Package 'SAME'

January 20, 2025

Type Package

Title Seamless Adaptive Multi-Arm Multi-Stage Enrichment

Version 0.1.0

Maintainer Chengxue Zhong <czhong9106@gmail.com>

Description Design a Bayesian seamless multi-arm biomarker-enriched phase II/III design with the survival endpoint with allowing sample size re-estimation. James M S Wason, Jean E Abraham, Richard D Baird, Ioannis Gournaris, Anne-Laure Vallier, James D Brenton, Helena M Earl, Adrian P Mander (2015) <doi:10.1038/bjc.2015.278>. Guosheng Yin, Nan Chen, J. Jack Lee (2018) <doi:10.1007/s12561-017-9199-7>. Ying Yuan, Beibei Guo, Mark Munsell, Karen Lu, Amir Jazaeri (2016) <doi:10.1002/sim.6971>.

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Imports boot, rjags, coda, extraDistr, survival, ggplot2, expint

Suggests testthat, mockery, knitr, rmarkdown

Depends R (>= 3.3.0)

NeedsCompilation no

Author Chengxue Zhong [aut, cre], Haitao Pan [aut], Hongyu Miao [aut]

Repository CRAN

Date/Publication 2023-01-16 10:10:08 UTC

Contents

conduct.phase2	. 2
conduct.phase3	. 3
example.1	. 3
example.2	. 4
ind.cutoffs	. 5

conduct.phase2

	sim.trial .	•	•		•	•	•			 •		•	•	•			•	•	•		•			•										•		•	•	6
	sim.trial.2	•		•	•	•	•	•	•	 •		•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•		•	7
Index																																						9

conduct.phase2	Function to identify the most promising treatment-biomarker-linked
	subgroup

Description

This function is used to estimate the effect size of each subgroup and to select the most promising subgroup.

Usage

conduct.phase2(formula, surv, event, data)

Arguments

formula	a formula object, with the combinations of treatment and biomarker term, e.g., formula = "T1:B1+T1:B2+T2:B1+T2:B2"
surv	survival time
event	the status indicator, 0=alive, 1=dead
data	a data.frame in which to interpret the variables named in the formula

Value

conduct.phase2() select the most effective subgroup and returns the estimated hazard ratio.

Examples

```
conduct.phase2(formula = "T1:B1+T1:B2+T2:B1+T2:B2", surv = "surv",
event = "death", data = "example.1")
```

conduct.phase3

Function to estimate the hazard ratios and other statistics of the selected subgroup

Description

This function is used to estimate the effect size of the selected subgroup.

Usage

conduct.phase3(data, eta, theta)

Arguments

data	a data.frame in which to interpret the variables named in the formula
eta	a cutoff probability for the strength of evidence for decision-making
theta	a clinically meaningful treatment effect size defined by clinicians

Value

conduct.phase3()

Examples

```
conduct.phase3(example.2,eta=0.8, theta=0.95)
```

example.1	A Time-to-event dataset containing the time and other attributes of 643
	patients.

Description

A Time-to-event dataset containing the time and other attributes of 643 patients.

Usage

example.1

example.2

Format

A data frame with 643 rows and 6 variables:

T1 binary variable, receive treatment 1=1, not receive treatment 1=0

T2 binary variable, receive treatment 2=1, not receive treatment 2=0

B1 binary variable, biomarker 1 positive=1, biomarker 1 negative=0

B2 binary variable, biomarker 2 positive=1, biomarker 2 negative=0

death the status indicator, alive=0, dead=1

surv survival time or follow up time ...

example.2

A Time-to-event dataset containing the time and other attributes of 643 patients.

Description

A Time-to-event dataset containing the time and other attributes of 643 patients.

Usage

example.2

Format

A data frame with 643 rows and 6 variables:

T1 binary variable, receive treatment 1=1, not receive treatment 1=0

T2 binary variable, receive treatment 2=1, not receive treatment 2=0

B1 binary variable, biomarker 1 positive=1, biomarker 1 negative=0

B2 binary variable, biomarker 2 positive=1, biomarker 2 negative=0

death the status indicator, alive=0, dead=1

surv survival time or follow up time

survtime survival time or follow up time

treatments categorical vairable, indicating treatments received ...

find.cutoffs

Description

This function is used to calibrate the cutoff points under null hypothesis using a multi-arm multistage biomarker-enriched design with time-to-event endpoints.

Usage

```
find.cutoffs(
  median.c,
  K,
  L,
  lfu,
  alpha,
  power,
  accrate,
  theta,
  bio.preva,
  FAtime.phase3,
  N.iter
)
```

Arguments

median.c	The median survival time for control group
К	Number of biomarkers
L	Information fraction in terms of the accumulative events in phase II stage, e.g., $K = c(1/4, 1/2, 1)$
lfu	Follow-up time
alpha	One-sided familywise error rate
power	Power
accrate	Accrual rate
theta	A clinically meaningful treatment effect size defined by clinicians
bio.preva	Prevalence of biomarker(s)
FAtime.phase3	the study ending time of phase III
N.iter	Number of iterations

Value

find.cutoffs() returns the calibrated cutoff points that can control the type I error rate.

Examples

sim.trial	Function	to	simulate	Bayesian	seamless	multi-arm	biomarker-
	enriched p	ohas	se II/III des	signs			

Description

```
This function finds the required number of events using a multi-arm multi-stage biomarker-enriched design with time-to-event endpoints.
```

Usage

```
sim.trial(
  median.c,
  hr,
  K,
  L,
  lfu,
  alpha,
  power,
  accrate,
  theta,
  bio.preva,
  FAtime.phase3,
  N.iter
)
```

Arguments

median.c	The median survival time for control group
hr	Alternative hazard ratio
К	Number of biomarkers
L	Information fraction in terms of the accumulative events in phase II stage, e.g., $K = c(1/4, 1/2, 1)$
lfu	Follow-up time
alpha	One-sided familywise error rate
power	Power
accrate	Accrual rate
theta	A clinically meaningful treatment effect size defined by clinicians

bio.preva	Prevalence of biomarker(s)
FAtime.phase3	the study ending time of phase III
N.iter	Number of iterations

Value

sim_trial() returns the nominal type I error rate and calibrated cutoff points, nominal power under user-defined hypothesis, empirical power under user-defined number of simulations, the duration of trial(time), the number of events (num_evs), the number of patients (num_pts) from different stages. The function can also display the number of events and patients under the selected subgroup, the distribution of decision zones and the estimated hazard ratio for the final analysis.

Examples

sim.trial.2	Function to s	simulate Bayesian	seamless mult	i-arm biomarker-
	enriched phase	II/III designs with u	iser-defined cuto	off points

Description

This function finds the required number of events using a multi-arm multi-stage biomarker-enriched design with time-to-event endpoints with the user-defined cutoff points.

Usage

```
sim.trial.2(
 median.c,
 hr,
 Κ,
 L,
 lfu,
  alpha,
  power,
  accrate,
  theta,
  bio.preva,
  FAtime.phase3,
  eta,
  futility,
  superiority,
 N.iter
)
```

sim.trial.2

Arguments

median.c	The median survival time for control group
hr	Alternative hazard ratio
К	Number of biomarkers
L	Information fraction in terms of the accumulative events in phase II stage, e.g., $K = c(1/4, 1/2, 1)$
lfu	Follow-up time
alpha	One-sided family-wise error rate
power	Power
accrate	Accrual rate
theta	A clinically meaningful treatment effect size defined by clinicians
bio.preva	Prevalence of biomarker(s)
FAtime.phase3	the study ending time of phase III
eta	A cutoff probability for the strength of evidence for decision-making and defined by user.
futility	cutoff point for futility termination
superiority	cutoff point for superiority termination
N.iter	Number of iterations

Value

sim.trial.2() returns the nominal type I error rate, nominal power under user-defined hypothesis, empirical power under user-defined number of simulations, the duration of trial(time), the number of events (num_evs), the number of patients (num_pts) from different stages. The function can also display the number of events and patients under the selected subgroup, the distribution of decision zones and the estimated hazard ratio for the final analysis.

Examples

Index

* datasets example.1, 3 example.2, 4 conduct.phase2, 2 conduct.phase3, 3 example.1, 3 example.2, 4 find.cutoffs, 5 sim.trial, 6 sim.trial.2, 7