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Abstract

This paper is focused on detailed aspects of the loss function rho and its derivative psi for
an optimal bias robust regression method that minimizes the maximum asymptotic bias subject
to a constraint on normal distribution efficiency. The analytic form of the psi function was dis-
covered by Yohai and Zamar (1997)) and further studied by Svarc et al. (2002)), but the analytic
form of the rho function was not known. Furthermore, the psi function has a curious feature
of being equal to zero on an interval around the origin which forms a psi function “flat spot”
whose length decreses with increasing normal distribution regression estimator efficiency, and
is hardly noticeable in a plot of the psi function for 95% normal distribution efficieny. This
paper focuses on the following aspects the optimal bias robust regression estimator: (1) The
discovery of an analytic form for the rho function; (2) A computational problem posed by the
psi function flat spot and a solution to the problem using a slighly modified psi function that
entails little loss of bias robustness; (3) A suite of functions available in an R package for
computing the optimal psi and rho functions, and the modified psi and rho functions, for a
specified normal distribution efficiency. We briefly discuss the implementation of the optimal
and modified optimal estimator in the RobStatTM R package available on CRAN.
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1 Introduction

The routine use of robust regression has been substantially hampered by the existence of too many
distinctly different types of such estimators, including least—trimmed—squares (LTS), bounded—
influence estimators, S-estimators, M-estimators and the computational MM-estimator variant of
M-estimators, e.g., as discussed in Maronna et al. (2019). Furthermore, even the most popular
family of regression M-estimators has far too many variants based on different choices of the
rho/psi/weight functions. For example, the SAS software product offers 10 M-estimator variants
identified by the names: Andrews, Bisquare, Cauchy, Fair, Hampel, Huber, Logistic, Median,
Talworth, Welsch." This reflects the fact that there has been no consensus on just which robust re-
gression estimator one should use, even within the family of regression M—estimators. We believe
that the choice of a robust regression estimator should be based on the strengths of its theoretical
properties. Among all the robust regression estimators available today, only two estimators have
the property that they minimizes an asymptotic bias measure over a Tukey-Huber family of dis-
tributions, namely the Yohai and Zamar (1997) estimator, which we refer in this paper as the Opt
estimator, and the Svarc et al. (2002) estimator. In this paper we focus on the Opt estimator, and
begin by providing the definition of its psi function and introducing the previously unknown math-
ematical form of the corresponding rho function defined as the integral of the psi function. We

'See Table 80.5 in the SAS PROC ROBUST REG document at: https://support.sas.com\T1\
guilsinglrightonlinedoc\T1\guilsinglrightstat\T1\guilsinglrightrregPDF
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then point out a computational deficiency of the Opt psi function, and introduce a slightly modi-
fied optimal estimator mOpt that avoids the Opt computational deficiency of the Opt psi function.
Along the way we introduce a family of R functions for computing the Opt and mOpt rho functions
and psi functions, and the weight functions obtained from the psi functions, for any desired normal
distribution efficiency in an allowable range.

The following Section 2 provides the mathematical definistions of the Opt and mOpt estimator rho,
psi and weight functions, and their evaluation for user specified normal distribution efficienies.

2 Optimal Psi and Rho Functions

In this section we begin by discussing the family of optimal bias robust regression estimating
equation psi function ¥(x) discovered by Yohai and Zamar (1997)), whose analytic form and related
discussed appear in Maronna et al. (2019). Then we discuss the analytic form of the rho function
p(x) whose derivative is /(x). We also briefly discuss the weight function obtained from the psi
function, and the role of the weight function in the numerical optimization for obtaining the robust
regression estimates.

2.1 The Optimal Psi Functions

The family of optimal robust psi functions is given by

)+ ) X - sign(x)% |x| € (lower, upper) N

0 otherwise

Ya(x) = sign(x) (|x| - %

where the tuning constant a > 0 controls the support of ¢,(x), and correspondingly controls the bias
versus normal distribution efficiency trade-off of the estimator. The support interval for negative x
is a reflection about the origin of the support interval for positive x. Note that for the limiting case
a = 0 the optimal estimator reduces to ¥y(x) = x, and the estimator is the normal distribution MLE
which has 100% efficiency, but is totally lacking in robustness.

At first glance one wonders for what range of positive a will a support interval (lower, upper) exist,
where the support interval is the set of positive values of x such g(x) = x¢(x) — a is positive. Note
that g(x) = —a for x = 0 and for lim,_,,g(x), and that

g'(0) = (1 = x)g(x)



from which it follows that g(x) is increasing for x < 1, and decreasing for x > 1, with the following
maximum at x = 1:

g(l) =

1
exp(—=1/2) —a =0.2419707245 — a

where the first term on the right-hand side has been computed to 10 significant digits. For a non-
degenerate support interval (lower, upper) to exist, it must be that 0 < a < 0.2419707245, and for
such values of a the values of “lower” and “upper” will be the two roots of the function x¢(x) — a.

The normal distribution efficiency of the optimal estimator is

EFF(Y4, N) = V' (Y4, N) (2)
where
Vo, N) = En(v2) 3)
T EL (w)

is the asymptotic variance of the optimal estimator at a standard normal distribution N. The numer-
ator and denominator of V(i,, N) need to be evaluated by numerical integration in order to obtain
EFF, and the values “lower” and “upper” of the support interval are needed for such integration.

For any allowable value of a, the function OptPsiSupportIntervalFromConst(a) computes
the support interval values “lower” and “upper”. For example:

OptPsiSupportIntervalFromConst(0.05)

## [1] 0.1263356 2.4360509

The function ComputeEfficiencyFromConst_Opt(a)uses OptPsiSupportIntervalFromConst()in
computing the normal distribution efficiency of the optimal psi for any allowable value of a. For
example:

computeEfficiencyFromConst_Opt(0.05)

## [1] 0.8301284

Use of the abovve two functions for a = 0.20,0.10, 0.05,0.03,0.01, 0.005 results in the Table 1
values.



Table 1: Optimal Psi Support Intervals and Efficiencies Versus a
a lower upper Eff
0.200000 0.600306 1.464030 0.344
0.100000 0.259228 2.050151 0.680
0.050000 0.126336 2.436051 0.830
0.030000 0.075413 2.672285 0.893
0.010000 0.025074 3.104545 0.961
0.005000 0.012534 3.342482 0.980

One typically want to use a robust regression estimator that has a specified normal distribution effii-

cency, with 0.95 being a typical efficiency, and so the function ComputeConstFromEfficiency_Opt(eff)
allows one to compute the value of the constant a for any achievable efficiency value eff. For
example:

computeConstFromEfficiency_Opt(0.95)

## [1] 0.01317965

And the following code line confirms that above value of a does indeed yield an efficiency of 95%:

computeEfficiencyFromConst_Opt(0.01317965)

## [1] 0.95

Use of computeConstFromEfficiency_Opt() and OptPsiSupportIntervalFromConst()
for normal distribution efficiencies of 85%, 90%, 95%, 99% produces the results are displayed
in Table 2.

Table 2: Optimal Psi a and Support Interval vs Efficiency
Efficiency a lower upper
0.85 0.043579 0.109897 2.502638
0.90 0.027902 0.070112 2.703592
0.95 0.013180 0.033055 3.003281
0.99 0.002449 0.006138 3.567972

The function psi_Opt can be used to plot the optimal ,(x) function. The results for efficiencies
85%, 90%, 95%, and 99%, are shown in Figure|[l]?

21t should be noted that the optimalRhoPsi package contains a utility function computeTuningPsi_Opt () that
takes either the constant a or an efficiency value eff as input, and computes a vector named cc with six components,
where the first three components cc[1], cc[2], cc[3]are the value of a and the support values “lower” and “upper”,
that are used by psi_Opt (). The other three values cc[1], cc[2], cc[3] are used later for other purposes.
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Figure 1: Optimal Psi Functions for Various Normal Distribution Efficiencies

Itis not easy to discern in Figure[T] but for each efficiency there is a very small interval [-lower, lower]
around the origin where ¥/(x) = 0 for x in that interval, and we note that the value of “lower” de-
creases with increasing normal distribution efficiency.

2.2 The Optimal Rho Function

In order to compute an MM-estimator, due to Yohai (1987) and also described in Maronna et al.
(2019), we need an analytic form for the the loss function p,(x) obtained by integrating v,(x). The
integral of the first term in the right-hand side of the expression for ¥,(x) gives x*/2, but it was not
obvious that the second term had an analytic form. Thus, Yohai and Zamar (1997) suggested to
integrate a polynomial approximation of ¢,(x) to get an analytic form for p,(x), and provided an
example of such a polynomial approximation.

It turns out that the second term has a usable analytic form described below. Since p,(x) is sym-
metric, it suffices to consider only x > 0. We write the integral form of p,(x) as:

0 0 < x < lower
Pa(x) = f Vo(u)du = {¥,(x) — ¥, ,(lower) lower < x < upper @
0
Y, (upper) — ¥, (lower) x > upper.



The antiderivative ¥, (x) of ¥,(x) on the support interval is given by the analytic form

1 X
Y. (x) = =x* — arerfi (—) 5
2 V2
where “erfi” is the imaginary error function. See for example Zhang et al. (1996)). Furthermore,
the evaluation of the erfi function is available in the pracma R package due to Borchers (2017).

The function rho_Opt computes values of the optimal rho function for specified value of the
function argument. The functions rho_Opt and psi_Opt for 85% normal distribution efficiency are
used to produce the results in Figure [2] At this efficiency the flat spot of the psi function on the
small interval around zero is clearly visible, and the rho function is equal to zero on this interval.

— po.oasa(X)
-~ Vo 0434(X)
I I I I

4 2 0 2 4

Figure 2: Optimal Rho and Psi Functions for 85% Normal Distribution Efficiency

Figure 3| shows the rho function shapes for normal distribution efficiencies of 85%, 90%, 95%,
99%.
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Figure 3: Optimal Rho Functions for Various Normal Distribution Efficiencies

2.3 The Optimal Weight Function

The weight function corresponding to the optimal psi function is:

wa(x) = T (6)

The function wgt_Opt computes the value of the weight function w,(x) for a specified value of
x, and this function is used to plot the shapes of the weight functions in Figure [ for values of a
corresponding to efficiency values 85%, 90%, 95%, 99%.
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Figure 4: Optimal Weight Function for Various Normal Distribution Efficiencies

We refer to the behavior of the weight functions near the origin, where they have value zero on a

more or less small interval, as a "sink hole". 3

3 A Modified Optimal Estimator

The optimal estimators have the curious feature of intervals centered at the origin for which the
the optimal psi and rho functions have value zero, and the optimal weight functions have a sink-
hole. Consequently, the weight functions do not satisfy a condition of being non-increasing that
is needed to insure convergence of an iterative re-weighting algorithm for the initial S-estimator
and the final M-estimator in the MM-estimator algorithm (see Sections 5.7.1 and 4.5.2 of Maronna
et al. (2019)). It is therefore desirable to have a smooth approximation modification of the optimal
psi function that is linear with slope one at the origin, and a resulting weight function that is
non-increasing. We derive such an approximation and refer to the resulting regression estimator
as the modOpt estimator. The corresponding R psi, tho and weight functions are psi_modOpt,
rho_modOpt and wgt_modOpt.

Substituting the expression (I) of the optimal psi function into the definition (6) of the optimal
weight function, gives the following expression of the optimal weight function:

3In a geology context, a sink hole is a cavity in the ground caused by water erosion, and providing a route for
surface water to disappear underground.



__4 |x| € (lower, upper)
X6 (x) PP
Wa(x) = (7

0 otherwise .

The derivative of the optimal weight function is

a(l —x?)
W |x| € (lower, upper)

w(x) = ®)

0 otherwise

which shows that the optimal weight function is increasing for 0 < x < 1 and decreasing for
1 < x < upper, and at x = 1 takes on its maximum value of

_ 4
¢(1)’

The idea is to modify the weight function by joining those maximum values at x = +1 with a
horizontal straight line, which yields the initial modified psi function candidate:

€)

(1—ﬁ)x 1<x<1

U (x) = X — mgn(x)m 1 < |x| < upper (10)

0 otherwise .
Note that ¢’(x) has a continuous derivative, and the slope of the linear piece is

_ 4
¢(1)’

Since by convention the slope of a psi function at the origin is one, we define our modified optimal
psi function as:

(1)

X -1<x<1

(mod) ¢(1) ©) ¢(1) B a
Vo (X)‘(¢<1> )l// (0= (d)(l)—a)( RATE )) bl <upper - (12)

0 otherwise .
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3.1 Effiency and Tuning Constant a for the Modified Optimal Psi and Rho

Just as in the case of the optimal psi, there is function to compute the normal distribuiton effi-
ciency for a specified constant a, and a function to compute the constant a for a specified normal
distribution effiency. For example:

computeConstFromEfficiency_modOpt(0.95)

## [1] 0.01316352

computeEfficiencyFromConst_modOpt(0.01316352)

## [1] 0.95

Note that the following computations for the optimal psi give virtually identical results as for the
modified optimal psi:

computeConstFromEfficiency_Opt(0.95)

## [1] 0.01317965

computeEfficiencyFromConst_Opt(0.01317965)

## [1] 0.95

The function psi_modOpt is used to compute values of the modified optimal function tjfngd)(x).“
Figure xx shows the attractive shape of the resulting 85% normal distribution efficiency (),
with its unity slope linearity around the origing, as compared with the flat spot of the corresponding
optimal ¥,(x) based on the same a and scaled by ¢(1)/ (¢(1) — a).

4The function psi_modOpt makes use of the utility function computeTuningPsi_modOpt, just as the function
psi_Opt makes use of the utility function computeTuningPsi_modOpt for the value of a and the values of the
support interval end points.
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Figure 5: Optimal and Modified Optimal Psi Functions for 85% Normal Distribution Efficiency

3.2 Modified Optimal Weight Functions

Aside from the small differences in a region relatively near the origin, the modified optimal psi
function shape concides with that of the optimal psi function, and there is little need for making
plots of the modified optimal psi functions for the efficiencies in Figure [Il However, Figure [0]
shows that the values of the weight functions obtained from the modified optimal psi function
differ quite substantially near the origin from those the optimal psi based weight functions shown
in Figure ] In particular, the “sink hole” around the origin for the optimal psi function no longer
exists in the modified optimal weight function, which is non-increasing for x > 0. Thus the
modified weight function satisfies the sufficient condition that insures convergence of the iterative
re-weighting algorithm for the initial S-estimator and the final M-estimator in the MM-estimator
algorithm mentioned earlier.
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Figure 6: Modified Optimal Weight Function for Various Normal Distribution Efficiencies

4 MM-Estimator Implementation

An MM-estimator requires an initial S-estimator based on an M-scale with breakdown point one-
half in order to insure that the final high-efficiency M-estimator has breakdown point one-half. For
any bounded loss function, such an initial estimator may be obtained by a re-scaling of the loss

function for the final estimator. For details see Section 5.5 of Maronna et al. (2019)).

4.1 MM-Estimator Based on Optimal Rho

In the case of p,(x), the scaled rho function p,(x) with breakdown point one-half is obtained as
follows for the case of a 95% eflicient final M-estimator.

First one computes the constants for the 95% efficient final M-estimator with:

(cc =

##
##
##
##

computeTuningPsi_Opt(0.95))

a
0.0131796499
rho(Inf)
3.3313697906

lower
0.0330545358

upper
3.0032809091

13
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Here the constant c is the default scaling constant for the psi and rho functions.

Then one computes the much smaller value of ¢ needed to obtain a breakdown point one-half initial
estimator with:

(ccHbp = computeTuningChi_Opt(cc))

## a lower upper c Psi_Opt(lower)
## 0.0131796499 0.0330545358 3.0032809091 0.3799299223 -0.0005459033
## rho(Inf)

##  3.3313697906

We compute the efficiency of the high breakdown point initial M-scale estimator with:

computeEfficiencyFromConst_Opt(ccHbp[1], ccHbp[4])

## [1] 0.2021623

4.2 MM-Estimator Based on the Modified Optimal Rho

In the case of the modified optimal psi and rho, the calculations are similar to those above, except
that one uses the functions for the modified optimal psi:

(cc = computeTuningPsi_modOpt(0.95))

## a normConst upper c Psi_Opt(1) rho(Inf)
## 0.01316352 1.05753107 3.00373939 1.00000000 0.46057111 3.53690811

(ccHbp = computeTuningChi_modOpt(cc))

## a normConst upper c Psi_Opt(1) rho(Inf)
## 0.01316352 1.05753107 3.00373939 0.38124404 0.46057111 3.53690811

computeEfficiencyFromConst_modOpt(ccHbp[1], ccHbp[4])

## [1] 0.2430879
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4.3 Implementation in the RobStatTM Package

The code in the R package optimalRhoPsi (see Appendix) used for this document is all R code.
However, C code versions (needed by the underlying robustbase package code) of the optimal
estimator for the 50% breakdown point initial estimator, and a default 95% final estimator are
included in the RobStatTM package. Those functions are as follows.

The optimal psi function, its derivative, and its rho function can be evalutated using the Mspi
function; the optimal weight function can be evaluated using the Mwgt function. These functions
are extended implementations (to include the optimal, and modified optimal psi families) of the
functions with the same names found in the robustbase package. Note that these functions are not
exported by RobStatTM. For example

RobStatTM:: :Mpsi(x, cc, "opt", deriv = 0)

evaluates the optimal psi function with tuning vector cc at x. When deriv = 1 the deriative of
the optimal psi function is evaluated, and when deriv = -1 the optimal rho function is evaluated.
The optimal weight function can be evaulated using the function

RobStatTM:::Mwgt(x, cc, "opt")

The default tuning vectors for the initial estimator result in a breakdown point 50% but low normal
distribution efficiency of about 28%, and the default tuning paramters for final estimator result in
a breakdown point 50% and a high normal distribution efficiency of 95%.

are accesible through the 1Imrobdet.control function. For example:

library (RobStatTM)
Imrobdet.control(psi = "optimal") [c("tuning.chi"”, "tuning.psi")]

An MM estimator can then be fit using the 1mrobdetMM function in RobStatTM:

ImrobdetMM(stack.loss ~ ., data = stackloss, control = lmrob.control(efficiency = 0.95
family = "mopt"))

NOTE: Those values of efficiency and the rho/psi/weights family are the defaults, so the control
= argument would not need to be used for those choices, but but for other choices of efficiency
and/or the choice of the optimal rho/psi/weights family by using family = “opt”, the control
= argument needs to be used.
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Appendix

Al The optimalRhoPsi R Package

The optimalRhoPsi R package is available athttps://github.com/kjellpk/optimalRhoPsi/.
You install and load the package with the first two code lines below, and the third code line prints
the names of all the functions in the package:

devtools::install_github("kjellpk/optimalRhoPsi™)

library(optimalRhoPsi)
1s("package:optimalRhoPsi")

Al.1 Functions for Optimal Psi

The function computeTuningPsi_Opt (contained in the function computeEfficiency_Opt)

Computes the tuning parameter vector for the optimal psi for a specified normal distribution effi-
ciency. For example, for 80% efficiency the vector of tuning parameters is:
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(cc80 <- computeTuningPsi_Opt(0.8))

## a lower upper c Psi_Opt(lower)
## 0.05988905 0.15186061 2.34452872 1.00000000 -0.01135436
## rho(Inf)
## 1.48673738

where a is the optimal psi parameter a, lower and upper are the endpoints of the positive support
interval, c is the rescaling constant for the initial estimator, (is this because the initial estimator is
80% efficient?) Psi_Opt(lower) is ¥, (lower), and rho(Inf) is the supremum of the optimal
rho function. Note that only a and c are strictly (really?) required. The other 4 components are
included only to avoid unnecessary recalculation.

Functions for evaluating the optimal psi, rho and weights values:

e psi_Opt: optimal psi function

e Psi_Opt: indefinite integral of psi used by rho_Opt

rho_Opt: optimal rho function

psip_Opt: derivative of the optimal psi function

wgt_Opt: optimal weight function

Each of the above five functions requires 2 arguments. The first, x, is a vector of values where the
function should be evaluated. The second, cc, is the vector of tuning parameters, e.g., the vector
cc80 computed by computeTuningPsi_Opt.

Al.2 Functions for Modified Optimal Psi

The function computeTuningPsi_modOpt (that is contained in the function computeEfficiency_modOpt):

Computes the tuning parameter vector for the Modified Optimal psi for a specified Gaussian effi-
ciency. For example, for 80% efficiency the vector of tuning parameters is:

(cm80 <- computeTuningPsi_modOpt(0.8))

## a normConst upper c Psi_Opt(1) rho(Inf)
## 0.06046518 1.33313135 2.33952935 1.00000000 0.31888775 2.02550885
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where a is the modified optimal psi parameter a, normConst is ¢(1)/(¢(1) — a), upper is the
upper endpoint of the positive support interval for the optimal psi (with parameter a), c is the
rescaling constant for the initial estimator, Psi_Opt (1) is ¥,(1), and rho(Inf) is the supremum
of the modified optimal rho function. Note that only a and c are strictly required. The other 4
components are included only to avoid unnecessary recalculation.

Functions for evaluating the modified optimal psi, rho and weights values:

e psi_modOpt: modified optimal psi function
e rho_modOpt: modified optimal rho function
e psip_modOpt: derivative of the modified optimal psi function
e wgt_modOpt: modified optimal weight function
Each of the above five functions requires 2 arguments. The first, x, is a vector of values where the

function should be evaluated. The second, cc, is the vector of tuning parameters, e.g., the vector
cm80 computed by computeTuningPsi_modOpt.
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