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baseball Baseball Data

Description

Batting averages of 18 major league players through their first 45 official at bats of the 1970 season.
These batting averages were published weekly in the New York Times, and by April 26, 1970.

Usage

data(baseball)

Format

A data set of 18 players with 12 covariates:

FirstName each player’s first name

LastName each player’s last name

At.Bats number of times batted

Hits each player’s number of hits among 45 at bats

BattingAverage batting averages among 45 at bats
RemainingAt.Bats number of times batted after 45 at bats until the end of season

RemainingAverage batting averages after 45 at bats until the end of season

SeasonAt.Bats number of times batted over the whole season

SeasonHits each player’s number of hits over the whole season

SeasonAverage batting averages over the whole season

League 1 if a player is in the National league

Position each player’s position

Source

Efron, B. and Morris, C. (1975). Data Analysis Using Stein’s Estimator and its Generalizations.
Journal of the American Statistical Association. 70. 311-319.

Examples

data(baseball)
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coverage Estimating Coverage Probability

Description

coverage estimates Rao-Blackwellized and simple unbiased coverage probabilities.

Usage

coverage(gbp.object, A.or.r, reg.coef, mean.PriorDist, nsim = 100)

Arguments

gbp.object a resultant object of gbp function.

A.or.r (optional) a given true numeric value of A for Gaussian data or of r for Binomial
and Poisson data. If not designated, the estimated value in the gbp.object
object will be considered as a true value.

reg.coef (optional) a given true (m by 1) vector for regression coefficients, 3, where m is

the number of regression coefficients including an intercept. If not designated,
the estimated value in the gbp.object object will be considered as a true value.

mean.PriorDist (optional) a given true numeric value for the mean of (second-level) prior distri-
bution. If not designated, the previously known value in the gbp.object object
will be considered as a known prior mean.

nsim number of datasets to be generated. Default is 100.

Details

As for the argument gbp. object, if the result of gbp is designated to b, for example
"b <- gbp(z, n, model = "binomial”)", the argument gbp.object indicates this b.

Data generating process is based on a second-level hierarchical model. The first-level hierarchy is a
distribution of observed data and the second-level is a conjugate prior distribution on the first-level
parameter.

To be specific, for Normal data, gbp constructs a two-level Normal-Normal 2-level model. 0'? below
is assumed to be known or to be accurately estimated (s?) and subscript j indicates j-th group in a

dataset.
ind
(y516;) "~ N(0;,07)
ind
(051105, A) "~ N(poj, A)
poj =
for j =1,...,k, where k is the number of groups (units) in a dataset.

For Poisson data, gbp builds a two-level Poisson-Gamma multi-level model. A square bracket be-
low indicates [mean, variance] of distribution and a constant multiplied to the notation representing
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Gamma distribution (Gam) is a scale. Also, for consistent notation, y; = Z—J and n; can be inter-
; ; :
preted as j-th group’s exposure only in this Poisson-Gamma hierarchical model.

ind .
(zj10;) ~ Pois(n;b;)

ind 1 ind
(047, poj) ~ ;Gam(TMOj) ~ Gam[po;, poj /7]

log(poj) = 83
for j =1,..., k, where k is the number of groups (units) in a dataset.

For Binomial data, gbp sets a two-level Binomial-Beta multi-level model. For reference, a square
bracket below indicates [mean, variance] of distribution and y; = Zi

wnd .
(2j10;) ~ Bin(ny,0;)

ind ind
(0jlr, poj) ~ Beta(rpos,m(1 — poj)) ~ Betalpoj, poj (1 — poj)/(r +1)]
logit(po;) = =3
for j = 1,..., k, where k is the number of groups (units) in a dataset.

From now on, the subscript (i) means i-th simulation and the subscript j indicates j-th group. So,
notations with a subscript (i) are (k by 1) vectors, for example GEZ.) = (01,042, - -+ 0yk)-

Pseudo-data generating process starts from the second-level hierarchy to the first-level. coverage
first generates true parameters (6(;)) for k groups at the second-level and then moves onto the first-
level to simulate pseudo-data sets, Y() for Gaussian or 2(i) for Binomial and Poisson data, given
previously generated true parameters (6;)).

So, in order to generate pseudo-datasets, coverage needs parameters of prior distribution, (A (or r)
and 8 (reg.coef)) or (A (or r) and pg). From here, we have four options to run coverage.

First, if any values related to the prior distribution are not designated like coverage(b, nsim = 10),
then coverage will regard estimated values (or known prior mean, i) in b (gbp.object) as given
true values when it generates lots of pseudo-datasets. After sampling ;) from the prior distribution
determined by these estimated values (or known prior mean) in b (gbp.object), coverage creates
an i-th pseudo-dataset based on ;) just sampled.

Second, coverage allows us to try different true values in generating datasets. Suppose gbp.object
is based on the model with a known prior mean, pg. Then, we can try either different A.or.r or
mean.PriorDist. For example, coverage(b, A.or.r =20, nsim=10),

coverage(b, mean.PriorDist =0.5, nsim=10), or

coverage(b, A.or.r =20, mean.PriorDist = 0.5, nsim = 10). Note that we cannot set reg. coef
because the second-level mean (prior mean) is known in gbp.object to begin with.

Suppose gbp.object is based on the model with an unknown prior mean. In this case, gbp.object
has the estimation result of regression model, linear regression for Normal-Normal, log-linear re-
gression for Poisson-Gamma, or logistic regression for Binomial-Beta, (only intercept term if there
is no covariate) to estimate the unknown prior mean. Then, we can try some options: one or two
of (A.or.r, mean.PriorDist, reg.coef). For example, coverage(b, A.or.r =20, nsim=10),
coverage(b, mean.PriorDist=0.5, nsim=10), or

coverage(b, reg.coef =0.1, nsim = 10) with no covariate where reg. coef is a designated in-
tercept term. Estimates in gbp.object will be used for undesignated values. Also, we can try
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appropriate combinations of two arguments. For example,

coverage(b, A.or.r =20, mean.PriorDist =0.5, nsim=10) and

coverage(b, A.or.r =20, reg.coef =0.1, nsim=10). If we have one covariate, a 2 by 1 vec-
tor should be designated for reg.coef, one for an intercept term and the other for a regression
coefficient of the covariate. Note that the two arguments, mean.PriorDist and reg.coef, cannot
be assigned together because we do not need reg. coef given mean.PriorDist.

The simple unbiased estimator of coverage probability in j-th group is a sample mean of indicators
over all simulated datasets. The j-th indicator in i-th simulation is 1 if the estimated interval of the
J-th group on i-th simulated dataset contains a true parameter 6,;); that generated the observed value
of the j-th group in the i-th dataset.

Rao-Blackwellized unbiased estimator for group j is a conditional expectation of the simple unbi-
ased estimator given a sufficient statistic, y; for Gaussian or z; for Binomial and Poisson data.

Value
coverageRB Rao-Blackwellized unbiased coverage estimate for each group averaged over all
simulations.
coverageS Simple unbiased coverage estimate for each group averaged over all simulations.

average.coverageRB
Overall Rao-Blackwellized unbiased coverage estimate across all the groups and
simulations.

overall.coverageRB
Overall Rao-Blackwellized unbiased coverage estimate across all the groups and
simulations.

average.coverageS
Overall simple unbiased coverage estimate across all the groups and simulations.

se.coverageRB  Standard error of Rao-Blackwellized unbiased coverage estimate for each group.
se.overall.coverageRB

Standard error of the overall Rao-Blackwellized unbiased coverage estimate.
se.coverageS Standard error of simple unbiased coverage estimate for each group.

raw.resultRB  All the Rao-Blackwellized unbiased coverage estimates for every group and for
every simulation.

raw.resultsS All the simple unbiased coverage estimates for every group and for every simu-
lation.

confidence.lvl Nominal confidence level

effective.n The number of simulated data sets used to calculate the coverage estimates. The
data sets may cause some errors in fitting models. For example, the data set may
be against the conditions for the posteiror propriety in Binomial data.

model The model being used, "br", "pr", or "gr".

case One of the cases used to re-draw the coverage plot by coverage.plot.

betas The regression coefficient used to generate simulated data sets.

A.r The hyper-parameter value (A for Gaussian model, and r for both Binomial and

Poisson models) used to generate simulated data sets.

priormeanused The value of the prior mean(s) used to generate simulated data sets.
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Author(s)

Hyungsuk Tak, Joseph Kelly, and Carl Morris

References

Tak, H., Kelly, J., and Morris, C. (2017) Rgbp: An R Package for Gaussian, Poisson, and Binomial
Random Effects Models with Frequency Coverage Evaluations. Journal of Statistical Software. T8,
5, 1-33.

Christiansen, C. and Morris, C. (1997). Hierarchical Poisson Regression Modeling. Journal of the
American Statistical Association. 92, 438, 618-632.

Examples

# Loading datasets
data(schools)

y <- schools$y

se <- schools$se

# Arbitrary covariate for schools data
x2 <- rep(c(-1, 0, 1, 2), 2)

# baseball data where z is Hits and n is AtBats
z <- c(18, 17, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 8, 7)
n <- c(45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 45, 45, 45, 45, 45, 45)

# One covariate: 1 if a player is an outfielder and @ otherwise
x1 <= c¢cC1, 1, 1, 1, 1, o, o, @, o, 1, o, o, o, 1, 1, 0, 0, 0)

B g s S R
# Gaussian Regression Interactive Multi-level Modeling (GRIMM) #
B R R T g a g i S s iy i

HHHHHHHHEHEHEE R AR
# If we do not have any covariate and do not know a mean of the prior distribution #
B i s s S s S S R i

g <- gbp(y, se, model = "gaussian")

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coverageS, gcv$average.coverageRB, gcv$average.coverages,
### gcvdminimum.coverageRB, gcv$raw.resultRB, gcv$raw.resultS

### gcv <- coverage(g, mean.PriorDist = 3, nsim = 100)

### gcv <- coverage(g, A.or.r = 150, nsim = 100)

### gcv <- coverage(g, reg.coef = 10, nsim = 100)

### gcv <- coverage(g, A.or.r = 150, mean.PriorDist = 3, nsim = 100)
### gcv <- coverage(g, A.or.r = 150, reg.coef = 10, nsim = 100)
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HHEHEHHHHHBEHEEHHEEHE R HEEEEHEEHHEEHHHHHHEHEEHSEEEEEHEHHHEHHEEEEEHEEHEEHHHEHE R
# If we have one covariate and do not know a mean of the prior distribution yet, #
WA AR R AR R

g <- gbp(y, se, x2, model = "gaussian")

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coverageS, gcv$average.coverageRB, gcv$average.coverages,
### gcvdminimum. coverageRB, gcv$raw.resultRB, gcv$raw.resultS

### gcv <- coverage(g, mean.PriorDist = 3, nsim = 100)

### gcv <- coverage(g, A.or.r = 200, nsim = 100)

### gcv <- coverage(g, reg.coef = c(10, 2), nsim = 100)

### gcv <- coverage(g, A.or.r = 200, mean.PriorDist = 3, nsim = 100)
#i## gcv <- coverage(g, A.or.r = 200, reg.coef = c(10, 2), nsim = 100)

B s s
# If we know a mean of the prior distribution, #
SHEFHEHEHHH B

g <- gbp(y, se, mean.PriorDist = 8, model = "gaussian")

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coverageS, gcv$average.coverageRB, gcv$average.coverageS,
### gcvdminimum.coverageRB, gcv$raw.resultRB, gcv$raw.resultS

### gcv <- coverage(g, mean.PriorDist = 3, nsim = 100)
### gcv <- coverage(g, A.or.r = 150, nsim = 100)
### gcv <- coverage(g, A.or.r = 150, mean.PriorDist = 3, nsim = 100)

B S
# Binomial Regression Interactive Multi-level Modeling (BRIMM) #
SHHHEEEEHE R AR A

HHHHHHHHAHEEE AR AR
# If we do not have any covariate and do not know a mean of the prior distribution #
HHEHHHEARHEEE R R R

b <- gbp(z, n, model = "binomial”)
### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

bcv <- coverage(b, nsim = 10)

### bcv$coverageRB, bcv$coverageS, bcv$average.coverageRB, bcv$average.coverageS,
### bcv$minimum. coverageRB, bcv$raw.resultRB, bcv$raw.resultS
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### bcv <- coverage(b, mean.PriorDist = 0.2, nsim = 100)

### bcv <- coverage(b, A.or.r = 50, nsim = 100)

### bcv <- coverage(b, reg.coef = -1.5, nsim = 100)

### bcv <- coverage(b, A.or.r = 50, mean.PriorDist = 0.2, nsim = 100)
### bcv <- coverage(b, A.or.r = 50, reg.coef = -1.5, nsim = 100)

B g L i Rl e a8 o i i L E g a i i iy i i g e g e g e i i ey
# If we have one covariate and do not know a mean of the prior distribution yet, #
AR AR R AR

b <- gbp(z, n, x1, model = "binomial")

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
bcv <- coverage(b, nsim = 10)

### bcv$coverageRB, bcv$coverageS, bcv$average.coverageRB, bcv$average.coveragesS,
### bcv$minimum.coverageRB, bcv$raw.resultRB, bcv$raw.resultS

### bcv <- coverage(b, mean.PriorDist = 0.2, nsim = 100)

### bcv <- coverage(b, A.or.r = 50, nsim = 100)

### bcv <- coverage(b, reg.coef = c(-1.5, @), nsim = 100)

### bcv <- coverage(b, A.or.r = 40, mean.PriorDist = 0.2, nsim = 100)
### bcv <- coverage(b, A.or.r = 40, reg.coef = c(-1.5, @), nsim = 100)

B s s
# If we know a mean of the prior distribution, #
SHEEHHHEAHHEHEAHEEA SRR EE AR AR

b <- gbp(z, n, mean.PriorDist = @.265, model = "binomial")

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
bcv <- coverage(b, nsim = 10)

### bcv$coverageRB, bcv$coverageS, bcv$average.coverageRB, bcv$average.coverageS,
### bcv$minimum. coverageRB, bcv$raw.resultRB, bcv$raw.resultS

### bcv <- coverage(b, mean.PriorDist = 0.2, nsim = 100)
### bcv <- coverage(b, A.or.r = 50, nsim = 100)
### bcv <- coverage(b, A.or.r = 40, mean.PriorDist = 0.2, nsim = 100)

B S S R
# Poisson Regression Interactive Multi-level Modeling (PRIMM) #
SHHHHHHHEHE A EHHEHEHEEEEEH AR AR
HHHHHHHPEEE AR A
# If we know a mean of the prior distribution, #
B s s

p <- gbp(z, n, mean.PriorDist = 0.265, model = "poisson")

### when we want to simulate pseudo datasets considering the estimated values
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### as true ones.
pcv <- coverage(p, nsim = 10)

### pcv$coverageRB, pcv$coverageS, pcv$average.coverageRB, pcv$average.coverages,
### pcv$minimum. coverageRB, pcv$raw.resultRB, pcv$raw.resultS

### pcv <- coverage(p, mean.PriorDist = 0.265, nsim = 100)
### pcv <- coverage(p, A.or.r = 150, nsim = 100)
### pcv <- coverage(p, A.or.r = 150, mean.PriorDist

0.265, nsim = 100)

coverage.plot Drawing the coverage plot

Description
In a case where users closed the default coverage plot that the coverage function generated, the
function coverage.plot redraws the coverage plot using the coverage object.

Usage

coverage.plot(cov)

Arguments

cov Any saved result of the coverage function.

Details

It is possible that a user want to redraw the coverage plot for any reasons. If the result of the
coverage function was saved into a variable, this coverage.plot redraw the coverage plot using
the saved result.

Value

The coverage plot will be displayed again.

Author(s)

Hyungsuk Tak, Joseph Kelly, and Carl Morris

Examples

# baseball data where z is Hits and n is AtBats
z <- c(18, 17, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 8, 7)
n <- c(45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45)

b <- gbp(z, n, model = "binomial")
cov <- coverage(b, nsim = 10)
coverage.plot(cov)
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ghp Fitting Gaussian, Poisson, and Binomial Hierarchical Models

Description

gbp fits Bayesian hierarchical models using the Uniform distribution on the second level variance
component (variance of the prior distribution), which enables good frequentist repeated sampling
properties.

Usage

gbp(y, se.or.n, covariates, mean.PriorDist, model, intercept,
confidence.lvl, n.AR, n.AR.factor, trial.scale, save.result,
normal.CI, t, u)

Arguments
y a (k by 1) vector of k groups’ sample means for Gaussian or of each group’s
number of successful trials for Binomial and Poisson data, where k is the number
of groups (or units) in a dataset.
se.or.n a (k by 1) vector composed of the standard errors of all groups for Gaussian or
of each group’s total number of trials for Binomial and Poisson data.
covariates (optional) a matrix of covariate(s) each column of which corresponds to one

covariate.

mean.PriorDist (optional) a numeric value for the second-level mean parameter, i.e. the mean of
prior distribution, if you know this value a priori.

model a character string indicating which hierarchical model to fit. "gaussian" for
Gaussian data, "poisson” for Poisson, and "binomial" for Binomial. Default
is "gaussian"

intercept TRUE or FALSE flag indicating whether an intercept should be included in the
regression. Default is TRUE.

confidence.lvl a float between O and 1 to estimate 100*confidence.lvl% intervals. Default is
0.95.

n.AR Only for Binomial model. If n. AR = 1000, all the results will be based on 1000
posterior samples using the acceptance-rejection sampling. Default is O.

n.AR.factor Only for Binomial model. If n. AR = 1000 and n. AR. factor = 4, then the acceptance-
rejection method will sample 4 * 1000 trial samples, and accept or reject them
until the method gets n.AR posterior samples. Default is 4.

trial.scale A scale used in the trial distribution of «. If resultant weight has too mamy 0’s,
scale should be smaller than before. If resultant weight has too few 0’s, scale
should be larger than before. If there are relatively huge weights, scale should
be larger than before. Default is 1.3.

save.result Only for Binomial model with the acceptance-rejection sampling.
If save.result is TRUE, all the results of weights and posterior samples will
be saved in the gbp object. Default is TRUE.
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normal.CI Only applicable for Gaussian data. If TRUE then a Normal approximation is
used to construct intervals for the level 1 group means. If FALSE (default) then a
Skew-Normal distribution is used. Setting the value to TRUE may result in speed
improvements but may lead to intervals that under cover.

t Non-negative constant to determine the hyper-prior distribution of r for the Bi-
nomial model with the acceptance-rejection method. If t is positive, then the
hyper-prior distribution of r is proper, otherwise improper. dr/(t + r)%*1.

u A positive constant to determine the hyper-prior distribution of r for the Bino-
mial model with the acceptance-rejection method. dr/(t + r)“*1.

Details

gbp fits a hierarchical model whose first-level hierarchy is a distribution of observed data and
second-level is a conjugate prior distribution on the first-level parameter. To be specific, for Normal
data, gbp constructs a two-level Normal-Normal multilevel model. V; (=02 /n;) is assumed to be
known or to be accurately estimated, and subscript j indicates j-th group (or unit) in a dataset.

ind
(y;16;) '~ N(0;,07)
ind
(051105, A) "~ N(poj, A)
toj = 3
for j =1,..., k, where k is the number of groups (units) in a dataset.

For Poisson data, gbp builds a two-level Poisson-Gamma multilevel model. A square bracket below
indicates [mean, variance] of distribution, a constant multiplied to the notation representing Gamma

distribution (Gam) is a scale, and y; = TZTJ
J

nd .
(2j10;) ~ Pois(n;0;)

(3

nd 1 ind
(057, prog) ~ ;Gam(ruoj) ~ Gam|poj, poj /7]

log(poj) = 33
for j = 1,..., k, where k is the number of groups (units) in a dataset.
For Binomial data, gbp sets a two-level Binomial-Beta multilevel model. A square bracket below

indicates [mean, variance] of distribution and y; = Z—7
J

ind .
(2j|6;) '~ Bin(n;,0;)

ind ind
(0517, poj) ~ Beta(rpoj, r(1 — poj)) ~ Betalpoj, proj (1 — poj)/ (r + 1)]
logit(po;) = 2
for j =1,..., k, where k is the number of groups (units) in a dataset.

For reference, based on the above notations, the Uniform prior distribution on the second level
variance component (variance of the prior distribution) is dA for Gaussian and d(%) (= %) for
Binomial and Poisson data. The second level variance component can be interpreted as variation
among the first-level parameters (;) or variance of ensemble information.
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Under this setting, the argument y in gbp is a (k by 1) vector of k groups’ sample means (y;-s in the
description of Normal-Normal model above) for Gaussian or of each group’s number of successful
trials (zg- s) for Binomial and Poisson data, where k is the number of groups (or units) in a dataset.

The argument se.or.n is a (k by 1) vector composed of the standard errors (Vj’ s) of all groups for
Gaussian or of each group’s total number of trials (n;s) for Binomial and Poisson data.

As for two optional arguments, covariates and mean.PriorDist, there are three feasible combi-
nations of them to run gbp. The first situation is when we do not have any covariate and do not
know a mean of the prior distribution (1) a priori. In this case, assigning none of two optional
arguments, such as "gbp(z, n, model = "binomial”)", will lead to a correct model. gbhp will au-
tomatically fit a regression with only an intercept term to estimate a common mean of the prior
distribution (exchangeability).

The second situation is when we have covariate(s) and do not know a mean of the prior distribution
(o) a priori. In this case, assigning a matrix, X, each column of which corresponds to one covariate,
such as "gbp(z, n, X, model = "poisson”)", will lead to a correct model. Default of gbp is to
fit a regression including an intercept term to estimate a mean of the prior distribution. Double
exchangeability will hold in this case.

The last case is when we know a mean of the prior distribution (1) a priori. Now, we do not need
to estimate regression coefficients at all because we know a true value of yy (strong assumption).
Designating this value into the argument of gbp like "gbp(y, se, mean.PriorDist = 3)" is enough
to account for it. For reference, mean.PriorDist has a stronger priority than covariates, which
means that when both arguments are designated, gbp will fit a hierarchical model using the known
mean of prior distribution, mean.PriorDist.

gbp returns an object of class "gbp" which provides three relevant functions plot, print, and
summary.

Value

An object of class gbp comprises of:

sample.mean sample mean of each group (or unit)

se if Gaussian data, standard error of sample mean in each group (or unit)

n if Binomial and Poisson data, total number of trials of each group (or unit)
prior.mean numeric if entered, NA if not entered

prior.mean.hat estimate of prior mean by a regression if prior mean is not assigned a priori
shrinkage shrinkage estimate of each group (adjusted posterior mean)

sd.shrinkage  posterior standard deviation of shrinkage

post.mean posterior mean of each group

post.sd posterior standard deviation of each group

post.intv.low lower bound of 100*confidence.lvl% posterior interval (quantile of posterior dis-
tribution)

post.intv.upp upper bound of 100*confidence.lvl% posterior interval (quantile of posterior
distribution)

model "gaussian”" for Gaussian, "poisson" for Poisson, and "binomial" for Binomial
data
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X
beta.new
beta.var
intercept

a.new

a.var
confidence.1lvl
weight

p

alpha

beta
accept.rate

n.AR

n.AR.factor

Author(s)
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a covariate vector or matrix if designated. NA if not
regression coefficient estimates

estimated variance matrix of regression coefficient
whether TRUE or FALSE

a posterior mode of « defined as log(A) for Gaussian or log(%) for Binomial and
Poisson data. Practical meaning (variation of ensemble information) of estimat-
ing o will appear in summary (gbp.object).

posterior variance of «
confidence level based on which confidence interval is constructed
(only for Binomial model) weights for acceptance-rejection method

(only for Binomial model) posterior samples of p based on the acceptance-
rejection method, if this method was used. This is a (k by nsim) matrix. Each
row contains posteiror samples of each random effect.

(only for Binomial model) posterior samples of alpha based on the acceptance-
rejection method, if this method was used

(only for Binomial model) posterior samples of beta based on the acceptance-
rejection method, if this method was used

(only for Binomial model) the acceptance rate of the acceptance-rejection method,
if this method was used

(Only for Binomial model) If n. AR = 1000, all the results will be based on 1000
posterior samples using the acceptance-rejection sampling. Default is O.

(only for Binomial model) If n. AR = 1000 and n. AR. factor = 4, then the acceptance-

rejection method will sample 4 * 1000 trial posteior samples, and accept or reject
them. Default is 4.

Hyungsuk Tak, Joseph Kelly, and Carl Morris

References

Tak, H., Kelly, J., and Morris, C. (2017) Rgbp: An R Package for Gaussian, Poisson, and Binomial
Random Effects Models with Frequency Coverage Evaluations. Journal of Statistical Software. 78,

5, 1-33.

Morris, C. and Lysy, M. (2012). Shrinkage Estimation in Multilevel Normal Models. Statistical
Science. 27, 1, 115-134.

Examples

# Loading datasets

data(schools)

y <- schools$y

se <- schools$se

# Arbitrary covariate for schools data
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x2 <= rep(c(-1, o, 1, 2), 2)

# baseball data where z is Hits and n is AtBats
z <- c(18, 17, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 8, 7)
n <- c(45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45)

# One covariate: 1 if a player is an outfielder and @ otherwise
x1 <-c¢C1, 1, 1, 1, 1, o, o, o, o, 1, o, o, o, 1, 1, 0, 0, 0

B R
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
HHHHHEEEHE AR R A

HHHHE AR
# If we do not have any covariate and do not know a mean of the prior distribution#
HHHHEHAEEEEE R A R

g <- gbp(y, se, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)
plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coveragel®d, gcv$average.coverageRB, gcv$average.coveragelo,
### gcvdminimum.coverageRB, gcv$minimum.coveragel@, gcv$raw.resultRB,
### gcv$raw.result10.

### when we want to simulate pseudo datasets based on different values of A
### and a regression coefficient (intercept),

### not using estimated values as true ones.

gcv <- coverage(g, A.or.r = 9, reg.coef = 10, nsim = 10)

HHHHHHHHHEEEE AR AR A
# If we have one covariate and do not know a mean of the prior distribution yet, #
SR AR AR R

g <- gbp(y, se, x2, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)

plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coveragel®, gcv$average.coverageRB, gcv$average.coveragel®,
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### gcv$minimum. coverageRB, gcv$minimum.coveragel@, gcv$raw.resultRB,
### gev$raw.resulti1o.

### when we want to simulate pseudo datasets based on different values of A
### and regression coefficients, not using estimated values

### as true ones. Two values of reg.coef are for beta® and betal

gcv <- coverage(g, A.or.r = 9, reg.coef = c(10, 1), nsim = 10)

HHHHHHHHAEEE AR
# If we know a mean of the prior distribution, #
HHHHHAHHEAE A

g <- gbp(y, se, mean.PriorDist = 8, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)

plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
gcv <- coverage(g, nsim = 10)

### gcv$coverageRB, gcv$coveragel®, gcv$average.coverageRB, gcv$average.coveragel®,
### gcvdminimum.coverageRB, gcv$minimum.coveragel@, gcv$raw.resultRB,
### gev$raw.result1o.

### when we want to simulate pseudo datasets based on different values of A and
### 2nd level mean as true ones, not using estimated values as true ones.
coverage(g, A.or.r = 9, mean.PriorDist = 5, nsim = 10)

HHHHHHHEHAHHAEHEHHHHHEHAHHARA AR
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
B R

W
# If we do not have any covariate and do not know a mean of the prior distribution#
S

b <- gbp(z, n, model = "binomial")
b

print(b, sort = FALSE)

summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
bcv <- coverage(b, nsim = 10)

### bcv$coverageRB, bcv$coveragel@, bcv$average.coverageRB, bcv$average.coveragelo,
### bcv$minimum. coverageRB, bcv$minimum.coveragel1@, bcv$raw.resultRB,
### bcv$raw.resulti1o.
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### when we want to simulate pseudo datasets based on different values of r
### and a regression coefficient (intercept),

### not using estimated values as true ones.

bcv <- coverage(b, A.or.r = 60, reg.coef = -1, nsim = 10)

B g L i Rl e a8 o i i L E g a i i iy i i g e g e g e i i ey
# If we have one covariate and do not know a mean of the prior distribution yet, #

B g S S S S S s s

b <- gbp(z, n, x1, model = "binomial")

b

print(b, sort = FALSE)
summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
bcv <- coverage(b, nsim = 10)

#i## bcv$coverageRB, bcv$coveragel@, bcv$average.coverageRB, bcv$average.coveragelo,
### bcv$minimum.coverageRB, bcv$minimum.coveragel1@, bcv$raw.resultRB,
### bcv$raw.result10.

### when we want to simulate pseudo datasets based on different values of r
### and regression coefficients, not using estimated values

#i## as true ones. Two values of reg.coef are for beta® and betal

bcv <- coverage(b, A.or.r = 60, reg.coef = c(-1, @), nsim = 10)

SHEEHHHAHHEHEEHEE SRR EE AR AR
# If we know a mean of the prior distribution, #

A

b <- gbp(z, n, mean.PriorDist = ©.265, model = "binomial")

b

print(b, sort = FALSE)
summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.
bcv <- coverage(b, nsim = 10)

### bcv$coverageRB, bcv$coveragel@, bcv$average.coverageRB, bcv$average.coveragelo,
### bcv$minimum.coverageRB, bcv$minimum.coveragel1@, bcv$raw.resultRB,
### bcv$raw.resulti10.

### when we want to simulate pseudo datasets based on different values of r and
### 2nd level mean as true ones, not using estimated values as true ones.
bcv <- coverage(b, A.or.r = 60, mean.PriorDist = 0.3, nsim = 10)



hospital

B s S R
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
HHHHEEEE A A

HHHHHAHAEE AR
# If we know a mean of the prior distribution, #
HHHHEAHEEE AR R

p <- gbp(z, n, mean.PriorDist = 0.265, model = "poisson")
p

print(p, sort = FALSE)

summary (p)

plot(p)

plot(p, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values

### as true ones.
pcv <- coverage(p, nsim = 10)

17

### pcv$coverageRB, pcv$coveragel@, pcv$average.coverageRB, pcv$average.coveragelo,

### pcv$minimum.coverageRB, pcv$minimum.coveragel1@, pcv$raw.resultRB,
### pcv$raw.result1o.

### when we want to simulate pseudo datasets based on different values of r and

### 2nd level mean as true ones, not using estimated values as true ones.
pcv <- coverage(p, A.or.r = 60, mean.PriorDist = 0.3, nsim = 10)

hospital Thirty-one Hospital Data

Description

Medical profiling evaluation of 31 New York hospitals in 1992. We are to consider these as
Normally-distributed indices of successful outcome rates for patients at these 31 hospitals following
Coronary Artery Bypass Graft (CABG) surgeries. The indices are centered so that the New York
statewide average outcome over all hospitals lies near 0. Larger estimates of y indicate hospitals

that performed better for these surgeries.

Usage

data(hospital)

Format

A dataset of 31 hospitals comprises of:

y values obtained through a variance stabilizing transformation of the unbiased death rate estimates,

d/ n, assuming Binomial data. Details in the reference.



18 plot.gbp

se approximated standard error of y.
d the number of deaths within a month of CABG surgeries in each hospital

n total number of patients receiving CABG surgeries (case load) in each hospital

Source

Morris, C. and Lysy, M. (2012). Shrinkage Estimation in Multilevel Normal Models. Statistical
Science. 27. 115-134.

Examples

data(hospital)

plot.gbp Drawing Shrinkage and Posterior Interval Plots

Description

plot(gbp.object) draws shrinkage and posterior interval plots

Usage
## S3 method for class 'gbp'
plot(x, sort = TRUE, ...)
Arguments
X a resultant object of gbp function.
sort TRUE or FALSE flag. If TRUE, the interval plot (second plot) will be drawn by the

order of se for Gaussian, or of n for Binomial and Poisson data. If FALSE, it will
be by the order of data input. Default is TRUE.

further arguments passed to other methods.

Details

As for the argument ¥, if the result of gbp is designated to b like
"b <- gbp(z, n, model = "binomial™)", the argument x is supposed to be b.

This function produces two plots containing information about the prior, sample, and posterior
means.

The first plot is a shrinkage plot representing sample means (black circle) on the upper horizontal
line and prior (blue line) and posterior means (red circle) on the lower horizontal line. The aim of
this plot is to get a sense of the magnitude of the shrinkage and to observe if any change in ordering
of the groups has occurred. Crossovers (changes of order) are noted by a black square as indicated
in the legend. If the points plotted have the same value then a sunflower plot is produced where each
petal (line protruding from the point) represent the count of points with that value. The plot also
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aims to incorporate the uncertainty and the lengths of the violet and green lines are proportional to
the standard error and the posterior standard deviation respectively.

The final plot shows interval estimates of all the groups (units) in a dataset. Two short horizontal
ticks at both ends of each black vertical line indicate 97.5% and 2.5% quantiles of a posterior
distribution for each group (Normal for Gaussian, Beta for Binomial, and Gamma for Poisson).
Red dots (posterior mean) are between black circles (sample mean) and blue line(s) (prior mean) as
a result of shrinkage (regression toward the mean).

If we want to see the interval plot (the second plot) NOT sorted by the order of se for Gaussian, or
of n for Binomial and Poisson data, plot(b, sort = FALSE) will show this plot by the order of data
input.

Value

Two plots described in details will be displayed.

Author(s)

Hyungsuk Tak, Joseph Kelly, and Carl Morris

Examples

data(hospital)

z <- hospitals$d
n <- hospital$n
y <- hospital$y
se <- hospital$se

HHHHHEEHHH AR AR AR A
# We do not have any covariates and do not know a mean of the prior distribution. #
AR A R

B g S S S i
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
A AR

g <- gbp(y, se, model = "gaussian")

plot(g)
plot(g, sort = FALSE)

AR AR A
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
HHHHHHH A

b <- gbp(z, n, model = "binomial")
plot(b)
plot(b, sort = FALSE)

HHHHHAHHEEEE AR R
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
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AR

p <- gbp(z, n, mean.PriorDist = 0.03, model = "poisson"”)

plot(p)
plot(p, sort = FALSE)

print.gbp Displaying 'gbp’ Class

Description

print.gbp enables users to see a compact group-level (unit-level) estimation result of gbp function.

Usage
## S3 method for class 'ghp'
print(x, sort = TRUE, ...)
Arguments
X a resultant object of gbp function.
sort TRUE or FALSE flag. If TRUE, the result will appear by the order of se for Gaus-

sian, or of n for Binomial and Poisson data. If FALSE, it will do by the order of
data input. Default is TRUE.

further arguments passed to other methods.

Details
As for the argument X, if the result of gbp is designated to b like
"b <- gbp(z, n, model = "binomial")", the argument x is supposed to be b.

We do not need to type "print(b, sort = TRUE)" but "b" itself is enough to call

print(b, sort =TRUE). But if we want to see the result NOT sorted by the order of se for Gaus-
sian, or of n for Binomial and Poisson data, print(b, sort = FALSE) will show the result by the
order of data input.

Value

print(gbp.object) will display:

obs.mean sample mean of each group

se if Gaussian data, standard error of each group

n if Binomial or Poisson data, total number of trials of each group
X a covariate vector or matrix if designated. NA if not

prior.mean numeric if entered, NA if not entered
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prior.mean.hat estimate of prior mean by a regression if prior mean is not assigned a priori. The
variable name on the display will be "prior.mean"

prior.mean.AR the posterior mean(s) of the expected random effects, if the acceptance-rejection
method is used for the binomial model. The variable name on the display will
be "prior.mean".

shrinkage shrinkage estimate of each group (adjusted posterior mean)

shrinkage.AR the posterior mean of the shrinkage factor, if the acceptance-rejection method is
used for the binomial model. The variable name on the display will be "shrink-

age".

low.intv lower bound of 100*confidence.lvl% posterior interval
post.mean posterior mean of each group

upp.intv upper bound of 100*confidence.lvl% posterior interval
post.sd posterior standard deviation of each group

Author(s)
Hyungsuk Tak, Joseph Kelly, and Carl Morris

Examples

data(hospital)

z <- hospitals$d
n <- hospital$n
y <- hospital$y
se <- hospital$se

HHHHHEHEH AR AR AR A
# We do not have any covariates and do not know a mean of the prior distribution. #
B T T s S S R

B S S S i
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
A AR

g <- gbp(y, se, model = "gaussian")

g
print(g, sort = FALSE)

A AR AR A A
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
HHHHHHH A

b <- gbp(z, n, model = "binomial")
b
print(b, sort = FALSE)

HHHHEAHHEE AR R
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
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AR
p <- gbp(z, n, mean.PriorDist = 0.03, model = "poisson"”)
p
print(p, sort = FALSE)
print.summary.gbp Displaying *summary.gbp’ Class
Description
summary (gbp.object) enables users to see a compact summary of estimation result.
Usage
## S3 method for class 'summary.gbp'
print(x, ...)
Arguments
X a resultant object of gbp function.
further arguments passed to other methods.
Details

The summary has three parts depending on the model fitted by gbp; Main Summary,
Second-1level Variance Component Estimation Summary, and Regression Summary (if fitted).

A display of Main Summary changes depending on whether all the groups (units) has the same
standard error for Gaussian data (or the same total number of trials for Binomial and Poisson data).
If they are not the same, Main Summary lists groups (units) with minimum, median, and maximum
values of the standard error for Gaussian data (or of the total number of trials for Binomial and
Poisson data). And the last row of Main Summary is about the overall average for all the groups
(units) within each column. Note that this last row is not an average over displayed groups (units)
above.

If groups (units) have the same standard error for Gaussian (or the same total number of trials for
Binomial and Poisson), Main Summary lists groups (units) with minimum, median, and maximum
values of the sample mean.

For reference, if there are several units with the same median value, they will show up with num-
bering.

The second part is about the Second-1level Variance Component Estimation Summary. For ref-
erence, the second level variance component can be interpreted as variation among the first-level
parameters (¢;) or variance in ensemble information. It is A for Gaussian, “% for Poisson, and
10 (1=10j) for Binomial data. To be s ecific, this part shows estimate of « (a posterior mode

7 P p p
defined as log(A) for Gaussian or log(%) for Binomial and Poisson data, and its standard error.

The last part depends on whether gbp fitted a regression or not. For reference, gbp fits a regression if
the second-level mean (mean.PriorDist) was not designated. In this case, summary(gbp.object)
will display the result of regression fit.
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summary (gbp.object) shows a compact summary of estimation result such as:

Main summary

Unit w/ min(se or n) an estimation result of a group (unit) with the minimum
standard error for Gaussian or the minimum total number of trials for Bi-
nomial and Poisson data.

Unit w/ min(sample.mean) appears instead of Group w/ min(se or n) when
all the groups (units) have the same standard error for Gaussian or the same
total number of trials for Binomial and Poisson data.

Unit w/ median(se or n) an estimation result of group(s) (unit(s)) with the me-
dian standard error for Gaussian or the median total number of trials for
Binomial and Poisson data.

Unit w/ median(sample.mean) appears instead of
Group w/ median(se or n) when all the groups (units) have the same stan-
dard error for Gaussian or the same total number of trials for Binomial and
Poisson data.

Unit w/ max(se or n) an estimation result of a group (unit) with the maximum
standard error for Gaussian or the maximum total number of trials for Bi-
nomial and Poisson data.

Unit w/ max(sample.mean) appears instead of Group w/ max(se or n) when
all the groups (units) have the same standard error for Gaussian or the same
total number of trials for Binomial and Poisson data.

Overall Means the overall average for all the groups (units) within each col-
umn.

Second-level Variance Component Estimation Summary

post.mode.alpha a posterior mode of o defined as log(A) for Gaussian or log(%)
for Binomial and Poisson data.

post.sd.alpha standard deviation of the posterior distribution of alpha

post.mode.r posterior mode of either  for Bianomial and Poisson models or A
for Gaussian model.

post.median.alpha posterior median of « for Bianomial model, if the accept-
reject method is used.

post.median.r posterior median of r for Bianomial model, if the accept-reject
method is used.

Regression Summary (if fitted)

Author(s)

estimate regression coefficient estimates.
se estimated standard error of regression coefficients.
z.val estimate / se.

p-val two-sided p-values.

Hyungsuk Tak, Joseph Kelly, and Carl Morris
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Examples

data(hospital)

z <- hospital$d
n <- hospital$n
y <- hospital$y
se <- hospital$se

Rgbp

HHHH AR
# We do not have any covariates and do not know a mean of the prior distribution. #
HHHH A

B s s
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
HHHHHHHHEEE AR AR

g <- gbp(y, se, model = "gaussian")
summary (g)

HHHHHHHHEEH A
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
B s s S g

b <- gbp(z, n, model = "binomial”)
summary (b)

A AR AR
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
R A

p <- gbp(z, n, mean.PriorDist = .03, model = "poisson”)
summary (p)

Rgbp

Hierarchical Modeling and Frequency Method Checking on Overdis-

persed Gaussian, Poisson, and Binomial Data

Description

Bayesian-frequentist reconciliation via approximate Bayesian hierarchical modeling and frequency
method checking for over-dispersed Gaussian, Binomial, and Poisson data.

Details

Package: Rgbp
Type: Package
Version: 1.1.3
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Date: 2018-05-16
License: GPL-2
Main functions:  gbp, coverage

Rgbp is an R package that utilizes approximate Bayesian machinery to provide a method of estimat-
ing two-level hierarchical models for Gaussian, Poisson, and Binomial data in a fast and computa-
tionally efficient manner. The main products of this package are point and interval estimates for the
true parameters, whose good frequency properties can be validated via its repeated sampling pro-
cedure called frequency method checking. It is found that such Bayesian-frequentist reconciliation
allows Rgbp to have attributes desirable from both perspectives, working well in small samples and
yielding good coverage probabilities for its interval estimates.

Author(s)

Hyungsuk Tak, Joseph Kelly, and Carl Morris
Maintainer: Joseph Kelly <josephkelly @ google.com>

References

Tak, H., Kelly, J., and Morris, C. (2017) Rgbp: An R Package for Gaussian, Poisson, and Binomial
Random Effects Models with Frequency Coverage Evaluations. Journal of Statistical Software. T8,
5, 1-33.

Morris, C. and Lysy, M. (2012). Shrinkage Estimation in Multilevel Normal Models. Statistical
Science. 27, 1, 115-134.

Examples

# Loading datasets
data(schools)

y <- schools$y

se <- schools$se

# Arbitrary covariate for schools data
x2 <- rep(c(-1, 0, 1, 2), 2)

# baseball data where z is Hits and n is AtBats
z <- c(18, 17, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 8, 7)
n <- c(45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45)

# One covariate: 1 if a player is an outfielder and @ otherwise
x1 <= cCl, 1, 1, 1, 1, o, o, o, o, 1, o, o, o, 1, 1, 0, 0, 0)

SR AR AR A A
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
HHHH A

B g S ST
# If we do not have any covariate and do not know a mean of the prior distribution #
A AR A



Rgbp

g <- gbp(y, se, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)
plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### gcv <- coverage(g, nsim = 10)

### more details in ?coverage

HHHHEHHAREEE A AR R
# If we have one covariate and do not know a mean of the prior distribution yet, #
SR AR R R

g <- gbp(y, se, x2, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)
plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### gcv <- coverage(g, nsim = 10)

### more details in ?coverage

HHHHHHHEEEE AR
# If we know a mean of the prior distribution, #
HHHHHHHHERHHHHHEHHHHAEEA AR

g <- gbp(y, se, mean.PriorDist = 8, model = "gaussian")
g

print(g, sort = FALSE)

summary (g)

plot(g)

plot(g, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### gcv <- coverage(g, nsim = 10)

### more details in ?coverage

B S R R
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
SHHHHHHHEHEH A EHHEEHEEEEEH AR AR

HHHHHHHEEEEE A
# If we do not have any covariate and do not know a mean of the prior distribution #
B s S S R
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b <- gbp(z, n, model = "binomial")
b

print(b, sort = FALSE)

summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### bcv <- coverage(b, nsim = 10)

### more details in ?coverage

HHHHEHHAREEE AR R R
# If we have one covariate and do not know a mean of the prior distribution yet, #
AR AR R AR

b <- gbp(z, n, x1, model = "binomial")
b

print(b, sort = FALSE)

summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### bcv <- coverage(b, nsim = 10)

### more details in ?coverage

A A A
# If we know a mean of the prior distribution, #
SHEEHHHAEHEHEHEEHEEA AR AR

b <- gbp(z, n, mean.PriorDist = @.265, model = "binomial")
b

print(b, sort = FALSE)

summary (b)

plot(b)

plot(b, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### bcv <- coverage(b, nsim = 10)

### more details in ?coverage

B R
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
HHHHEHE A

B s s
# If we know a mean of the prior distribution, #

A

p <- gbp(z, n, mean.PriorDist = 0.265, model = "poisson")
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p

print(p, sort = FALSE)
summary (p)

plot(p)

plot(p, sort = FALSE)

### when we want to simulate pseudo datasets considering the estimated values
### as true ones.

### pcv <- coverage(p, nsim = 10)

### more details in ?coverage

schools Eight Schools Data

Description

Dataset as seen in Rubin (1981) which was an analysis of coaching effects on SAT scores from
eight schools.

Usage

data(schools)

Format
A dataset of 8 schools containing

y The observed coaching effect of each school

se The standard error of the coaching effect of each school.

Source

Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Educational Statis-
tics, 6:377-401.

Examples

data(schools)
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summary . gbhp Summarizing Estimation Result

Description

summary .gbp prepares a summary of estimation result saved in the object defined as "gbp" class
creating "summary.gbp" class

Usage
## S3 method for class 'gbp'
summary (object, ...)
Arguments
object a resultant object of gbp function.

further arguments passed to other methods.

Value
summary . gbp prepares below contents:

main a table to be displayed by summary(gbp.object). print.summary.gbp.

sec.var a vector containing an estimation result of the second-level variance component.
print.summary.gbp.

reg a vector composed of a summary of regression fit (if fitted).
print.summary.gbp.

Author(s)

Hyungsuk Tak, Joseph Kelly, and Carl Morris

Examples

data(hospital)

z <- hospitals$d
n <- hospital$n
y <- hospital$y
se <- hospital$se

SR AR AR A A
# We do not have any covariates and do not know a mean of the prior distribution. #
HHHH A

HHEHEHHHHHHEHEHEEEEH AP HEBHBHEEEHEHHHEHREEEEHEEHEEH R
# Gaussian Regression Interactive Multilevel Modeling (GRIMM) #
HHHHHHHAEHEE AR AR
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g <- gbp(y, se, model = "gaussian")
summary (g)

HHHHEHHAEEE A A
# Binomial Regression Interactive Multilevel Modeling (BRIMM) #
HEHEHHHEHHEHEEHEE R HHEHE HHBHBEHEEHEHEHE HEEEEHEEHHESHHEHE

b <- gbp(z, n, model = "binomial”)
summary (b)

AR
# Poisson Regression Interactive Multilevel Modeling (PRIMM) #
HHHHHHH R

p <- gbp(z, n, mean.PriorDist = .03, model = "poisson”)
summary (p)

summary.gbp
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