Package ‘RestoreNet’

January 20, 2025

Title Random-Effects Stochastic Reaction Networks
Version 1.0.1

Description A random-effects stochastic model that allows quick detection of
clonal dominance events from clonal tracking data collected in gene therapy studies. Start-
ing from the Ito-type equation describing the dynamics of cells duplication, death and differenti-
ation at clonal level, we first considered its local linear approximation as the base model.
The parameters of the base model, which are inferred using a maximum likelihood approach,
are assumed to be shared across the clones. Although this assumption makes inference easier,
in some cases it can be too restrictive and does not take into account possible scenar-
ios of clonal dominance.
Therefore we extended the base model by introducing random effects for the clones.
In this extended formulation the dynamic parameters are estimated using a tailor-made
expectation maximization algorithm. Further details on the meth-
ods can be found in L. Del Core et al., (2022) <do0i:10.1101/2022.05.31.494100>.

License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3.9000

Imports Matrix, xtable, scales, stringr, ggplot2, scatterpie,
RColorBrewer

Depends R (>=2.10)
LazyData true
Suggests R.rsp
VignetteBuilder R.rsp
NeedsCompilation no

Author Luca Del Core [aut, cre, cph] (<https://orcid.org/0000-0002-1672-6995>),
Marco Grzegorczyk [aut, ths] (<https://orcid.org/0000-0002-2604-9270>),
Ernst Wit [aut, ths] (<https://orcid.org/0000-0002-3671-9610>)

Maintainer Luca Del Core <1.del.core@rug.nl>
Repository CRAN
Date/Publication 2024-02-15 11:00:02 UTC

https://doi.org/10.1101/2022.05.31.494100
https://orcid.org/0000-0002-1672-6995
https://orcid.org/0000-0002-2604-9270
https://orcid.org/0000-0002-3671-9610

2 fit.null

Contents
fitnull e 2
itre e e e e 4
get.boxplots 7
getrescaled 9
GELSCAUETPIE v v v v i e e e e e e e e e e e e e e e e e 10
get.simutl . . L. L e e 11
Y_RM . e 13

Index 14

fit.null Fit the base (null) model
Description

This function builds the design matrix of the null model and returns the fitted values and the corre-
sponding statistics.

Usage

fit.null(

rct.lst,

maxit = 10000,
factr = 1e+07,
pgtol = 1e-08,

1mm = 100,
trace = TRUE,
verbose = TRUE
)
Arguments
Y A 3-dimensional array whose dimensions are the time, the cell type and the
clone respectively.
rct.1lst list of biochemical reactions. A differentiation move from cell type "A" to cell
type "B" must be coded as "A->B" Duplication of cell "A" must be coded as
"A->1" Death of cell "A" must be coded as "A->0"
maxit maximum number of iterations for the optimization step. This argument is
passed to optim() function. Details on "maxit" can be found in "optim()" docu-
mentation page.
factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when

the reduction in the objective is within this factor of the machine tolerance. De-
fault is 1e7, that is a tolerance of about 1e-8. This argument is passed to optim()
function.

fit.null 3

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on
the projected gradient in the current search direction. This defaults to zero, when
the check is suppressed. This argument is passed to optim() function.

1mm is an integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 5. This argument is passed to optim() function.

trace Non-negative integer. If positive, tracing information on the progress of the
optimization is produced. This parameter is also passed to the optim() function.
Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the
source code: higher levels give more detail.)

verbose (defaults to TRUE) Logical value. If TRUE, then information messages on the
progress of the algorithm are printed to the console.
Value

A 3-length list. First element is the output returned by "optim()" function (see "optim()" documen-
tation for details). Second element is a vector of statistics associated to the fitted null model:

nPar number of parameters of the base(null) model

cll value of the conditional log-likelihood, in this case just the log-likelihood

mll value of the marginal log-likelihood, in this case just the log-likelihood

CAIC conditional Akaike Information Criterion (cAIC), in this case simply the AIC.
mAIC marginal Akaike Information Criterion (mAIC), in this case simply the AIC.
Chi2 value of the x? statistic (y — M6)' S~ (y — M#).

p-value p-value of the x? test for the null hypothesis that Chi2 follows a x? distribution with n - nPar degrees of freedom.

The third element, called "design", is a list including:
M A n x K dimensional (design) matrix.

V A p x K dimensional net-effect matrix.

Examples

rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->@", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3 ## number of clones
S <- 10 ## trajectory length

tau <- 1 ## for tau-leaping algorithm
u_l <- ¢(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)
u_2 <- ¢(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)
u_3 <- ¢(.2, .15, .17%3, .09,
.001, .007, .004, .002,
.13, .15, .08)

theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters

rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = ¢(S + 1, length(ctps), nC),
dimnames = list(seq(from = @, to =
ctps,

Sxtau, by = tau),

fit.re

1:nC)) ## empty array to store simulations

YO <- c(100,0,0,0) ## initial state

names(YQ) <- ctps

for (cl in 1:nC) { ## loop over clones
Y[,,cl] <- get.sim.tl(Yt = Yo,

theta = theta_allcls[,cl],
S =S5,

s2 = s20,

tau = tau,

rct.lst = rcts,

verbose = TRUE)

3
null.res <- fit.null(Y =Y,
rct.lst = rcts,
maxit = @, ## needs to be increased (>=100)

for real applications

1mm = @, ## needs to be increased (>=5) for real applications

) ## null model fitting

fit.re Fit the random-effects model

Description

This function builds the design matrix of the random-effects model and returns the fitted values and

the corresponding statistics.

Usage

fit.re(
theta_o,
Y,
rct.1lst,
maxit = 10000,

fit.re

factr = 1e+07
pgtol = 1e-08
1mm = 100,
maxemit = 100
eps = le-05,
trace = TRUE,

’

’

’

verbose = TRUE

Arguments

theta_0
Y

rct.lst

maxit

factr

pgtol

Imm

maxemit

eps

trace

verbose

Value

A p-dimensional vector parameter as the initial guess for the inference.

A 3-dimensional array whose dimensions are the time, the cell type and the
clone respectively.

list of biochemical reactions. A differentiation move from cell type "A" to cell
type "B" must be coded as "A->B" Duplication of cell "A" must be coded as
"A->1" Death of cell "A" must be coded as "A->0"

maximum number of iterations for the optimization step. This argument is
passed to optim() function. Details on "maxit" can be found in "optim()" docu-
mentation page.

controls the convergence of the "L-BFGS-B" method. Convergence occurs when
the reduction in the objective is within this factor of the machine tolerance. De-
fault is 1e7, that is a tolerance of about 1e-8. This argument is passed to optim()
function.

helps control the convergence of the "L-BFGS-B" method. It is a tolerance on
the projected gradient in the current search direction. This defaults to zero, when
the check is suppressed. This argument is passed to optim() function.

is an integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 5. This argument is passed to optim() function.

maximum number of iterations for the expectation-maximization algorithm.

relative error for the value x and the objective function f(x) that has to be opti-
mized in the expectation-maximization algorithm.

Non-negative integer. If positive, tracing information on the progress of the
optimization is produced. This parameter is also passed to the optim() function.
Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the
source code: higher levels give more detail.)

(defaults to TRUE) Logical value. If TRUE, then information messages on the
progress of the algorithm are printed to the console.

A 3-length list. First element is the output returned by "optim()" function (see "optim()" documen-
tation for details) along with the conditional expectation E[u|y] and variance V[u]y] of the latent
states u given the observed states y from the last step of the expectation-maximization algorithm.
Second element is a vector of statistics associated to the fitted random-effects model:

nPar

cll

mll

cAIC

mAIC

Chiz2

p-value

KLdiv

KLdiv/N
BhattDist_nullCond

BhattDist_nullCond/N

fit.re

number of parameters of the base(null) model

value of the conditional log-likelihood, in this case just the log-likelihood

value of the marginal log-likelihood, in this case just the log-likelihood

conditional Akaike Information Criterion (cAIC), in this case simply the AIC.

marginal Akaike Information Criterion (mAIC), in this case simply the AIC.

value of the x? statistic (y — M6)'S~1(y — M9).

p-value of the x? test for the null hypothesis that Chi2 follows a 2 distribution with n - nPar degr
Kullback-Leibler divergence of the random-effects model from the null model.

Rescaled Kullback-Leibler divergence of the random-effects model from the null model.
Bhattacharyya distance between the random-effects model and the null model.

Rescaled Bhattacharyya distance between the random-effects model and the null model.

The third element, called "design", is a list including:

M

A n x K dimensional (design) matrix.

M_bdiag An x Jp dimensional block-diagonal design matrix.

\

Examples

A p x K dimensional net-effect matrix.

rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->Q" ,

"B->Q", "C->Q",

"D->0"

"A->B", "A->C", "C->D") ## set of reactions

ctps <- head(LETTERS,4)

nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm

u_l <- ¢(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)

u_2 <- c(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)

u_3 <- ¢(.2, .15, .17%3, .09,
.001, .007, .004, .002,
.13, .15, .08)

get.boxplots

theta_allcls <- chind(u_1, u_2, u_3) ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = ¢(S + 1, length(ctps), nC),
dimnames = list(seq(from = @, to = S*tau, by = tau),
ctps,
1:nC)) ## empty array to store simulations
YO <- ¢(100,0,0,0) ## initial state
names(YQ) <- ctps
for (cl in 1:nC) { ## loop over clones
Y[,,cl] <- get.sim.tl(Yt = Yo,
theta = theta_allcls[,cl],

S =5,
s2 = s20,
tau = tau,

rct.lst = rcts,
verbose = TRUE)
}
null.res <- fit.null(Y =Y,
rct.lst = rcts,
maxit = @, ## needs to be increased (>=100) for real applications
Imm = @, ## needs to be increased (>=5) for real applications
) ## null model fitting

re.res <- fit.re(theta_0
Y =Y,
rct.lst = rcts,
maxit = @, ## needs to be increased (>=100) for real applications
1mm = @, ## needs to be increased (>=5) for real applications
maxemit = 1 ## needs to be increased (>= 100) for real applications
) ## random-effects model fitting

null.resfitpar,

get.boxplots Clonal boxplots

Description

Draw clonal boxplots of a random-effects reaction network.

Usage

get.boxplots(re.res)

Arguments

re.res output list returned by fit.re().

8 get.boxplots

Details

This function generates the boxplots of the conditional expectations
k k
Wg = Eumyn&[uaz] - Eu|AY;z/S[U6J

, computed from the estimated parameters 1& for the clone-specific net-duplication in each cell
lineage 1 (different colors). The whiskers extend to the data extremes.

Value

No return value.

Examples

rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_l <- c(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)
u_3 <- c(.2, .15, .17x3, .09,
.001, .007, .004, .002,
.13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters
rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = ¢(S + 1, length(ctps), nC),
dimnames = list(seq(from = @, to = Sxtau, by = tau),
ctps,
1:nC)) ## empty array to store simulations
Yo <- c(100,0,0,0) ## initial state
names(YQ) <- ctps
for (cl in 1:nC) { ## loop over clones
Y[,,cl] <- get.sim.t1(Yt = Yo,
theta = theta_allcls[,cl],

S =S5,
s2 = s20,
tau = tau,

rct.lst = rcts,
verbose = TRUE)
3
null.res <- fit.null(Y =Y,
rct.1lst = rcts,
maxit = @, ## needs to be increased (>=100) for real applications

get.rescaled 9

1mm = @, ## needs to be increased (>=5) for real applications
) ## null model fitting

re.res <- fit.re(theta_0
Y=Y,
rct.1lst = rcts,
maxit = @, ## needs to be increased (>=100) for real applications
lmm = @, ## needs to be increased (>=5) for real applications
maxemit = 1 ## needs to be increased (>= 100) for real applications
) ## random-effects model fitting

null.resfitpar,

get.boxplots(re.res)

get.rescaled Rescaling a clonal tracking dataset

Description

Rescales a clonal tracking dataset based on the sequencing depth.

Usage

get.rescaled(Y)

Arguments
Y A 3-dimensional array whose dimensions are the time, the cell type and the
clone respectively.
Details

This function rescales a clonal tracking dataset Y according to the formula

ming; 3. Yije
Zc Yvijc

Yiik < Yijk -
Value

A rescaled clonal tracking dataset.

Examples

get.rescaled(Y_RM[["ZH33"]1)

10 get.scatterpie

get.scatterpie Clonal pie-chart

Description

Draw a clonal pie-chart of a random-effects reaction network.

Usage

get.scatterpie(re.res, txt = FALSE, legend = FALSE)

Arguments
re.res output list returned by fit.re().
txt logical (defaults to FALSE). If TRUE, barcode names will be printed on the pies.
legend logical (defaults to FALSE). If TRUE, the legend of the pie-chart will be printed.
Details

This function generates a clonal pie-chart given a previously fitted random-effects model. In this
representation each clone £ is identified with a pie whose slices are lineage-specific and weighted
with wy, defined as the difference between the conditional expectations of the random-effects on
duplication and death parameters, that is

Wg = Eu|AY;1ﬂ[ut]§ézm] - Eu|AY;1ﬂ[u§zm]

, where 1lin is a cell lineage. The diameter of the k-th pie is proportional to the euclidean 2-norm
of wy. Therefore, the larger the diameter, the more the corresponding clone is expanding into the
lineage associated to the largest slice.

Value

No return value.

Examples

rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->Q", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_l <- ¢(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)
u_2 <- ¢(.2, .15, .17, .09,
.001, .007, .004, .002,

get.sim.tl
.13, .15, .08)
u_3 <- c(.2, .15, .17%3, .09,
001, .007, .004, .002,
.13, .15, .08)

theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters

rownames(theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = ¢(S + 1, length(ctps), nC),
dimnames = list(seq(from = @, to = Sxtau, by = tau),
ctps,

11

1:nC)) ## empty array to store simulations

YO <- c(100,0,0,0) ## initial state

names(YQ) <- ctps

for (cl in 1:nC) { ## loop over clones
Y[,,cl] <- get.sim.tl(Yt = Yo,

theta = theta_allcls[,cl],
S =S5,

s2 = s20,

tau = tau,

rct.lst = rcts,

verbose = TRUE)

3
null.res <- fit.null(Y =Y,

rct.1st = rcts,

maxit = @, ## needs to be increased (>=100)

1mm = @, ## needs to be increased (>=5) for
) ## null model fitting

re.res <- fit.re(theta_0 = null.resfitpar,

Y=Y,
rct.1lst = rcts,
maxit = @, ## needs to be increased (>=100) for

for real applications
real applications

real applications

1mm = @, ## needs to be increased (>=5) for real applications

maxemit
) ## random-effects model fitting

get.scatterpie(re.res, txt = TRUE)

1 ## needs to be increased (>= 100) for real applications

get.sim.tl T-leaping simulation algorithm

Description

Simulate a trajectory of length S for a stochastic reaction network.

Usage

get.sim.tl(Yt, theta, S, s2 = 0, tau = 1, rct.lst, verbose

TRUE)

get.sim.tl

Arguments
Yt starting point of the trajectory
theta vector parameter for the reactions.
S length of the simulated trajectory.
s2 noise variance (defaults to 0).
tau time interval length (defaults to 1).
rct.lst list of biochemical reactions.
verbose (defaults to TRUE) Logical value. If TRUE, then information messages on the
simulation progress are printed to the console.
Details

This function allows to simulate a trajectory of a single clone given an initial conditions Y for the
cell counts, and obeying to a particular cell differentiation network defined by a net-effect (stoichio-
metric) matrix V' and an hazard function h(). The function allows to consider only three cellular
events, such as cell duplication (Y;; — 1), cell death (Y;; — () and cell differentiation (Y;; — Yie)
for a clone-specific time counting process

Yy = (Yit, ..., Y)

observed in N distinct cell lineages. In particular, the cellular events of duplication, death and
differentiation are respectively coded with the character labels "A->1", "A->@", and "A->B", where
A and B are two distinct cell types. The output is a 3-dimensional array Y whose ijk-entry Y;;y, is
the number of cells of clone k for cell type j collected at time . More mathematical details can be
found in the vignette of this package.

Value

A S x p dimensional matrix of the simulated trajectory.

Examples

rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head(LETTERS,4)
nC <- 3 ## number of clones
S <- 10 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_l <- c(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)
u_2 <- c(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)
u_3 <- c(.2, .15, .17x3, .09,
.001, .007, .004, .002,
.13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters

Y RM 13

rownames (theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = ¢(S + 1, length(ctps), nC),
dimnames = list(seq(from = @, to = Sxtau, by = tau),
ctps,
1:nC)) ## empty array to store simulations
YO <- c(100,0,0,0) ## initial state
names(YQ) <- ctps
for (cl in 1:nC) { ## loop over clones
Y[,,cl] <- get.sim.tl(Yt = Yo,
theta = theta_allcls[,cl],

S =S5,
s2 = s20,
tau = tau,

rct.lst = rcts,
verbose = TRUE)

e

Y_RM Rhesus Macaque clonal tracking dataset

Description

A dataset containing clonal tracking cell counts from a Rhesus Macaque study.

Usage

Y_RM

Format

A list containing clonal tracking data for each animal (ZH33, ZH17, ZG66). Each clonal tracking
dataset is a 3-dimensional array whose dimensions identify

1 time, in months
2 cell types: T, B, NK, Macrophages(M) and Granulocytes(G)

3 unique barcodes (clones)

Source

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979461/bin/NIHMS567927-supplement-02.
x1sx

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979461/bin/NIHMS567927-supplement-02.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979461/bin/NIHMS567927-supplement-02.xlsx

Index

x datasets
Y_RM, 13

fit.null, 2
fit.re, 4

get.boxplots, 7
get.rescaled, 9
get.scatterpie, 10
get.sim.tl, 11

Y_RM, 13

14

	fit.null
	fit.re
	get.boxplots
	get.rescaled
	get.scatterpie
	get.sim.tl
	Y_RM
	Index

