RegEnRF: Regression-Enhanced Random Forests

A novel generalized Random Forest method, that can improve on RFs by borrowing the strength of penalized parametric regression. Based on Zhang et al. (2019) <doi:10.48550/arXiv.1904.10416>.

Version: 1.0.0
Imports: glmnet, randomForest
Suggests: testthat (≥ 3.0.0)
Published: 2025-12-22
DOI: 10.32614/CRAN.package.RegEnRF (may not be active yet)
Author: Umberto Minora ORCID iD [aut, cre, cph]
Maintainer: Umberto Minora <umbertofilippo at tiscali.it>
BugReports: https://github.com/umbe1987/regenrf/issues
License: MIT + file LICENSE
URL: https://github.com/umbe1987/regenrf
NeedsCompilation: no
Citation: RegEnRF citation info
Materials: README, NEWS
CRAN checks: RegEnRF results

Documentation:

Reference manual: RegEnRF.html , RegEnRF.pdf

Downloads:

Package source: RegEnRF_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: RegEnRF_1.0.0.zip, r-oldrel: not available
macOS binaries: r-release (arm64): RegEnRF_1.0.0.tgz, r-oldrel (arm64): RegEnRF_1.0.0.tgz, r-release (x86_64): RegEnRF_1.0.0.tgz, r-oldrel (x86_64): RegEnRF_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RegEnRF to link to this page.