedure will distribute the computations
using the nthreads parameter below when openMP is available.

string specifying the penalty type. Possible values are "lasso”, "scad".
string specifying the optimization algorithm. Possible values are "npg"”, "fista".

positive integer giving the number of 1ambda values. Used when lambda is not
specified.

lambda.min.ratio

lambda

scale_y

strictly positive float giving the smallest value for 1ambda, as a fraction of A, 4,;
the (data dependent) smallest value for which all coefficients are zero. Used
when lambda is not specified.

A sequence of strictly positive floats used as penalty parameters.

strictly positive number that the response y is multiplied with.



8 SMME

penalty.factor a length p vector of positive floats that are multiplied with each element in
lambda to allow differential penalization on the coefficients. For tensor mod-
els an array of size p; X - -+ X pg.

reltol strictly positive float giving the convergence tolerance.

maxiter positive integer giving the maximum number of iterations allowed for each
lambda value.

steps strictly positive integer giving the number of steps used in the multi-step adap-
tive lasso algorithm for non-convex penalties. Automatically set to 1 when
penalty = "lasso”.

btmax strictly positive integer giving the maximum number of backtracking steps al-
lowed in each iteration. Default is btmax = 100.

c strictly positive float used in the NPG algorithm. Default is c = 0.0001.

tau strictly positive float used to control the stepsize for NPG. Default is tau = 2.

M positive integer giving the look back for the NPG. Default is M = 4.

nu strictly positive float used to control the stepsize. A value less that 1 will de-

crease the stepsize and a value larger than one will increase it. Default is nu =
1.

Lmin non-negative float used by the NPG algorithm to control the stepsize. For the
default Lmin = @ the maximum step size is the same as for the FISTA algorithm.
lse logical variable indicating whether to use the log-sum-exp-loss. TRUE is default
and yields the loss below and FALSE yields the exponential of this.
nthreads integer giving the number of threads to use when openMP is available. Default
is 2.
Details

Consider modeling heterogeneous data y, . . ., ¥, by dividing it into G groups y, = (y1,--.,¥n,)
g € {1,...,G} and then using a linear model

v =Xgbg+e,, ge€{l,...,G},

to model the group response. Then b, is a group specific p x 1 coefficient, X, an ng x p group
design matrix and €, an i, X 1 error term. The objective is to estimate a common coefficient 3 such
that X /3 is a robust and good approximation to X ,b, across groups.

Following Lund et al., 2022, this objective may be accomplished by solving the soft maximin esti-
mation problem

G
mﬂin % log (Zexp(—{Vg(ﬁ))) + A8, ¢>0,A>0.

g=1

Here ( essentially controls the amount of pooling across groups (( ~ 0 effectively ignores grouping
and pools observations) and

Uy(8) = 287Xy, ~ BTX]X, )
g



SMME 9

is the empirical explained variance, see Lund et al., 2022 for more details and references.

The function softmaximin solves the soft maximin estimation problem in large scale settings for
a sequence of penalty parameters A\p,q > ... > Amin > 0 and a sequence of strictly positive
softmaximin parameters (i, (2, . - ..

The implementation also solves the problem above with the penalty given by the SCAD penalty,
using the multiple step adaptive lasso procedure to loop over the inner proximal algorithm.

Two optimization algorithms are implemented in the SMME packages; a non-monotone proximal
gradient (NPG) algorithm and a fast iterative soft thresholding algorithm (FISTA).

The implementation is particularly efficient for models where the design is identical across groups
ie. X, = X Vg € {1,...,G} in the following two cases: i) first if X has tensor structure i.e.

for marginal n; X p; design matrices M, ..., My, d € {1,2,3},yis ad+ 1 dimensional response
array and x is a list containing the d marginal matrices M, ..., M. In this case softmaximin
solves the soft maximin problem using minimal memory by way of tensor optimized arithmetic,
see also RH. ii) second, if the design matrix X is the inverse matrix of an orthogonal wavelet trans-
form softmaximin solves the soft maximin problem given the d + 1 dimensional response array y
and x the name of the wavelet family wt, using the pyramid algorithm to compute multiplications
involving X.

Note that when multiple values for ( is provided it is possible to distribute the computations across
CPUs if openMP is available.

Value

An object with S3 Class "SMME".

spec A string indicating the array dimension (1, 2 or 3) and the penalty.

coef A length(zeta)-list of px nlambda matrices containing the estimates of the
model coefficients (3) for each lambda-value for which the procedure con-
verged.

lambda A length(zeta)-list vectors containing the sequence of penalty values used in
the estimation procedure for which the procedure converged.

df A length(zeta)-list of vectors indicating the nonzero model coefficients for
each value of 1ambda for which the procedure converged.

dimcoef An integer giving the number p of model parameters. For array data a vector
giving the dimension of the model coefficient array f.

dimobs An integer giving the number of observations. For array data a vector giving the
dimension of the observation (response) array Y.

dim Integer indicating the dimension of of the array model. Equal to 1 for non array.

wf A string indicating the wavelet name if used.

diagnostics A list of length 3. Item iter is a length(zeta)-list of vectors containing the

number of iterations for each lambda value for which the algorithm converged.
Item bt_iterisalength(zeta) vector with total number of backtracking steps



10 SMME

performed across all (converged) lambda values for given zeta value. Key
bt_enter is a length(zeta) vector with total number of times backtracking
is initiated across all (converged) lambda values for given zeta value.

endmod Vector of length length(zeta) with the number of models fitted for each zeta.
Stops Convergence indicators.

Author(s)
Adam Lund

Maintainer: Adam Lund, <adam. lund@math.ku.dk>

References

Lund, A., S. W. Mogensen and N. R. Hansen (2022). Soft Maximin Estimation for Heterogeneous
Data. Scandinavian Journal of Statistics, vol. 49, no. 4, pp. 1761-1790. url = https://doi.org/10.1111/sjos.12580

Examples

#Non-array data

##size of example

set.seed(42)

G <- 10; n <- sample(100:500, G); p <- 60
X <=y <= list()

#i#group design matrices
for(g in 1:G){x[[gl] <- matrix(rnorm(n[g] * p), nlgl, p)}

#i#common features and effects
common_features <- rbinom(p, 1, 0.1) #sparsity of comm. feat.
common_effects <- rnorm(p) * common_features

##group response

for(g in 1:G){

bg <- rnorm(p, @, ©.5) * (1 - common_features) + common_effects
mu <- x[[gl] %*% bg

y[[gl] <- rnorm(n[gl) + mu

3

##fit model for range of lambda and zeta
system.time(fit <- softmaximin(x, y, zeta = c(0.1, 1), penalty = "lasso”, alg = "npg"))
betahat <- fit$coef

#i#estimated common effects for specific lambda and zeta
zetano <- 2

modelno <- dim(betahat[[zetano]])[2]

m <- min(betahat[[zetano]]l[ , modelno], common_effects)

M <- max(betahat[[zetano]l][ , modelno], common_effects)
plot(common_effects, type = "p", ylim = c(m, M), col = "red")
lines(betahat[[zetano]]l[ , modelno], type = "h")



SMME

#Array data

##tsize of example

set.seed(42)

G <- 50; n <- c(30, 20, 10); p <- c(7, 5, 4)

##marginal design matrices (Kronecker components)
x <- list()
for(i in 1:length(n)){x[[il] <- matrix(rnorm(n[i] * p[il), n[il, p[il)}

##common features and effects
common_features <- rbinom(prod(p), 1, @.1) #sparsity of comm. feat.
common_effects <- rnorm(prod(p),0,0.1) * common_features

##group response

y <- array(NA, c(n, G))

for(g in 1:G){

bg <- rnorm(prod(p), @, .1) * (1 - common_features) + common_effects
Bg <- array(bg, p)

mu <- RH(x[[31], RH(x[[2]], RH(x[[1]], Bg)))

y[,,, gl <= array(rnorm(prod(n)), dim = n) + mu

3

##fit model for range of lambda and zeta

system.time(fit <- softmaximin(x, y, zeta = c(1, 10, 100), penalty = "lasso”,
alg = "npg"))

betahat <- fit$coef

#i#testimated common effects for specific lambda and zeta
zetano <- 1

modelno <- dim(betahat[[zetano]])[2]

m <- min(betahat[[zetano]][, modelno], common_effects)

M <- max(betahat[[zetano]l][, modelno], common_effects)
plot(common_effects, type = "p", ylim = c(m, M), col = "red")
lines(betahat[[zetano]]l[ , modelno], type = "h")

#Array data and wavelets

##tsize of example

set.seed(42)

G <- 50; p <- n <= c(2"3, 2*4, 2"5);

##common features and effects
common_features <- rbinom(prod(p), 1, 0.1) #sparsity of comm. feat.
common_effects <- rnorm(prod(p), @, 1) * common_features

##group response

y <- array(NA, c(n, G))

for(g in 1:G){

bg <- rnorm(prod(p), @, 0.1) * (1 - common_features) + common_effects
Bg <- array(bg, p)

mu <- iwt(Bg)

v[,,, gl <= array(rnorm(prod(n), @, ©.5), dim = n) + mu

3



12 wt

##fit model for range of lambda and zeta

system.time(fit <- softmaximin(x = "la8", y, zeta = c(0.1, 1, 10),
penalty = "lasso”, alg = "fista"))

betahat <- fit$coef

##estimated common effects for specific lambda and zeta
zetano <- 3

modelno <- dim(betahat[[zetano]l]l)[2]

m <- min(betahat[[zetano]][, modelno], common_effects)

M <- max(betahat[[zetano]][, modelno], common_effects)
plot(common_effects, type = "p", ylim = c(m, M), col = "red")
lines(betahat[[zetano]l][ , modelno], type = "h")

wt Discrete wavelet transform

Description
This function performs a level J wavelet transform of the input array (1d, 2d, or 3d) using the
pyramid algorithm (Mallat 1989).

Usage

wt(x, wf = "1a8", J = NULL)

Arguments
X a 1, 2, or 3 dimensional data array. The size of each dimension must be dyadic.
wf the type of wavelet family used. See R-package waveslim for options.
J is the level (depth) of the decomposition. For default NULL the max depth is used
making wt (x) equal to multiplying x with the corresponding wavelet matrix.
Details

This is a C++/R wrapper function for a C implementation of the discrete wavelet transform by Bran-
don Whitcher, Rigorous Analytics Ltd, licensed under the BSD 3 license https://cran.r-project.org/web/licenses/BSD_3_claus
see the Waveslim package; Percival and Walden (2000); Gencay, Selcuk and Whitcher (2001).

Given a data array (1d, 2d or 3d) with dyadic sizes this transform is computed efficiently via the
pyramid algorithm see Mallat (1989).

This functionality is used in the computations underlying softmaximin to perform multiplications
involving the wavelet (design) matrix efficiently.

Value

An array with dimensions equal to those of x.



wt 13

Author(s)
Adam Lund, Brandon Whitcher

References

Gencay, R., F. Selcuk and B. Whitcher (2001) An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics, Academic Press.

Mallat, S. G. (1989) A theory for multiresolution signal decomposition: the wavelet representation,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, No. 7, 674-693.

Percival, D. B. and A. T. Walden (2000) Wavelet Methods for Time Series Analysis, Cambridge
University Press.

Examples

###1d
x <- as.matrix(rnorm(2*3))
range(x - iwt(wt(x)))

###2d
x <- matrix(rnorm(2*(3 + 4)), 23, 2*4)
range(x - iwt(wt(x)))

###3d
x <- array(rnorm(2*(3 + 4 + 5)), c(2*3, 2*4, 2"5))
range(x - iwt(wt(x)))



Index

* package
SMME, 6

H(RH), 5
iwt, 2

pga (SMME), 6
predict.SMME, 3
print.SMME, 4

RH, 5, 9
Rotate (RH), 5

SMME, 6

SMME .predict (predict.SMME), 3
SMME_predict (predict.SMME), 3
SMME_RH (RH), 5

softmaximin, 2, 12

softmaximin (SMME), 6

wt, 7,9, 12



	iwt
	predict.SMME
	print.SMME
	RH
	SMME
	wt
	Index

