Package 'SCEnt'

January 20, 2025

Title Single Cell Entropy Analysis of Gene Heterogeneity in Cell Populations

Version 0.0.1

Description Analyse single cell RNA sequencing data using entropy to calculate heterogeneity and homogeneity of genes amongst the cell population. From the work of Michael J. Casey, Ruben J. Sanchez-Garcia and Ben D. MacArthur.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.2

Imports entropy, tibble

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Hugh Warden [aut, cre] (<https://orcid.org/0000-0002-4308-7316>)

Maintainer Hugh Warden <hugh.warden@outlook.com>

Repository CRAN

Date/Publication 2021-09-30 08:30:04 UTC

Contents

gene_het						•		 			•							2
gene_hom	 •							 										3
normalise	 •							 										4
scent_select								 										4
scent_select_tidy								 										5

8

Index

gene_het

Description

Find the Heterogeneity of a Gene Within a Population

Usage

gene_het(expr, unit = "log2", normalise = TRUE, transpose = FALSE)

Arguments

expr	A vector or matrix of gene expressions. For the matrix, genes should be repre- sented as rows and cells as columns.
unit	The units to be parsed to the entropy function.
normalise	A logical value representing whether the gene frequencies should be normalised into a distribution.
transpose	A logical value representing whether the matrix should be transposed before any calculations are performed.

Value

A vector of the information gained from the gene distribution compared to the uniform distribution. The higher the value more heterogeneous the cell is within the population.

Examples

```
#Creating Data
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)</pre>
```

```
#Calculating Heterogeneity For Each Gene
gene_het(gene1)
gene_het(gene2)
gene_het(gene3)
gene_het(gene4)
gene_het(gene5)
```

```
#Calculating Heterogeneity For a Matrix
gene_het(gene_counts)
```

gene_hom

Description

Find the Homogeneity of a Gene Within a Population

Usage

gene_hom(expr, unit = "log2", normalise = TRUE, transpose = FALSE)

Arguments

expr	A vector or matrix of gene expressions. For the matrix, genes should be repre- sented as rows and cells as columns.
unit	The units to be parsed to the entropy function.
normalise	A logical value representing whether the gene frequencies should be normalised into a distribution.
transpose	A legical value representing whether the matrix should be transposed before any calculations are performed.

Value

A vector of the information contained in the distribution of each gene. The higher this is, the more homogeneous the gene is within the cell population.

Examples

```
#Creating Data
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)</pre>
```

```
#Calculating Homogeneity For Each Gene
gene_hom(gene1)
gene_hom(gene2)
gene_hom(gene3)
gene_hom(gene4)
gene_hom(gene5)
```

```
#Calculating Homogeneity For a Matrix
gene_hom(gene_counts)
```

normalise

Description

A function that takes frequency count data and normalises it into a probability distribution. Only available internally within SCEnt.

Usage

normalise(dist)

Arguments

dist A vector of a frequency distribution.

Value

A vector of a probability distribution relative to the frequencies.

scent_select Feature Selection by Gene Heterogeneity

Description

Feature Selection by Gene Heterogeneity

Usage

```
scent_select(
    expr,
    bit_threshold = NULL,
    count_threshold = NULL,
    perc_threshold = NULL,
    unit = "log2",
    normalise = TRUE,
    transpose = FALSE
)
```

Arguments

expr	A matrix of gene expression data. Cells should be represented as rows and genes should be represented as columns.
bit_threshold	The threshold for the amount of bits of information a gene must add to be se- lected as a feature. Only one threshold can be used at a time.
count_threshol	d
	A number represented how many of the most heterogeneous cells should be selected. Only one threshold can be used at a time.
perc_threshold	The percentile of the hetergeneity distribution above which a gene should be to be selected as a feature.
unit	The units to be used when calculating entropy.
normalise	A logical value representing whether the gene counts should be normalised into a probability distribution.
transpose	A logical value representing whether the matrix should be transposed before having any operations computed on it.

Value

A matrix of gene expression values where genes with low heterogeneity have been removed.

Examples

```
#Creating Data
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)</pre>
```

```
#Performing Feature Selection
scent_select(gene_counts, bit_threshold = 0.85)
scent_select(gene_counts, count_threshold = 2)
scent_select(gene_counts, perc_threshold = 0.25)
```

scent_select_tidy A Tidy Wrapper for Feature Selection by Heterogeneity

Description

A Tidy Wrapper for Feature Selection by Heterogeneity

Usage

```
scent_select_tidy(
    expr,
    bit_threshold = NULL,
    count_threshold = NULL,
    perc_threshold = NULL,
    unit = "log2",
    normalise = TRUE,
    transpose = FALSE
)
```

Arguments

expr	A tibble of gene expression data. Cells should be represented as rows and genes should be represented as columns.					
bit_threshold	The threshold for the amount of bits of information a gene must add to be lected as a feature. Only one threshold can be used at a time.					
count_threshold						
	A number represented how many of the most heterogeneous cells should be selected. Only one threshold can be used at a time.					
perc_threshold	The percentile of the hetergeneity distribution above which a gene should be to be selected as a feature.					
unit	The units to be used when calculating entropy.					
normalise	A logical value representing whether the gene counts should be normalised into a probability distribution.					
transpose	A logical value representing whether the matrix should be transposed before having any operations computed on it.					

Value

A tibble of gene expression values where genes with low heterogeneity have been removed.

Examples

```
#Creating Data
library(tibble)
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)
gene_counts <- as_tibble(gene_counts)</pre>
```

```
#Performing Feature Selection
scent_select_tidy(gene_counts, bit_threshold = 0.85)
```

6

scent_select_tidy

```
scent_select_tidy(gene_counts, count_threshold = 2)
scent_select_tidy(gene_counts, perc_threshold = 0.25)
```

Index

gene_het, 2
gene_hom, 3

normalise,4

scent_select, 4
scent_select_tidy, 5