Package 'SIDES'

January 20, 2025

Type Package
Title Subgroup Identification Based on Differential Effect Search
Version 1.18
Date 2023-08-31
Author Marie-Karelle Riviere
Maintainer Marie-Karelle Riviere <eldamjh@gmail.com></eldamjh@gmail.com>
Copyright All files are copyright Sanofi Aventis
Description Provides function to apply ``Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002 sim.4289="">.</doi:10.1002>
License GPL-3
Imports memoise (>= 1.0.0), nnet (>= 7.3-12), multicool (>= 0.1-9), survival (>= 2.37-7), doParallel (>= 1.0.10), foreach (>= 1.4.3), MASS
Depends R (>= 3.1.2)
NeedsCompilation no
Repository CRAN

Date/Publication 2023-09-01 08:40:02 UTC

Contents

SIDES-package	2
SIDES	2
simulation_SIDES	5

9

Index

```
SIDES-package
```

Description

Provides function to apply "Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002/sim.4289>.

Details

Package:	SIDES
Type:	Package
Version:	1.18
Date:	2023-08-31
License:	GPL-3

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Ilya Lipkovich, Alex Dmitrienko, Jonathan Denne and Gregory Enas. Subgroup identification based on differential effect search - A recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine, 2011. <doi:10.1002/sim.4289>

SIDES

SIDES algorithm

Description

SIDES apply Subgroup Identification based on Differential Effect Search algorithm on a data set for binary, continuous, survival or count outcome.

Usage

SIDES(all_set, type_var, type_outcome, level_control, D=0, L=3, S, M=5, gamma=rep(1,3), H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE, num_crit=1, step=0.5, nb_sub_cross=5, alpha, nsim=500, nsim_cv=500, ord.bin=10, M_per_covar=FALSE, upper_best=TRUE, selec=FALSE, seed=42, modified=TRUE)

SIDES

Arguments

all_set	Data frame representing the global data set. The first column must be the out- come (if the outcome is survival, this column should contain a data frame with the time-to-event in the first column and the indicator status in the second col- umn), the second column must be the treatment variable, and other columns are for covariates.
type_var	A vector of length the number of covariates giving for each of them their type. Must be either "continuous", "ordinal" or "nominal".
type_outcome	Type of outcome. Are implementing "continuous", "binary", "survival" and "count".
level_control	Value representing the control in the data set.
D	Minimum desired difference to be demonstrated between the treatment and the control.
L	Maximum number of covariates used to define a subgroup (= depth of the tree). The default value is set at 3.
S	Minimum subgroup size desired. (Subgroups that do not meet this requirement will be excluded).
М	Maximum number of best promising subgroups selected at each step of the al- gorithm. The default value is set at 5.
gamma	Vector of length L representing the relative improvement parameter. Each ele- ment must be between 0 and 1. Smaller values indicate more selective proce- dure. If any improvment is desired, it is recommended to set all elements to 1. Default values are set at 1.
Н	Number of data sets the global data set is split into. There will be 1 training data set and H-1 validation sets. The default value is set at 1.
pct_rand	Proportion of the global data set that is randomly allocated between training and validation sets. The default value is set at 0.5.
prop_gpe	Vector of size H containing the proportion of patients for each data sets (training and validation).
alloc_high_prob	
	Boolean with value TRUE indicating that patients are allocated to the set the minimizing the imbalanced score, or FALSE indicated that patients are random- ized into those sets inversely proportional to their imbalanced score.
num_crit	Integer representing the splitting criterion used. Value equal to 1 stands for criterion maximizing the differential effect between the two child subgroups, while value equal to 2 stands for criterion maximizing the treatment effect in at least one of the two child subgroups. The default value is set at 1.
step	When gamma is not specified, step into which to cut the interval [0,1] to deter- mine gamma by cross-validation. Warning, this process is highly time-consuming and several ties are obtained, thus it is more recommended to provide gamma af- ter thinking about what is desired. The default value is set at 0.5.
nb_sub_cross	Number of folds for cross-validation to determine gamma. The default value is set at 5.

alpha	Overall type I error rate.
nsim	Number of permutations for the resampling-based method used to protect the overall Type I error rate in a weak sense.
nsim_cv	Number of permutations for the resampling-based method used to protect the overall Type I error rate in the cross-validation part to determine gamma. The default value is set at 500.
ord.bin	Number of classes continuous covariates will be discretized into.
M_per_covar	Boolean indicating if the M best promising child subgroups are selected by co- variate (TRUE) or accross all remaining covariates. The default value is set at FALSE.
upper_best	Boolean indicating if greater values of the outcome mean better responses.
selec	Boolean indicating if in addition of the validated subgroups, the output should also contain subgroups that were selected (before validation).
seed	Seed. The default value is set at 42.
modified	Boolean indicating if modified or original Sidak correction is used for over- representation of covariates with more than 2 levels. Default value is TRUE.

Value

An object of class	"SIDES" is returned, consisting of:
candidates	A list containing selected candidates subgroups (before validation step) and their associated p-values.
confirmed	A list containing confirmed/validated subgroups and their associated p-values.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Ilya Lipkovich, Alex Dmitrienko, Jonathan Denne and Gregory Enas. Subgroup identification based on differential effect search - A recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine, 2011. <doi:10.1002/sim.4289>

Examples

- # WARNING: the package does not catch wrong entries by the user and could then
- # return any type of error that would not make sense!
- $\ensuremath{\texttt{\#}}$ Data must be supplied as numerical, even factors / characters must be
- $\ensuremath{\texttt{\#}}$ transformed into numerical values and type is then provided through "type_var"

```
n=500
x=data.frame(matrix(rnorm(n*5,10,5),n,5),matrix(rbinom(n*5,1,0.5),n,5))
colnames(x)=paste("x",c(1:10),sep='')
rownames(x)=1:n
trt=rbinom(n,1,0.5)
I1=(x$x1>10);n1=sum(I1)
```

```
I6=(x$x6==0);n6=sum(I6)
I7=(x$x7==0);n7=sum(I7)
y=trt*(I1*(n-n1)-(1-I1)*n1+I6*(n-n6)-(1-I6)*n6+I7*(n-n7)-(1-I7)*n7)/n+rnorm(n)
data=cbind(y,trt,x)
head(data)
# REAL EXAMPLES TO UNCOMMENT
#s1 = SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, gamma=c(1,1,1), H=1, num_crit=1,
#alpha=0.10, nsim=1000, ord.bin=10, upper_best=TRUE, seed=42)
#s1 = SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, gamma=c(1,1,1), H=2, pct_rand=0.5,
#prop_gpe=c(0.7,0.3), num_crit=1, alpha=0.10, nsim=1000, ord.bin=10,
#upper_best=TRUE, seed=42)
#Example on how to enter data for survival
#n=200
#data=data.frame(rep(NA,n), rbinom(n,1,0.5), matrix(rbinom(n*5,1,0.5),n,5))
#colnames(data)=c("y", "trt", paste("x",c(1:5),sep=''))
#rownames(data)=1:n
#data$y = matrix(NA,ncol=2,nrow=n)
#data$y[,1] = rexp(n)
#data$y[,2] = rbinom(n,1,0.5)
#head(data)
```

simulation_SIDES Simulations of SIDES method

Description

simulation_SIDES is used to perform simulations of SIDES algorithm on a data set for binary, continuous, survival or count outcome.

Usage

```
simulation_SIDES(all_set, type_var, type_outcome, level_control, D=0, L=3, S,
M=5, num_crit=1, gamma=rep(1,3), alpha, nsim=500, ord.bin=10, nrep=100, seed=42,
H=1, pct_rand=0.5, prop_gpe=c(1), alloc_high_prob=TRUE, step=0.5, nb_sub_cross=5,
nsim_cv=500, M_per_covar=FALSE, upper_best=TRUE, nb_cores=NA, ideal=NA,
modified=TRUE)
```

Arguments

all_set Data frame representing the global data set. The first column must be the outcome (if the outcome is survival, this column should contain a data frame with

	the time-to-event in the first column and the indicator status in the second col- umn), the second column must be the treatment variable, and other columns are for covariates.
type_var	A vector of length the number of covariates giving for each of them their type. Mus be either "continuous", "ordinal" or "nominal".
type_outcome	Type of outcome. Are implementing "continuous", "binary", "survival" and "count".
level_control	Value representing the control in the data set.
D	Minimum desired difference to be demonstrate between the treament and the control.
L	Maximum number of covariates used to define a subgroup (= deepth of the tree). The default value is set at 3.
S	Minimum subgroup size desired. (Subgroups that do not meet this requirement will be excluded).
М	Maximum number of best promising subgroups selected at each step of the al- gorithm. The default value is set at 5.
num_crit	Integer representing the splitting criterion used. Value equal to 1 stands for criterion maximizing the differential effect between the two child subgroups, while value equal to 2 stands for criterion maximizing the treatment effect in at least one of the two child subgroups. The default value is set at 1.
gamma	Vector of length L representing the relative improvement parameter. Each ele- ment must be between 0 and 1. Smaller values indicates more selective proce- dure. If any improvment is desired, it is recommended to set all elements to 1. Default values are set at 1.
alpha	Overall type I error rate.
nsim	Number of permutations for the resampling-based method used to protect the overall Type I error rate in a weak sense.
ord.bin	Number of classes continuous covariates will be discretized into.
nrep	Number of simulation replicates.
seed	Seed. The default value is set at 42.
Н	Number of data sets the global data set is split into. There will be 1 trainning data set and H-1 validation sets. The default value is set at 1.
pct_rand	Proportion of the global data set that is randomly allocated between training and validation sets. The default value is set at 0.5.
prop_gpe	Vector of size H containing the proportion of patients for each data sets (traning and validation).
alloc_high_prob	
	Boolean with value TRUE indicating that patients are allocated to the set the minimizing the imbalanced score, or FALSE indicated that patients are random- ized into those sets inversely proportional to their imbalanced score.
step	When gamma is not specified, step into which to cut the interval [0,1] to deter- mine gamma by cross-validation. Warning, this process is highly time-consuming and several ties are obtained, thus it is more recommended to provide gamma af- ter thinking about what is desired. The default value is set at 0.5.

nb_sub_cross	Number of folds for cross-validation to determine gamma. The default value is set at 5.
nsim_cv	Number of permutations for the resampling-based method used to protect the overall Type I error rate in the cross-validation part to determine gamma. The default value is set at 500.
M_per_covar	Boolean indicating if the M best promising child subgroups are selected by co- variate (TRUE) or across all remaining covariates. The default value is set at FALSE.
upper_best	Boolean indicating if greater values of the outcome mean better responses.
nb_cores	Number of cores to use as algorithm is parallelized. The default value used all available cores minus 1.
ideal	When a simulation study is set up and data are generated by the user, the "true" ideal subgroup can be provided by the user to obtain additional results.
modified	Boolean indicating if modified or original Sidak correction is used for over- representation of covariates with more than 2 levels. Default value is TRUE.

Value

An object of class "simulation_SIDES" is returned, consisting of:

<pre>pct_no_subgroup</pre>)
	Percentage of simulations where no sugroup is identified and validated.
mean_size	Mean subgroups size across all simulations (returning at least one subgroup).
subgroups	List of subgroups that are validated as responders.
<pre>pct_selection</pre>	Vector containing the percentage of selection and validation of each subgroup in subgroups.

Author(s)

Marie-Karelle Riviere-Jourdan <eldamjh@gmail.com>

References

Ilya Lipkovich, Alex Dmitrienko, Jonathan Denne and Gregory Enas. Subgroup identification based on differential effect search - A recursive partitioning method for establishing response to treatment in patient subpopulations. Statistics in Medicine, 2011. <doi:10.1002/sim.4289>

Examples

- $\ensuremath{\texttt{\#}}$ WARNING: the package does not catch wrong entries by the user and could then
- # return any type of error that would not make sense!
- # Data must be supplied as numerical, even factors / characters must be
- # transformed into numerical values and type is then provided through "type_var"

```
n=500
x=data.frame(matrix(rnorm(n*10,10,5),n,10),matrix(rbinom(n*10,1,0.5),n,10))
colnames(x)=paste("x",c(1:10),sep='')
rownames(x)=1:n
```

```
trt=rbinom(n,1,0.5)
I1=(x$x1>10);n1=sum(I1)
16=(x$x6==0);n6=sum(16)
I7=(x$x7==0);n7=sum(I7)
y=trt*(I1*(n-n1)-(1-I1)*n1+I6*(n-n6)-(1-I6)*n6+I7*(n-n7)-(1-I7)*n7)/n+rnorm(n)
data=cbind(y,trt,x)
head(data)
# DUMMY EXAMPLE TO RUN
s1 = simulation_SIDES(all_set=data[,c(1,2,8,9,10)], type_var=rep("ordinal",3),
type_outcome="continuous", level_control=0, D=0, L=1, S=50, M=1, num_crit=1,
gamma=c(1), alpha=0.05, nsim=1, ord.bin=10, nrep=1, seed=42,
H=2, pct_rand=1.0, prop_gpe=c(0.7,0.3), upper_best=TRUE, nb_cores=1)
# REAL EXAMPLES TO UNCOMMENT
#s1 = simulation_SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, num_crit=1, gamma=c(1,1,1), alpha=0.10,
#nsim=1000, ord.bin=10, nrep=1000, seed=42, H=1, upper_best=TRUE)
#s1
#s1 = simulation_SIDES(all_set=data,
#type_var=c(rep("continuous",5),rep("ordinal",5)), type_outcome="continuous",
#level_control=0, D=0, L=3, S=30, M=5, num_crit=1, gamma=c(1,1,1), alpha=0.10,
#nsim=1000, ord.bin=10, nrep=1000, seed=42, H=2, pct_rand=0.5,
#prop_gpe=c(0.7,0.3), upper_best=TRUE)
#s1
```

8

Index

SIDES,2 SIDES-package,2 simulation_SIDES,5